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Abstract. We prove that the vector play operator with a uniformly prox-regular charac-
teristic set of constraints is continuous with respect to the BV -norm and to the BV -strict
metric in the space of rectifiable curves, i.e., in the space of continuous functions of bounded
variation. We do not assume any further regularity of the characteristic set. We also prove
that the non-convex play operator is rate independent.
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1. Introduction

Several phenomena in elasto-plasticity, ferromagnetism, and phase transitions are

modeled by the following evolution variational inequality in a real Hilbert space H

with the inner product 〈·, ·〉:

〈z − u(t) + y(t), y′(t)〉 6 0 ∀ z ∈ Z, t ∈ [0, T ],(1.1)

u(t)− y(t) ∈ Z ∀ t ∈ [0, T ].(1.2)

Here u : [0, T ] → H is a given “input” function, T > 0 being the final time of

evolution, and y : [0, T ] → H is the unknown function, y′ being its derivative. It is

assumed that the set Z in the constraint (1.2) is a closed convex subset of H, and it
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is usually called the characteristic set. We refer to the monographs [18], [25], [36],

[5], [20], [26] for surveys on these physical models. It is well-known (see, e.g., [20]),

that if u is absolutely continuous, then there exists a unique absolutely continuous

solution y of (1.1)–(1.2) together with the given initial condition

(1.3) u(0)− y(0) = z0 ∈ Z.

If we set P(u, z0) := y, we have defined a solution operator P : W 1,1([0, T ];H)×Z →

W 1,1([0, T ];H) which is called the play operator. Here W 1,1([0, T ];H) denotes the

space ofH-valued Lipschitz continuous functions defined on [0, T ] (precise definitions

is given in Sections 2 and 3). An important feature of P is its rate independence, i.e.,

(1.4) P(u ◦ φ, z0) = P(u, z0) ◦ φ,

whenever φ : [0, T ] → [0, T ] is an increasing surjective Lipschitz continuous repara-

metrization of time. The play operator can be extended to the space of rectifiable

curves in H, i.e., to the space of continuous H-valued functions of bounded variation

C([0, T ];H) ∩ BV ([0, T ];H) (see [20]). This can be done by reformulating (1.1) as

an integral variation inequality

(1.5)

∫ T

0

〈z(t)− u(t) + y(t), dy(t)〉 6 0 ∀ z ∈ BV ([0, T ];Z),

where the integral can be interpreted as a Riemann-Stieltjes integral (see, e.g., [20]),

but also as a Lebesgue integral with respect to the differential measure Dy, the distri-

butional derivative of y (see [30] for the equivalence of the two formulations). By [20]

for every u ∈ C([0, T ];H) ∩ BV ([0, T ];H) there exists a unique y ∈ C([0, T ];H) ∩

BV ([0, T ];H) such that (1.5), (1.2), (1.3) hold. Therefore, the play operator can

be extended to the operator P : C([0, T ];H) ∩ BV ([0, T ];H) × Z → C([0, T ];H) ∩

BV ([0, T ];H). Its domain of definition is naturally endowed with the strongBV -norm

defined by

(1.6) ‖u‖BV := ‖u‖∞ +V(u, [0, T ]), u ∈ BV ([0, T ];H),

where ‖u‖∞ is the supremum norm of u and V(u, [0, T ]) is the total variation of u. For

absolutely continuous inputs the BV -norm is exactly the standard W 1,1-norm, and

the continuity of P on W 1,1(0, T ;H) in this special case was proved in [19] for finite

dimensional H and in [20] for separable Hilbert spaces. For such spaces H, assum-

ing Z having a smooth boundary, the BV -norm continuity of P on BV ([0, T ];H) ∩

C([0, T ];H) (or on BV ([0, T ];H)) was proved in [4] (or in [23]). Under this additional

regularity of Z, in [4], [23] it is also shown that P is locally Lipschitz continuous.

In [17] we were able to drop the regularity of Z and we proved that P is BV -norm

continuous on BV ([0, T ];H) for an arbitrary characteristic set Z.
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Another relevant topology in BV is the one induced by the so-called strict metric,

which is defined by

(1.7) ds(u, v) := ‖u− v‖∞ + |V(u, [0, T ])−V(v, [0, T ])|, u, v ∈ BV ([0, T ];H).

Indeed, any u ∈ BV ([0, T ];H) can be approximated by a sequence un ∈ AC([0, T ];H)

converging to u in the strict metric. In [20] it is proved that P is continuous on

C([0, T ];H) ∩BV ([0, T ];H) with respect to the strict metric (shortly, “strictly con-

tinuous”), provided Z has a smooth boundary. In [30] this regularity assumption is

dropped and it is proved that P is continuous on C([0, T ];H) ∩ BV ([0, T ];H) with

respect to the strict metric for every characteristic convex set Z. In [30] it is also

proved that in general, P is not strictly continuous on the whole BV ([0, T ];H). For

other results on the continuity properties of P we refer to [29], [31], [16].

Previous results are concerned with the case of a convex set Z, but the character-

istic set of constraints can be non-convex in some applications, e.g. in problems of

crowd motion modeling (see [34]).

In the following we will restrict ourselves to uniform prox-regular sets—these are

closed sets having a neighborhood, where the projection exists and is unique. For

the notion of prox-regularity we refer the reader to [14], [35], [7], [27], [10]. Following

e.g. [9], [22], we see that the proper formulation of (1.5) in the case of a prox-regular

set Z reads

(1.8)

∫ T

0

〈z(t)− u(t) + y(t), dy(t)〉

6
1

2r

∫ T

0

‖z(t)− u(t) + y(t)‖2 dVy(t) ∀ z ∈ BV ([0, T ];Z),

where Vy(t) = V(y, [0, t]) for t ∈ [0, T ] and ‖·‖ is the norm in H. It is well-known

(cf., e.g., [13] or [22]) that for every u ∈ C([0, T ];H) ∩ BV ([0, T ];H) there exists

a unique y = P(u, z0) ∈ C([0, T ];H)∩BV ([0, T ];H) which satifies (1.8), (1.2), (1.3).

Thus, also in the non-convex case the solution operator

P : C([0, T ];H) ∩BV ([0, T ];H)×Z → C([0, T ];H) ∩BV ([0, T ];H)

of problem (1.8), (1.2), (1.3) can be defined, which we will call non-convex play

operator. In [21] it is proved that in W 1,1([0, T ];H) the operator P is continuous

(and also local Lipschitz continuous) with respect to the strong BV -norm under the

assumption that Z satisfies a suitable regularity assumption, to be more precise it is

required that Z is the sublevel set of a Lipschitz continuous function. In the present

paper we prove that P is BV -norm continuous on the larger space C([0, T ];H) ∩
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BV ([0, T ];H) and for every characteristic prox-regular set Z. We also prove that it

is continuous with respect to the strict metric on the space of continuous functions of

bounded variation. The technique of our proof is obtained via a reparametrization

method by the arc length. In order to perform this reparametrization we use the rate

independence of P, which, to the best of our knowledge is proved here for the first

time for the non-convex case. The question of the BV -norm continuity on the whole

space BV ([0, T ];H) will be addressed in a future paper: in that case the presence

of jumps makes the problem considerably more difficult and the reparametrization

method studied in [32], [33] is needed.

