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Abstract. We propose a new and efficient nonmonotone adaptive trust region algorithm
to solve unconstrained optimization problems. This algorithm incorporates two novelties: it
benefits from a radius dependent shrinkage parameter for adjusting the trust region radius
that avoids undesirable directions and exploits a new strategy to prevent sudden increments
of objective function values in nonmonotone trust region techniques. Global convergence of
this algorithm is investigated under some mild conditions. Numerical experiments demon-
strate the efficiency and robustness of the proposed algorithm in solving a collection of
unconstrained optimization problems from the CUTEst package.
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1. Introduction

Consider the unconstrained optimization problem

(1.1) min
x∈Rn

f(x),

where f : R
n → R is a differentiable function. We are interested in the case when the

number of variables is large. Despite the fact that the well-known trust region method

is a well-documented framework [5], [15] in numerical optimization for solving the

problem (1.1), its efficiency needs to be improved. The method itself or its variations

are frequently required in tackling emerged problems in extensive recent applications

[3], [4], [12], [18].
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In order to minimize f(x), the trust region framework uses an approximation xk

of a local minimizer to compute a trial step direction dk by solving the subproblem

(1.2) min
‖d‖6δk

mk(d), mk(d) = fk + g⊤k d+
1

2
d⊤Bkd,

where fk = f(xk), gk = ∇f(xk), δk is a positive parameter that is called the trust

region radius and Bk is an approximation to the Hessian of the objective function

at xk. In the rest of the paper, ‖·‖ denotes the Euclidean norm.

Finding a global minimizer of subproblem (1.2) is often too expensive so that,

in practice, numerical methods are applied to find an approximation [9], [14], [21].

Global convergence of the classic trust region algorithm is proved provided that

the approximate solution dk of subproblem (1.2) satisfies the following reduction

estimation in the model function:

(1.3) mk(0)−mk(dk) > c
1

2
‖gk‖min

{
δk,
‖gk‖

‖Bk‖

}

with c ∈ (0, 1).

Given a fixed trial direction dk, define the ratio rk as

(1.4) rk :=
fk − f(xk + dk)

mk(0)−mk(dk)
.

In classical trust region methods, the kth iteration is called a successful iteration

if rk > µ for some µ ∈ (0, 1). In this case, the trial point xk + dk is accepted

as a new approximation and the trust region radius is enlarged. Otherwise, the

iteration k is called an unsuccessful iteration; the trial point is rejected and the

trust region is shrunk. The efficiency of trust region methods strongly relies on the

generated sequence of radii. A large radius possibly increases the cost of solving

the corresponding subproblem and a small radius increases the number of iterations.

Hence, choosing an appropriate radius in each iteration is challenging in trust region

methods. In the effort to tackle this challenge, many authors have rigorously studied

the adaptive trust region methods [1], [8], [13], [19], [23].

Zhang et al. in [23] proposed the adaptive radius

(1.5) δk = cpk‖gk‖ ‖B̂
−1
k ‖,

where c ∈ (0, 1), pk is a nonnegative integer and B̂k = Bk + Ek is a safely positive

definite matrix based on a modified Cholesky factorization by Schnabel and Eskow

in [17]. Numerical results indicate that embedding this adaptive radius in a pure trust
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region increases the efficiency. But the formula (1.5) requires to calculate the inverse

matrix B̂−1
k at each iteration and thus it is not suitable for large-scale problems. Shi

and Guo in [19] proposed another adaptive radius

(1.6) δk = −cpk
g⊤k qk

q⊤k B̃kqk
‖qk‖,

where c ∈ (0, 1), pk is a nonnegative integer and qk is a vector satisfying

(1.7) −
g⊤k qk

‖gk‖ · ‖qk‖
> τ

with τ ∈ (0, 1]. Moreover, B̃k is generated by the procedure: B̃k = Bk + iI, where i

is the smallest nonnegative integer such that q⊤k B̃kqk > 0. It is simple to see that

the radius (1.6), for pk = 0, estimates norm of the exact minimizer of the quadratic

model fk + g⊤k d+
1
2d

⊤B̃kd along the direction qk.