The plan of the paper is the following: In Section 2, we recall the preliminaries

needed to prove our results, which are stated in Section 3. In Section 4, we perform

all the proofs.

2. Preliminaries

The set of integers greater or equal to 1 will be denoted by N.

2.1. Prox-regular sets. Throughout this paper we assume that

(2.1)






H is a real Hilbert space with the inner product 〈x, y〉,

H 6= {0},

‖x‖ := 〈x, x〉1/2 for x ∈ H.

If S ⊆ H and x ∈ H, we set dS (x) := inf{‖x− s‖ : s ∈ S}.

Definition 2.1. If K is a closed subset of H, K 6= ∅, and y ∈ H, we define the

set of projections of y onto K by setting

(2.2) ProjK(y) :=
{
x ∈ K : ‖x− y‖ = inf

z∈K
‖z − y‖

}

and the (exterior) normal cone of K at x by

(2.3) NK(x) := {λ(y − x) : x ∈ ProjK(y), y ∈ H, λ > 0}.

We recall the notion of prox-regularity (see [7], Theorem 4.1 (d)), which can also

be called “mild non-convexity”.

Definition 2.2. If K is a closed subset of H and if r ∈ ]0,∞[, we say that K is r-

prox-regular if for every y ∈ {v ∈ H : 0 < dK(v) < r} we have that ProjK(y) 6= ∅ and

x ∈ ProjK

(
x+ r

y − x

‖y − x‖

)
∀x ∈ ProjK(y).
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It is well-known and easy to prove that if x ∈ ProjK(y0) for some y0 ∈ H, then

ProjK(y) = {x} for every y lying in the segment with endpoints y0 and x. Thus, it

follows that if K is r-prox-regular for some r > 0, then ProjK(y) is a singleton for

every y ∈ {v ∈ H : 0 < dK(v) < r}.

Prox-regularity can be characterized by means of a variational inequality, indeed

in [27], Theorem 4.1 and in [10], Theorem 16 one can find the proof of the following:

Theorem 2.1. Let K be a closed subset of H and let r ∈]0,∞[. Then K is

r-prox-regular if and only if for every x ∈ K and n ∈ NK(x) we have

〈n, z − x〉 6
‖n‖

2r
‖z − x‖2 ∀ z ∈ K.

2.2. Functions of bounded variation. Let I be an interval of R. The set of

H-valued continuous functions defined on I is denoted by C(I;H). For a function f :

I → H and for S ⊆ I we write Lip(f, S) :=sup{‖f(t)− f(s)‖/|t− s| : s, t ∈ S, s 6= t},

Lip(f) := Lip(f, I), the Lipschitz constant of f , and Lip(I;X) := {f : I → H :

Lip(f) <∞}, the set of H-valued Lipschitz continuous functions on I.

Definition 2.3. Given an interval I ⊆ R, a function f : I → H, and a subinter-

val J ⊆ I, the variation of f on J is defined by

V(f, J) := sup

{ m∑

j=1

‖(f(tj−1)− f(tj)‖ : m ∈ N, tj ∈ J ∀ j, t0 < . . . < tm

}
.

If V(f, I) <∞, we say that f is of bounded variation on I and we set

BV (I;H) := {f ∈ I : → H : V(f, I) <∞}.

It is well known that the completeness of H implies that every f ∈ BV (I;H)

admits one sided limits f(t−), f(t+) at every point t ∈ I, with the convention that

f(inf I−) := f(inf I) if inf I ∈ I, and that f(sup I+) := f(sup I) if sup I ∈ I. If I is

bounded, we have Lip(I;H) ⊆ BV (I;H).

2.3. Differential measures. Given an interval I of the real line R, the family

of Borel sets in I is denoted by B(I). If µ : B(I) → [0,∞] is a measure, p ∈ [1,∞],

then the space of H-valued functions which are p-integrable with respect to µ will

be denoted by Lp(I, µ;H) or simply by Lp(µ;H). For the theory of integration of

vector valued functions we refer, e.g., to [24], Chapter VI. When µ = L1, where L1

is the one dimensional Lebesgue measure, we write Lp(I;H) := Lp(I, µ;H).
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We recall that a H-valued measure on I is the map ν : B(I) → H such that

ν
( ∞⋃
n=1

Bn

)
=

∞∑
n=1

ν(Bn) for every sequence (Bn) of mutually disjoint sets in B(I).

The total variation of ν is the positive measure |ν|: B(I) → [0,∞] defined by

|ν|(B) := sup

{ ∞∑

n=1

‖ν(Bn)‖ : B =
∞⋃

n=1

Bn, Bn ∈ B(I), Bh ∩Bk = ∅ if h 6= k

}
.

The vector measure ν is said to be with bounded variation if |ν|(I) < ∞. In this

case the equality ‖ν‖ := |ν|(I) defines a complete norm on the space of measures

with bounded variation (see, e.g., [12], Chapter I, Section 3).

If µ : B(I) → [0,∞] is a positive bounded Borel measure and if g ∈ L1(I, µ;H),

then gµ : B(I) → H denotes the vector measure defined by

gµ(B) :=

∫

B

g dµ, B ∈ B(I).

In this case we have that

(2.4) |gµ|(B) =

∫

B

‖g(t)‖ dµ ∀B ∈ B(I)

(see [12], Proposition 10, p. 174).

Assume that ν : B(I) → H is a vector measure with bounded variation and

f : I → H and φ : I → R are two step maps with respect to ν, i.e., there exist

f1, . . . , fm ∈ H, φ1, . . . , φm ∈ H and A1, . . . , Am ∈ B(I) mutually disjoint such that

|ν|(Aj) <∞ for every j and f =
m∑
j=1

bAj
fj, φ =

m∑
j=1

bAj
φj . Here bS is the character-

istic function of a set S, i.e., bS(x) := 1 if x ∈ S and bS(x) := 0 if x 6∈ S. For such

step maps we define
∫
I
〈f, dν〉 :=

m∑
j=1

〈fj, ν(Aj)〉 ∈ R and
∫
I
φdν :=

m∑
j=1

φjν(Aj) ∈ H.

If St(|ν|;H) (or St(|ν|)) is the set of H-valued (or real valued) step maps with

respect to ν, then the maps St(|ν|;H) → H : f 7→
∫
I〈f, dν〉 and St(|ν|) → H : φ 7→∫

I
φdν are linear and continuous when St(|ν|;H) and St(|ν|) are endowed with the

L1-seminorms ‖f‖L1(|ν|;H) :=
∫
I ‖f‖ d|ν| and ‖φ‖L1(|ν|) :=

∫
I |φ| d|ν|. Therefore,

they admit unique continuous extensions Iν : L
1(|ν|;H) → R and Jν : L

1(|ν|) → H,

and we set
∫

I

〈f, dν〉 := Iν(f),

∫

I

φdν := Jν(φ), f ∈ L1(|ν|;H), φ ∈ L1(|ν|).