Motivated by this adaptive radius, Kamandi et al. proposed an efficient adaptive

trust region method in which the radius at each iteration is determined by using the

information gathered from the previous step [13]. Let dk−1 be the solution of the

subproblem in the previous step, for parameters τ ∈ (0, 1) and γ > 1 define

(1.8) qk :=




−gk if k = 0 or

−(g⊤k dk−1)

‖gk‖‖dk−1‖
6 τ,

dk−1 o.w.

and

(1.9) sk :=





−
g⊤k qk

q⊤k Bkqk
‖qk‖ if k = 0,

max
{
−

g⊤k qk

q⊤k Bkqk
‖qk‖, γδk−1

}
if k > 1.

Then, the algorithm proposed in [13] for solving (1.1) is as follows:

Algorithm: (IATR) Improved adaptive trust-region algorithm

input: x0 ∈ R
n, a positive definite matrix B0 ∈ R

n×n, δ̄ > 0,

c, µ ∈ (0, 1), τ ∈ (0, 1), γ > 1 and ε > 0.

begin

k← 0, compute f0 and g0.

while (‖gk‖ > ε)

Compute qk by (1.8) and sk by (1.9),

set δk0
= min{sk, δ̄},
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rk ← 0, p← 0.

while (rk < µ)

δkp
← cpδk0

,

compute dkp
by solving (1.2) with radius δkp

;

compute rk by (1.4),

p← p+ 1.

end while

xk+1 ← xk + dkp
,

update Bk by a quasi-Newton formula,

k ← k + 1.

end while

end

Despite it enjoys many advantages [13], this algorithm has several disadvantages.

First, setting a fixed value for the shrinkage parameter c in the inner loop of the

IATR algorithm is not an intelligent choice. In order to see this, suppose that the

step direction dk0
, the solution of the subproblem (1.2) with the radius δk0

, is rejected

by the ratio test. In this case, the algorithm shrinks the radius δk0
by the factor

c ∈ (0, 1). Hence, we have the new subproblem

(1.10) min
‖d‖6cδk0

mk(d), mk(d) = fk + g⊤k d+
1

2
d⊤Bkd.

Since cδk0
< δk0

, it is clear that the feasible region of the subproblem (1.10) is

a subset of the feasible region of the subproblem (1.2). So, in case that ‖dk0
‖ 6 cδk0

,

dk0
is also a solution of (1.10), although we know that it is rejected by the ratio test.

This means that the new step direction is rejected by the ratio test again without

any improvement; solving the new subproblem has redundant computational costs,

though.

Another drawback of a constant shrinkage parameter occurs when the trust region

radius is too large and the shrinkage parameter is close to one: the algorithm is forced

to solve the trust region subproblem several times until it finds a successful step.

So, using a shrinkage parameter close to one may increase the number of function

evaluations. On the other hand, using a small shrinkage parameter may cause to

shrink the trust radius too fast; in this case, the number of iterations increases.

Furthermore, the sequence of function evaluations generated by this algorithm is

decreasing and numerical results show that imposing monotonicity to trust region

algorithms may reduce the speed of convergence for some problems, specially in

the presence of a narrow valley. In order to overcome similar drawbacks, Grippo

et al. proposed a nonmonotone line search technique for Newton’s method [11]. By
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generalizing the technique to the trust region methods, the nonmonotone version of

these methods appeared in the literature [1], [2], [6], [16], [20], [24].

The basic difference between the monotone and nonmonotone trust region ap-

proaches is due to the definition of the ratio rk. In a nonmonotone trust region, the

ratio is defined by

(1.11) r̂k =
Ck − f(xk + dk)

mk(0)−mk(dk)
,

where Ck is a parameter greater than or equal to fk. In this paper, we call Ck the

nonmonotone parameter. In different versions of nonmonotone algorithms, the non-

monotone parameter computation is based on different methodologies. A common

parameter for nonmonotone trust region methods is

(1.12) flk := max
06j6Nk

fk−j ,

where N0 = 0 and Nk = min{k,N} for a fixed integer number N > 0.