If µ is a bounded positive measure and g ∈ L1(µ;H), arguing first on step func-

tions, and then taking limits, it is easy to check that
∫

I

〈f, d(gµ)〉 =

∫

I

〈f, g〉dµ ∀ f ∈ L∞(µ;H).
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The following results (cf., e.g., [12], Section III.17.2–3, pages 358–362) provide the

connection between functions with bounded variation and vector measures which

will be implicitly used in this paper.

Theorem 2.2. For every f ∈ BV (I;H) there exists a unique vector measure of

bounded variation νf : B(I) → H such that

νf (]c, d[) = f(d−)− f(c+), νf ([c, d]) = f(d+)− f(c−),

νf ([c, d[) = f(d−)− f(c−), νf (]c, d]) = f(d+)− f(c+)

whenever inf I 6 c < d 6 sup I and the left-hand side of each equality makes sense.

Conversely, if ν : B(I) → H is a vector measure with bounded variation, and if

fν : I → H is defined by fν(t) := ν([inf I, t[∩ I), then fν ∈ BV (I;H) and νfν = ν.

Proposition 2.1. Let f ∈ BV (I;H), let g : I → H be defined by g(t) := f(t−),

for t ∈ int(I), and by g(t) := f(t) if t ∈ ∂I, and let Vg : I → R be defined by

Vg(t) := V(g, [inf I, t] ∩ I). Then νg = νf and |νf|(I) = νVg
(I) = V(g, I).

The measure νf is called the Lebesgue-Stieltjes measure or differential measure

of f . Let us see the connection between the differential measure and the distributional

derivative. If f ∈ BV (I;H) and if f : R → H is defined by

(2.5) f(t) :=





f(t) if t ∈ I,

f(inf I) if inf I ∈ R, t 6∈ I, t 6 inf I,

f(sup I) if sup I ∈ R, t 6∈ I, t > sup I,

then, as in the scalar case, it turns out (cf. [30], Section 2) that νf (B) = Df(B) for

every B ∈ B(R), where Df is the distributional derivative of f , i.e.,

−

∫

R

ϕ′(t)f(t) dt =

∫

R

ϕdDf ∀ϕ ∈ C1
c (R;R),

where C1
c (R;R) is the space of continuously differentiable functions on R with com-

pact support. Observe that Df is concentrated on I : Df(B) = νf (B ∩ I) for every

B ∈ B(I), hence in the remainder of the paper, if f ∈ BV (I,H), then we simply write

(2.6) Df := Df = νf , f ∈ BV (I;H),

and from the previous discussion it follows that

(2.7) ‖Df‖ = |Df|(I) = ‖νf‖ = V(f, I) ∀ f ∈ BV (I;H).
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If I is bounded and p ∈ [1,∞], then the classical Sobolev space W 1,p(I;H) con-

sists of those functions f ∈ C(I;H) for which Df = gL1 for some g ∈ Lp(I;H)

and W 1,∞(I;H) = Lip(I;H). Let us also recall that if f ∈ W 1,1(I;H), then the

derivative f ′(t) exists L1-a.e. in t ∈ I, Df = f ′L1, and V(f, I) =
∫
I
‖f ′(t)‖ dt (see,

e.g., [3], Appendix).

3. Main results

From now on we will assume that

(3.1) Z is a r-prox-regular subset of H for some r > 0, T > 0.

We consider onBV ([0, T ];H) the classical complete BV -norm defined by (1.6), where

‖f‖∞ := sup{‖f(t)‖ : t ∈ [0, T ]}.

The norm (1.6) is equivalent to the norm defined by

|||f |||BV := ‖f(0)‖ +V(f, [0, T ]), f ∈ BV ([0, T ];H).

From (2.7) it also follows that

‖f‖BV = ‖f‖∞ + ‖Df‖ = ‖f‖∞ +|Df|([0, T ]) ∀ f ∈ BV ([0, T ];H),

where Df is the differential measure of f and |Df| is the total variation measure

of Df . We also have

‖f‖BV = ‖f‖∞ +

∫ T

0

‖f ′(t)‖ dt ∀ f ∈W 1,1([0, T ];H).

On BV ([0, T ];H) we will consider also the so-called strict metric defined by (1.7).

We say that fn → f strictly on [0, T ] if ds(fn, f) → 0 as n → ∞. Let us recall

that ds is not complete and the topology induced by ds is not linear. We now define

the so-called “non-convex play operator”.

Definition 3.1. Assume that (2.1) and (3.1) hold. A (non-convex) play operator

is the mapping

P : C([0, T ];H) ∩BV ([0, T ];H)×Z → C([0, T ];H) ∩BV ([0, T ];H)
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associating with every (u, z0) ∈ C([0, T ];H)∩BV ([0, T ];H)×Z the unique function

y = P(u, z0) ∈ C([0, T ];H) ∩BV ([0, T ];H) such that

u(t)− y(t) ∈ Z ∀ t ∈ [0, T ],(3.2) ∫

[0,T ]

〈z(t)− u(t) + y(t), dDy(t)〉 6
1

2r

∫

[0,T ]

‖z(t)− u(t) + y(t)‖2 d|Dy|(t)(3.3)

∀ z ∈ BV ([0, T ];H), z([0, T ]) ⊆ Z,

u(0)− y(0) = z0.(3.4)

The existence and uniqueness of such a function y = P(u, z0) is well-known and is

guaranteed by Theorem 3.1 below.

The integrals in (3.3) are Lebesgue integrals with respect to the measures Dy and

|Dy|. The inequality can be equivalently written using Riemann-Stieltjes integrals,

by virtue of [30], Lemma A.9 and the discussion in Section 2.3.

Here is the existence and uniqueness theorem mentioned in Definition 3.1.

Theorem 3.1. Assume that (2.1) and (3.1) hold, u ∈ C([0, T ];H)∩BV ([0, T ];H)

and z0 ∈ Z. Then there exists a unique function y ∈ C([0, T ];H)∩BV ([0, T ];H) such

that (3.2)–(3.4) hold, in other words, the non-convex play operator is well defined in

C([0, T ];H) ∩BV ([0, T ];H).

As we pointed out in the previous definition, the existence and uniqueness of the

solution to problem (3.2)–(3.4) is well-known. The reader can refer for instance

to [22], where the problem is dealt with exclusively within the framework of the inte-

gral formulation. But the result could also be inferred by a careful comparison of [9],

Proposition 3.1 and of [13], Corollary 3.1. However, since the literature contains dif-

ferent formulations, and the equivalence of those is not always explicitly proved, for

the sake of completeness we show here how the existence and uniqueness of a solution

to (3.2)–(3.4) can be derived from [13], which to the best of our knowledge contains

the first proof of the existence of the solution to the non-convex problem (3.5)–(3.8)

(see also [6], [8], [1], [2]). We need the following auxiliary result showing that (3.3)

can be equivalently stated as a differential inclusion. We prove it in the next section.

Proposition 3.1. Assume that (2.1) and (3.1) hold and that u ∈ C([0, T ];H) ∩

BV ([0, T ];H) and z0 ∈ Z. Then a function y ∈ C([0, T ];H) ∩ BV ([0, T ];H) sat-

isfies (3.2)–(3.4) if and only if there exists a measure µ : B([0, T ]) → [0,∞[ and a

function v ∈ L1(µ,H) such that

Dy = vµ,(3.5)

u(t)− y(t) ∈ Z ∀ t ∈ [0, T ],(3.6)
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−v(t) ∈ Nu(t)−Z(y(t)) for µ-a.e. t ∈ [0, T ],(3.7)

u(0)− y(0) = z0.(3.8)

Now let observe that thanks to [13], Corollary 3.1 we have that under the assump-

tions of Proposition 3.1 there exists a unique solution to (3.5)–(3.8). Thus, by virtue

of Proposition 3.1 we infer Theorem 3.1.

When the “input” function u of the play operator is more regular, we have the

following characterization of solutions (see, e.g., [22], Corollary 6.3).

Proposition 3.2. Let (2.1) and (3.1) hold. If u ∈W 1,p([0, T ];H), z0 ∈ Z, and if

y = P(u, z0) satisfies (3.2)–(3.4), then y ∈ W 1,p([0, T ];H) and

u(t)− y(t) ∈ Z ∀ t ∈ [0, T ],(3.9)

〈z − u(t) + y(t), y′(t)〉(3.10)

6
‖y′(t)‖

2r
‖z(t)− u(t) + y(t)‖2 for L1-a.e. t ∈ [0, T ] ∀ z ∈ Z,

u(0)− y(0) = z0.(3.11)

Moreover, y is the unique function in W 1,p([0, T ];H) such that (3.10)–(3.11) hold.

Now we can state our main theorems. The first result states that P is continuous

with respect to the BV -norm on C([0, T ];H) ∩BV ([0, T ];H).

Theorem 3.2. Let (2.1) and (3.1) hold. The play operator P : C([0, T ];H) ∩

BV ([0, T ];H)× Z → C([0, T ];H) ∩ BV ([0, T ];H) is continuous with respect to the

BV -norm (1.6), i.e., if

‖u− un‖BV → 0, ‖z0 − z0n‖ → 0 as n→ ∞,

then

‖P(u, z0)− P(un, z0n)‖BV → 0 as n→ ∞

whenever u, un ∈ C([0, T ];H) ∩BV ([0, T ];H) and z0, z0n ∈ Z for every n ∈ N.

We also prove that the play operator is continuous with respect to the strict metric.

Theorem 3.3. Let (2.1) and (3.1) hold. The play operator P : C([0, T ];H) ∩

BV ([0, T ];H)× Z → C([0, T ];H) ∩ BV ([0, T ];H) is continuous with respect to the

strict metric ds defined by (1.7), i.e., if

ds(u, un) → 0, ‖z0 − z0n‖ → 0 as n→ ∞,

then

ds(P(u, z0),P(un, z0n)) → 0 as n→ ∞

whenever u, un ∈ C([0, T ];H) ∩BV ([0, T ];H) and z0, z0n ∈ Z for every n ∈ N.
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The proofs of our main theorems are strongly based on the fact that the play

operator is rate independent, which is the property (3.12) of P proved in the following

theorem.

Theorem 3.4. Let (2.1) and (3.1) hold, u ∈ C([0, T ];H) ∩ BV ([0, T ];H), and

z0 ∈ Z. If φ : [0, T ] → [0, T ] is a continuous function such that (φ(t)−φ(s))(t−s) > 0

and φ([0, T ]) = [0, T ], and if y := P(u, z0) satisfies (3.2)–(3.4), then

(3.12) P(u ◦ φ, z0) = P(u, z0) ◦ φ.

We will prove Theorems 3.2, 3.3, and 3.4 in Section 4.

4. Proofs

Let us start with an integral characterization of the differential inclusion (3.7).

Lemma 4.1. Assume that r > 0, T > 0, µ : B([0, T ]) → [0,∞[ is a measure. If

u ∈ C([0, T ];H)∩BV ([0, T ];H), v ∈ L1(µ;H), y ∈ C([0, T ];H)∩BV ([0, T ];H), and

u(t)− y(t) ∈ Z for every t ∈ [0, T ], then the following two conditions are equivalent.

(i) −v(t) ∈ Nu(t)−Z(y(t)) for µ-a.e. t ∈ [0, T ].

(ii) For every z ∈ BV ([0, T ];H) such that z([0, T ]) ⊆ Z one has

∫

[0,T ]

〈z(t)− u(t) + y(t), v(t)〉dµ(t) 6
1

2r

∫

[0,T ]

‖v(t)‖‖z(t)− u(t) + y(t)‖2 dµ(t).

P r o o f. Assume first that (i) holds and let z ∈ BV ([0, T ];H) be such that

z(t) ∈ Z for every t ∈ [0, T ]. Then it follows that

〈z(t)− u(t) + y(t), v(t)〉 6
‖v(t)‖

2r
‖z(t)− u(t) + y(t)‖2 for µ-a.e. t ∈ [0, T ],

and after integrating with respect to µ over [0, T ] we infer condition (ii).

Now assume that (ii) is satisfied. Let L be the set of µ-Lebesgue points of v,

according to the definition given in Theorem 5.2 of Appendix. If we fix t ∈ L, and

choose ζ ∈ Z and f ∈ C([0, T ];H) arbitrarily, it is trivially seen that t is a µ-Lebesgue

point of f , and we have

(4.1)

∫

[t−h,t+h]∩[0,T ]

|〈f(τ), v(τ)〉 − 〈f(t), v(t)〉| dµ(τ)

6

∫

[t−h,t+h]∩[0,T ]

(‖f‖∞‖v(τ)− v(t)‖ + ‖v(t)‖‖f(τ)− f(t)‖) dµ(τ),
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therefore,

(4.2) lim
hց0

1

µ([t− h, t+ h] ∩ [0, T ])

∫

[t−h,t+h]∩[0,T ]

〈f(τ), v(τ)〉dµ(τ) = 〈f(t), v(t)〉.

An analogous argument also shows that t is a µ-Lebesgue point of the real function

τ 7→ ‖v(τ)‖‖f(τ)‖2, indeed,

|‖v(τ)‖‖f(τ)‖2 − ‖v(t)‖‖f(t)‖2| 6 ‖v(τ)− v(t)‖‖f‖2∞ + ‖v(t)‖|‖f(τ)‖2 − ‖f(t)‖2|

and τ 7→ ‖f(τ)‖2 is continuous. Therefore

lim
hց0

1

µ([t− h, t+ h] ∩ [0, T ])

∫

[t−h,t+h]∩[0,T ]

‖v(τ)‖‖f(τ)‖2 dτ = ‖v(t)‖‖f(t)‖2.