Note that by taking maximum in the parameter (1.12), a potentially very good

function value can be excluded. Trying to tackle this drawback, Ahookhosh et

al. in [2] proposed the nonmonotone parameter

(1.13) Rk = ηkflk + (1− ηk)fk,

where ηk ∈ [ηmin, ηmax], ηmin ∈ [0, 1) and ηmax ∈ [ηmin, 1]. When ηk is close to one

the effect of nonmonotonicity is amplified. On the other hand, when ηk is close to

zero the algorithm ignores the effect of the term flk and behaves monotonically.

In 2019, Xue et al. proposed a nonmonotone version of the IATR algorithm based

on the nonmonotone parameter (1.13), see [22]. They also used a scaled memoryless

BFGS formula to update the approximation of the Hessian matrix. By analyzing the

numerical behavior of nonmonotone versions of IATR using the aforementioned non-

monotone parameters, we find out that in some problems, for example OSCIGRAD,

the difference between the current objective value fk and the nonmonotone param-

eter becomes too large and in this case a large increase is allowed to happen in the

next iteration. Another drawback of the above nonmonotone parameters is that they

strongly depend on the choice of the memory parameter Nk and the parameter ηk,

and there is no specific rule to adjust them.

In this paper, by combining the idea of adaptive trust region and nonmonotone

techniques, we propose a new efficient nonmonotone trust region algorithm for solving

unconstrained optimization problems. In the new algorithm, a radius dependent

shrinkage parameter is used to adjust the trust region radius in rejected steps which
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addresses the first disadvantage of IATR. For resolving the second disadvantage,

a novel strategy is used to compute the nonmonotone parameter in this algorithm

which prevents a sudden increment in the objective values.

The paper is organized as follows: the new algorithm is proposed in the next

section. Section 3 is devoted to its convergence properties. The numerical results

of testing the new algorithm to solve a collection of the CUTEst test problems are

reported in Section 4. The last section includes the conclusion.

2. The new algorithm

In this section, we propose our algorithm for solving unconstrained optimization

problems.

As mentioned in the previous section, setting a fixed value for the shrinkage pa-

rameter c in the inner loop of the IATR algorithm may impose some useless compu-

tational costs to this algorithm. Therefore, for resolving this issue, we propose the

radius dependent shrinkage parameter

(2.1) ckp
:= c(δkp

),

where c(δ) : (0, δ̄] → [α0, α1] is a decreasing function where 0 < α0 < α1 < 1 and δ̄

is the maximum possible radius. Also, in order to exclude the rejected trial step dkp
,

in the new algorithm we define the new radius as δkp+1
= ckp

‖dkp
‖.

Note that the radius dependent parameter (2.1) is close to α0 for a large trust

region radius and is close to α1 for a small one. Hence, this parameter shrinks the

trust region harshly for large trust region radii and helps the new algorithm to find

a successful step direction fast enough. Further, it shrinks the trust region mildly in

the case that the trust region radius is small.

Also numerical tests persuaded us to consider a radius dependent parameter γk =

γ(δk−1) based on the previous trust region radius and use it instead of the constant

parameter γ in (1.9). Similar to (2.1), γ(δk−1) is a decreasing function bounded from

below by 1.

With the goal of overcoming the second disadvantage of the IATR algorithm and

building an efficient nonmonotone version of it, we propose a new nonmonotone pa-

rameter Ck. This new parameter benefits from nonmonotonicity in an adaptive way

compared to the mentioned parameters. When a very good function value is found at

the iteration k, it is better to save that by forcing the algorithm to behave monoton-

ically for the next iteration. To this aim, we define a new nonmonotone parameter

using not only the simple parameter flk defined by (1.12) but also considering its

relative difference from the current function value.