For any h > 0 we define the function z : [0, T ] → H by

z(τ) := b[0,T ]∩[t−h,t+h](τ)ζ + b[0,T ]\[t−h,t+h](τ)(u(τ) − y(τ)), τ ∈ [0, T ].

We have that z is of bounded variation and that z(τ) ∈ Z for every τ ∈ [0, T ], thus,

we can take such z in condition (ii) and we get

∫

[t−h,t+h]∩[0,T ]

〈ζ − u(τ) + y(τ), v(τ)〉dµ(τ)

6
1

2r

∫

[t−h,t+h]∩[0,T ]

‖v(τ)‖‖ζ − u(τ) + y(τ)‖2 dµ(τ).

Dividing this inequality by µ([t−h, t+h]∩ [0, T ]) and taking the limit as hց 0, and

considering the continuous function f(t) = ζ−u(t)+y(t), by the previous discussion

we get 〈ζ−u(t)+ y(t), v(t)〉 6 ‖v(t)‖‖ζ−u(t)+ y(t)‖2/(2r). Therefore, as µ(L) = 0,

we have proved that

〈ζ − u(t) + y(t), v(t)〉 6
‖v(t)‖

2r
‖ζ − u(t) + y(t)‖2 ∀ ζ ∈ Z for µ-a.e. t ∈ [0, T ],

i.e., condition (i) holds using Theorem 2.1. �

Now we can prove Proposition 3.1.

P r o o f of Proposition 3.1. Let us first assume that (3.5)–(3.8) hold for a measure

µ : B([0, T ]) → [0,∞[ and a function v ∈ L1(µ,H). In particular, it follows that

|Dy| = ‖v‖µ, hence |Dy| is µ-absolutely continuous, thus by the Radon-Nicodym

theorem there exists h ∈ L1(µ;R) such that |h(t)| 6 1 for µ-a.e. t ∈ [0, T ], and

|Dy|= hµ. On the other hand, thanks to Theorem 5.3 from Appendix there exists

g ∈ L1(|Dy|;H) such that ‖g(t)‖ = 1 for µ-a.e. t ∈ [0, T ], and Dy = g|Dy|, therefore,
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Dy = hgµ. In particular, it follows (see (2.4)) that |Dy| = |h|‖g‖µ and v(t) =

h(t)g(t) for µ-a.e. t ∈ [0, T ]. Hence, applying also Lemma 4.1, we obtain that
∫

[0,T ]

〈z(t)− u(t) + y(t), dDy(t)〉 =

∫

[0,T ]

〈z(t)− u(t) + y(t), v(t)〉dµ(t)

6
1

2r

∫

[0,T ]

‖v(t)‖‖z(t)− u(t) + y(t)‖2 dµ(t)

=
1

2r

∫

[0,T ]

‖h(t)g(t)‖‖z(t)− u(t) + y(t)‖2 dµ(t)

=
1

2r

∫

[0,T ]

‖z(t)− u(t) + y(t)‖2|h(t)|‖g(t)‖ dµ(t)

=
1

2r

∫

[0,T ]

‖z(t)− u(t) + y(t)‖2 d|Dy|(t)

and (3.3) is proved. Vice-versa let us assume that (3.2)–(3.4) hold. Then the condi-

tion (ii) of Lemma 4.1 is obtained by taking µ = |Dy| and v equal to the density of

Dy with respect to |Dy|, and we are done. �

Now we prove that P is rate independent.

P r o o f of Theorem 3.4. Set y := P(u, z0), and recall that Vy(t) = V(y, [0, t]) for

every t ∈ [0, T ]. Hence |Dy| = DVy, and by the vectorial Radon-Nikodym theorem

([24], Corollary VII.4.2) there exists v ∈ L1(|Dy|;H) such that Dy = vDVy . Let

us fix z ∈ BV ([0, T ];H) such that z([0, T ]) ⊆ [0, T ] and recall the following well-

known formula holding for any measure µ : B([0, T ]) → [0,∞[, g ∈ L1(µ;H), and

A ∈ B([0, T ]): ∫

φ−1(A)

g(φ(t)) dµ(t) =

∫

A

g(τ) d(φ∗µ)(τ),

where φ∗µ : B([0, T ]) → [0,∞[ is the measure defined by φ∗µ(B) := µ(φ−1(B)) for

B ∈ B([0, T ]). (This formula can be proved by approximating g by a sequence of

step functions and then taking the limit.) If 0 6 α 6 β 6 T , we have

φ∗D(Vy ◦ φ)([α, β]) = D(Vy ◦ φ)(φ
−1([α, β])) = DVy([α, β]),

hence,

φ∗D(Vy ◦ φ) = DVy ,

and for 0 6 a 6 b 6 T we find that

D(y ◦ φ)([a, b]) = y(φ(b)) − y(φ(a)) = Dy([φ(a), φ(b)])

=

∫

[φ(a),φ(b)]

v(τ) dDVy(τ) =

∫

[φ(a),φ(b)]

v(τ) dφ∗(D(Vy ◦ φ))(τ)

=

∫

[a,b]

v(φ(t)) dD(Vy ◦ φ)(t) = (v ◦ φ)D(Vy ◦ φ)([a, b]),
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so that

D(y ◦ φ) = (v ◦ φ)D(Vy ◦ φ), |D(y ◦ φ)|= ‖v ◦ φ‖D(Vy ◦ φ).

If ψ(τ) := inf φ−1(τ), then ψ is increasing and τ = φ(ψ(τ)). Therefore, since D(Vy ◦

φ) = 0 on every interval where φ is constant, we find that for every h ∈ C(R2) we

have ∫

[0,T ]

h(z(t), φ(t)) dD(Vy ◦ φ)(t) =

∫

[0,T ]

h(z(ψ(φ(t)), φ(t)) dD(Vy ◦ φ)(t).

Hence,

(4.3)

∫

[0,T ]

〈z(t)− u(φ(t)) + y(φ(t)), dD(y ◦ φ)(t)〉

=

∫

[0,T ]

〈z(t)− u(φ(t)) + y(φ(t)), v(φ(t))〉dD(Vy ◦ φ)(t)

=

∫

[0,T ]

〈z(ψ(φ(t))) − u(φ(t)) + y(φ(t)), v(φ(t))〉dD(Vy ◦ φ)(t)

=

∫

[0,T ]

〈z(ψ(τ)) − u(τ) + y(τ), v(τ)〉dDVy(τ)

=

∫

[0,T ]

〈z(ψ(τ)) − u(τ) + y(τ), dDy(τ)〉,

and

(4.4)

∫

[0,T ]

‖z(t)− u(φ(t)) + y(φ(t))‖2 d|D(y ◦ φ)|(t)

=

∫

[0,T ]

‖z(t)− u(φ(t)) + y(φ(t))‖2‖v(φ(t))‖ dD(Vy ◦ φ)(t)

=

∫

[0,T ]

‖z(ψ(φ(t))− u(φ(t)) + y(φ(t))‖2‖v(φ(t))‖ dD(Vy ◦ φ)(t)

=

∫

[0,T ]

‖z(ψ(τ))− u(τ) + y(τ)‖2‖v(τ)‖ dDVy(τ)

=

∫

[0,T ]

‖z(ψ(τ))− u(τ) + y(τ)‖2 d|Dy|(τ).

Since y = P(u, z0), we have that the right-hand side of (4.3) is less or equal to the

right-hand side of (4.4) times (2r)−1 and this implies that

(4.5)

∫

[0,T ]

〈z(t)− u(φ(t)) + y(φ(t)), dD(y ◦ φ)(t)〉

6
1

2r

∫

[0,T ]

‖z(t)− u(φ(t)) + y(φ(t))‖2 d|D(y ◦ φ)|(t),

which is what we wanted to prove. �
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In the next result, we prove a normality rule for the non-convex play operator,

thereby we generalize to the non-convex case the result in [20], Proposition 3.9. The

idea of the proof is analogous to the one of [20], Proposition 3.9.

Proposition 4.1. Assume that (2.1) and (3.1) hold, u ∈ Lip([0, T ];H), z0 ∈ Z,

and that y = P(u, z0). Let x = S(u, z0) : [0, T ] → H and w = Q(u, z0) : [0, T ] → H

be defined by

x(t) := S(u, z0)(t) := u(t)− y(t), t ∈ [0, T ],(4.6)

w(t) := Q(u, z0)(t) := y(t)− x(t), t ∈ [0, T ].(4.7)

Then w = Q(u, z0) ∈ Lip([0, T ];H), x = S(u, z0) ∈ Lip([0, T ];H), x(t) ∈ Z for every

t ∈ [0, T ], and

(4.8) 〈y′(t), x′(t)〉 = 0 for L1-a.e. t ∈ [0, T ],

and

(4.9) ‖w′(t)‖ = ‖u′(t)‖ for L1-a.e. t ∈ [0, T ].

P r o o f. Let t ∈ [0, T ] be a point where x is differentiable. Taking z(t) =

x(t+ h) ∈ Z for every h > 0 sufficiently small, we find that

1

h
〈y′(t), x(t) − x(t+ h)〉 > −

‖y′(t)‖

2rh
‖x(t)− x(t+ h)‖2,

therefore letting hց 0, we get

(4.10) 〈y′(t),−x′(t)〉 > 0.

Taking z(t) = x(t− h) for every h > 0, we also have

1

h
〈y′(t), x(t) − x(t− h)〉 > −

‖y′(t)‖

2rh
‖x(t)− x(t− h)‖2,

therefore letting hց 0, we obtain

〈y′(t), x′(t)〉 > 0,

which together with (4.10) yields (4.8). This formula implies that

(4.11) ‖w′(t)‖2 = ‖y′(t)−x′(t)‖2 = 〈y′(t)−x′(t), y′(t)−x′(t)〉 = ‖y′(t)‖2+‖x′(t)‖2,

and

(4.12) ‖u′(t)‖2 = ‖y′(t)+x′(t)‖2 = 〈y′(t)+x′(t), y′(t)+x′(t)〉 = ‖y′(t)‖2+‖x′(t)‖2,

therefore (4.9) follows. �
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Let us observe that, in the previous proposition, the geometrical meaning of (4.11)–

(4.12) is that w′(t) and u′(t) are the diagonals of the rectangle with sides x′(t) and

y′(t), so that we have (4.9).

In order to prove the BV -norm continuity of P on C([0, T ];H)∩BV ([0, T ];H) we

need the following two auxiliary results. The first is the following:

Proposition 4.2. Assume that (2.1) holds. For every f ∈ C([0, T ];H) ∩

BV ([0, T ];H), let ℓf : [0, T ] → [0, T ] be defined by

(4.13) ℓf (t) =





T

V(f, [0, T ])
V(f, [0, t]) if V(f, [0, T ]) 6= 0,

0 if V(f, [0, T ]) = 0,

which we call normalized arc-length of f . Then there exists f̃ ∈ Lip([0, T ];H), the

reparametrization of f by the normalized arc-length such that

(4.14) f = f̃ ◦ ℓf .

Moreover, there exists a L1-representative f̃ ′ of the distributional derivative of f̃

such that

(4.15) ‖f̃ ′(σ)‖ =
V(f, [0, T ])

T
∀σ ∈ [0, T ].

P r o o f. The existence of a function f̃ ∈ Lip([0, T ];H) satisfying (4.14) is easy

to prove (see, e.g., [28], Proposition 3.1). Moreover, we know from [30], Lemma 4.3

that if g is a L1-representative of the distributional derivative of f , then ‖g(σ)‖ =

V(f, [0, T ])/T for every σ ∈ F , for some F ⊆ [0, T ] with full measure in [0, T ]. Thus,

(4.15) follows if we define the following Lebesgue representative of the derivative of f̃ :

f̃ ′(σ) :=






g(σ) if σ ∈ F ,

V(f, [0, T ])

T
e0 if σ 6∈ F ,

where e0 ∈ H is chosen so that ‖e0‖ = 1. �

Then, as for the Lipschitz case, we need to introduce the operator Q defined by

Q(v) = 2P(v)− v for v ∈ C([0, T ];H) ∩BV ([0, T ];H).

Lemma 4.2. Assume that v ∈ C([0, T ];H) ∩ BV ([0, T ];H), z0 ∈ Z, and let

Q : C([0, T ];H) ∩BV ([0, T ];H)×Z → C([0, T ];H) ∩BV ([0, T ];H) be defined by

(4.16) Q(v, z0) := 2P(v, z0)− v, v ∈ C([0, T ];H) ∩BV ([0, T ];H).

Then Q is rate independent, i.e.,

(4.17) Q(v ◦ φ, z0) = Q(v, z0) ◦ φ ∀ v ∈ C([0, T ];H) ∩BV ([0, T ];H)
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for every continuous function φ : [0, T ] → [0, T ] such that (φ(t) − φ(s))(t − s) > 0

and φ([0, T ]) = [0, T ]. Moreover, if ℓv is the arc-length defined in (4.13), then

(4.18) DQ(v, z0) = ((Q(ṽ, z0))
′ ◦ ℓv)Dℓv,

i.e.,

(4.19) DQ(v, z0)(B) =

∫

B

(Q(ṽ, z0))
′(ℓv(t)) dDℓv(t), ∀B ∈ B([0, T ]),

where formulas (4.18)–(4.19) hold with any L1-representative (Q(ṽ, z0))
′ of the distri-

butional derivative of Q(ṽ, z0). Finally, we can take such an L1-representative so that

(4.20) ‖(Q(ṽ, z0))
′(σ)‖ =

V(v, [0, T ])

T
∀σ ∈ [0, T ].

P r o o f. From Theorem 3.4 it follows that

Q(v ◦ φ, z0) = 2P(v ◦ φ, z0)− v ◦ φ = 2P(v, z0) ◦ φ− v ◦ φ = Q(v, z0) ◦ φ,

which is (4.17). Moreover, since ṽ is Lipschitz continuous, we have that Q(ṽ, z0) ∈

Lip([0, T ];H), therefore by [30], Theorem A.7, we infer that if Q(ṽ, z0)
′ is any L1-

representative of the distributional derivative of Q(ṽ, z0), then the bounded measur-

able function Q(ṽ, z0)
′ ◦ ℓv is a density of Q(v, z0) with respect to the measure Dℓv,

i.e., (4.18) holds. Finally, (4.20) follows from (4.9) of Proposition 4.1 and from (4.15)

of Proposition 4.2. �

Now we can prove our first main result.

P r o o f of Theorem 3.2. Let us consider u ∈ BV ([0, T ];H) and un ∈ BV ([0, T ];H)

for every n ∈ N, and assume that ‖un−u‖BV ([0,T ];H) → 0 as n→ ∞. Then let ℓ := ℓu
and ℓn := ℓun

be the normalized arc-length functions defined in (4.13), so we have

u = ũ ◦ ℓ, un = ũn ◦ ℓn ∀n ∈ N.

Let us also set

(4.21) w := Q(u, z0), wn := Q(un, z0,n), n ∈ N,

where the operator Q is defined in Lemma 4.2. By the proof of [22], Theorem 5.5,

we have that P(un, z0n) → P(u, z0) uniformly on [0, T ], because ‖un − u‖∞ → 0 as

n→ ∞. Therefore, from formula (4.16) it follows that

(4.22) wn → w uniformly on [0, T ].
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Let us observe that Q(ũ, z0) and Q(ũn, z0) are Lipschitz continuous for every

n ∈ N and let us define the bounded measurable functions h : [0, T ] → H and

hn : [0, T ] → H by

(4.23) h(t) := (Q(ũ, z0))
′(ℓu(t)), hn(t) := (Q(ũn, z0n))

′(ℓn(t)), t ∈ [0, T ],

where by Lemma 4.2, formula (4.20) we have that the L1-representatives of the

distributional derivatives of Q(ũ, z0) and Q(ũn, z0) can be chosen in such a way that

‖(Q(ũ, z0))
′(σ)‖ =

V(u, [0, T ])

T
, ‖(Q(ũn, z0))

′(σ)‖ =
V(un, [0, T ])

T
∀σ ∈ [0, T ].

Consequently,

(4.24) ‖h(t)‖ =
V(u, [0, T ])

T
, ‖hn(t)‖ =

V(un, [0, T ])

T
∀ t ∈ [0, T ], ∀n ∈ N.

Since un → u in BV ([0, T ];H), from the inequality

(4.25) |V(u, [a, b])−V(un, [a, b])| 6 V(u − un, [a, b]),

holding for 0 6 a 6 b 6 T , we infer that V(un, [0, T ]) → V(u, [0, T ]) as n → ∞,

hence the sequence {V(un, [0, T ])} is bounded. Therefore, from (4.24) we infer that

there exists C > 0 such that

(4.26) sup{‖hn(t)‖ : t ∈ [0, T ]} 6 C ∀n ∈ N

and

(4.27) lim
n→∞

‖hn(t)‖ = lim
n→∞

V(un, [0, T ])

T
=

V(u, [0, T ])

T
= ‖h(t)‖ ∀ t ∈ [0, T ].

It follows that

lim
n→∞

∫

[0,T ]

‖hn(t)‖
2 dDℓ(t) = lim

n→∞

∫

[0,T ]

(V(un, [0, T ])

T

)2
dDℓ(t)

=

∫

[0,T ]

(V(u, [0, T ])
T

)2
dDℓ(t) =

∫

[0,T ]

‖h(t)‖2 dDℓ(t),

hence

(4.28) lim
n→∞

‖hn‖
2
L2(Dℓ;H) = ‖h‖2L2(Dℓ;H).

Now let us observe that from Lemma 4.2 and formulas (4.19), (4.21) and (4.23), we

have that

(4.29) Dw = hDℓ, Dwn = hnDℓn.
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Let us also recall that the vector space of (vector) measures ν : B([0, T ]) → H can be

endowed with the complete norm ‖ν‖ := |ν|([0, T ]), where |ν| is the total variation

measure of ν. Moreover, from the definition of variation, inequality (4.25), and the

triangle inequality, we infer that

(4.30) ‖Dℓ−Dℓn‖ = |D(ℓ− ℓn)|([0, T ]) = V(ℓ − ℓn, [0, T ]) → 0 as n→ ∞.

From (4.26) it follows that

(4.31) |Dwn|(B) =

∫

B

‖hn(t)‖ dDℓn(t) 6 C|Dℓn|(B) ∀B ∈ B([0, T ]),

therefore, since Dℓn → Dℓ in the space of real measures, we infer that for every ε > 0

there exists δ > 0 such that

|Dℓ|(B) < δ ⇒ sup
n∈N

|Dwn|(B) < ε

for every B ∈ B([0, T ]). This allows us to apply the weak sequential compactness

Dunford-Pettis theorem for vector measures (cf. Theorem 5.1 of Appendix) and we

deduce that, at least for a subsequence, Dwn is weakly convergent to a measure

ν : B([0, T ]) → H. On the other hand, by (4.22), we have that wn → w uniformly,

therefore invoking Lemma 5.1 of Appendix we can identify the weak limit ν with Dw

and we infer that

(4.32) Dwn converges weakly to Dw.

In particular, for every bounded Borel function ϕ : [0, T ] → H, the functional ν 7→∫
[0,T ]

〈ϕ(t), dν(t)〉 is linear and continuous on the space of measures with bounded

variation and

lim
n→∞

∫

[0,T ]

〈ϕ(t), dDwn(t)〉 =

∫

[0,T ]

〈ϕ(t), dDw(t)〉,

that is,

(4.33) lim
n→∞

∫

[0,T ]

〈ϕ(t), hn(t)〉dDℓn(t) =

∫

[0,T ]

〈ϕ(t), h(t)〉dDℓ(t).

On the other hand, by (4.26) there exists η ∈ L2(Dℓ;H) such that hn is weakly

convergent to η in L2(Dℓ;H), therefore, setting ψn(t) := 〈ϕ(t), hn(t)〉 and ψ(t) :=
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〈ϕ(t), η(t)〉 for t ∈ [0, T ], ψn is weakly convergent to ψ in L
2(Dℓ;R), and

(4.34)

∣∣∣∣
∫

[0,T ]

ψn(t) dDℓn(t)−

∫

[0,T ]

ψ(t) dDℓ(t)

∣∣∣∣

6

∫

[0,T ]

|ψn(t)| d|D(ℓn − ℓ)|(t) +

∣∣∣∣
∫

[0,T ]

(ψn(t)− ψ(t)) dDℓ(t)

∣∣∣∣

6 ‖ϕ‖∞‖hn‖∞|D(ℓn − ℓ)|([0, T ]) +

∣∣∣∣
∫

[0,T ]

(ψn(t)− ψ(t)) dDℓ(t)

∣∣∣∣ → 0

as n → ∞, because (4.26) and (4.30) hold, and ψn is weakly convergent to ψ in

L2(Dℓ;R). Therefore, we have found that

lim
n→∞

∫

[0,T ]

〈ϕ(t), hn(t)〉dDℓn(t) =

∫

[0,T ]

〈ϕ(t), η(t)〉dDℓ(t),

hence, by (4.33),

(4.35)

∫

[0,T ]

〈ϕ(t), d(hDℓ)(t)〉 =

∫

[0,T ]

〈ϕ(t), d(ηDℓ)(t)〉.

The arbitrariness of ϕ and (4.35) implies that ηDℓ = hDℓ (cf. [12], Proposition 35,

page 326), hence η(t) = h(t) for Dℓ-a.e. t ∈ [0, T ] and we have found that

(4.36) hn ⇀ h in L2(Dℓ;H).

Since L2(Dℓ;H) is a Hilbert space, from (4.28) and (4.36) we deduce that

(4.37) hn → h in L2(Dℓ;H),

and, since Dℓ([0, T ]) is finite,

(4.38) hn → h in L1(Dℓ;H).

Hence, at least for a subsequence which we do not relabel, hn(t) → h(t) for Dℓ-a.e.

t ∈ [0, T ], thus

V(wn − w, [0, T ]) = ‖D(wn − w)‖ = ‖Dwn −Dw‖ = ‖hnDℓn − hDℓ‖

6 ‖hnD(ℓn − ℓ)‖ + ‖(hn − h)Dℓ‖

6 C‖D(ℓn − ℓ)‖ +

∫

[0,T ]

‖hn(t)− h(t)‖ dDℓ(t) → 0

as n→ ∞, which proves that ‖w−wn‖BV → 0 as n→ ∞. We can conclude recalling

(4.21) and that Q(v) = 2P(v)− v for every v ∈ C([0, T ];H) ∩BV ([0, T ];H). �
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We can finally infer the strict continuity of the play operator on C([0, T ];H) ∩

BV ([0, T ];H).

P r o o f of Theorem 3.3. The proof of Theorem 3.3 is now a consequence of

Theorem 3.2 and [30], Theorem 3.4. �

5. Appendix

In this appendix we collect some results on vector measures which are needed in

some proofs of the paper. As we pointed out in Section 2.3, if I ⊆ R, then the vector

space of H-valued measures ν : B(I) → H with bounded variation is a real Banach

space when endowed with the norm ‖ν‖ := |ν|(I). Therefore, we can define on it

the notion of weak convergence.

Definition 5.1. Assume that (2.1) holds and that I ⊆ R is an interval. Let

M(I;H) denote the real Banach space ofH-valued measures onB(I) having bounded

variation according to Section 2.3. If ν, νn ∈ M(I;H) for every n ∈ N, then we say

that νn is weakly convergent to ν if lim
n→∞

〈T, νn〉 = 〈T, ν〉 for every linear continuous

function T belonging to the topological dual space of M(I;H).

For the reader’s convenience we restate the Dunford-Pettis weak compactness the-

orem for measures [11], Theorem 5, page 105 in a form which is suitable to our

purposes.

Theorem 5.1. Assume that (2.1) holds and that I ⊆ R is an interval and let B

be a bounded subset of M(I;H). Then B is weakly sequentially precompact if and

only if there exists a bounded positive measure ν : B(I) → [0,∞[ such that for every

ε > 0 there exists δ > 0 which satisfies the implication

(5.1) ∀ ε > 0 ∃ δ > 0:
(
B ∈ B(I), ν(B) < δ ⇒ sup

µ∈B

|µ|(B) < ε
)
.

Theorem 5.1 is stated in [11], Theorem 5, page 105 as a topological precompactness

result. An inspection of the proof easily shows that this is actually a sequential

precompatness theorem, since an isometric isomorphism reduces it to the well-known

Dunford-Pettis weak sequential precompactness theorem in L1(ν;H) (see, e.g., [11],

Theorem 1, page 101).

The following lemma is a vector measure counterpart of a well-known weak deriva-

tive argument and is proved in [17], Lemma 7.1.

Lemma 5.1. Assume that (2.1) holds and that I ⊆ R is an interval. Let

w,wn ∈ BV (I;H) for every n ∈ N and let ν : B(I) → H be a measure with bounded

variation. If wn → w uniformly on I and Dwn ⇀ ν, then Dw = µ.
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Now we are going to state the theorem concerning Lebesgue point of vector value

functions with respect to a Borel measure.

Theorem 5.2. Assume that (2.1) holds, that I ⊆ R is an interval, and let µ :

B(I) → [0,∞[ be a finite Borel measure on I. If f ∈ L1(µ;H), then there exists

L ∈ B(I) such that µ(I \ L) = 0, µ([t− h, t+ h] ∩ I) > 0 for every h > 0, and

(5.2) lim
hց0

1

µ([t− h, t+ h] ∩ I)

∫

[t−h,t+h]∩I

‖f(τ)− f(t)‖ dµ(τ) = 0 ∀ t ∈ L.

The points t satisfying (5.2) are called µ-Lebesgue points of f .

A proof of this theorem can be found in [15] in a much more general framework.

In order to help the reader we show how to derive it. The family V := {(t, [t − h,

t + h] ∩ I) : t ∈ I, h > 0} satisfies the definition of Vitali relation given in [15],

Section 2.8.16, page 151. In [15], Section 2.9.1, page 153, the left-hand side of (5.2)

is called V-derivative of ψ : τ 7→ ‖f(τ) − f(t)‖ with respect to µ at t. Since there

exists a µ-zero measure set Z such that f([0, T ] \ Z) is separable (see, e.g., [24],

Property M11, page 124), we can repeat “mutatis-mutandi” the proof of [15], Corol-

lary 2.9.9., page 156 (where it is formally assumed that H is separable), and we infer

the result of Theorem 5.2. We conclude with the following result which is proved

e.g. in [24], Section VII, Theorem 4.1.

Theorem 5.3. Assume that (2.1) holds, that I ⊆ R is an interval and let ν :

B(I) → H be a Borel measure with bounded variation. Then there exists g ∈

L1(|ν|;H) such that ‖g(t)‖ = 1 for µ-a.e. t ∈ [0, T ], and ν = g|ν| (cf. (2.4)).
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