238



For a positive parameter ν, define sequences {Mk} and {Ik} as

Mk :=

{
0 if k = 0 or flk − fk > ν|fk|,

Mk−1 + 1 o.w.

and

Ik :=

{
0 if k = 0 or fk < fk−1,

Ik−1 + 1 o.w.

Having the above sequences for fixed natural numbers N and I, we define the new

nonmonotone parameter Ck as

(2.2) Ck :=

{
max

06j6nk

fk−j if Ik 6 I,

fk o.w.

where nk = min{Mk, N}. Note that the sequence {Ik} counts the number of con-

secutive increments in the objective function values. So, the nonmonotone param-

eter Ck defined by (2.2) prevents large increments in the objective function values

and guarantees at least one decrease for each Ith iteration. Also, the definition of

the sequence {Mk} makes the new algorithm monotone when the relative difference

between flk and the current function value is large and prevents a sudden increment

in the objective function values for the next iteration.

Now, we are ready to propose the new adaptive nonmonotone trust region algo-

rithm.

Algorithm: (NATR) Nonmonotone adaptive trust-region algorithm

input: x0 ∈ R
n, a positive definite matrix B0 ∈ R

n×n, δ̄ > 0,

a decreasing function c(δ), µ ∈ (0, 1), τ ∈ (0, 1), γ > 1, and ε > 0.

begin

k← 0; compute f0 and g0.

while (‖gk‖ > ε)

Compute qk by (1.8) and sk by (1.9),

set δk0
= min{sk, δ̄},

compute Ck by (2.2),

compute dk0
by solving (1.2) with radius δk0

and r̂k by (1.11)

and set p = 0.

while (r̂k < µ)

Compute ckp
by (2.1),

δkp+1
= ckp

‖dkp
‖,

compute dkp+1
by solving (1.2) with radius δkp+1

and r̂k by (1.11),
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p← p+ 1.

end while

xk+1 ← xk + dkp
,

update Bk by a quasi-Newton formula,

k ← k + 1.

end while

end

In the next section, we propose the convergence properties of the new algorithm.

3. Convergence properties

In this section, we analyze the global convergence of the new algorithm. To this

end, we need the following assumptions:

(H1) The objective function f(x) is continuously differentiable and has a lower

bound on the level set

L(x0) = {x ∈ R
n ; f(x) 6 f(x0), x0 ∈ R

n}.

(H2) The approximation matrix Bk is uniformly bounded, i.e., there exists a con-

stant M > 0 such that

‖Bk‖ 6 M ∀ k ∈ N.

The following lemma is similar for both the IATR and NATR algorithms, so its

proof is omitted.

Lemma 3.1. Suppose that the sequence {xk} is generated by the NATR algo-

rithm. Then

|f(xk + dkp
)−mk(dkp

))| = o(‖dkp
‖).

P r o o f. See [15]. �

The next two lemmas guarantee the existence of some lower bounds for the trust

region radius δk0
and the norm of the trial step dk0

at the iteration k generated by

the NATR algorithm.

Lemma 3.2. Suppose that δk0
= min{sk, δ̄} is the trust region radius at the

iteration k of the NATR algorithm such that sk is defined by (1.9). Then

(3.1) δk0
> min

{
τ
‖gk‖

‖Bk‖
, δ̄
}
.
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P r o o f. In case δ̄ 6 sk, we have δk0
= δ̄ and the inequality (3.1) is valid. Thus,

consider the case that sk < δ̄ and δk0
= sk. The definition of sk in (1.9) and the

Cauchy-Schwarz inequality yield that

(3.2) δk0
>
−g⊤k qk
‖Bk‖‖qk‖

.

By the definition of qk in (1.8) if qk = −gk, inequality (3.2) results in

δk0
>
‖gk‖

‖Bk‖
.

When qk = dk−1, we have −g
⊤
k qk > τ‖gk‖‖qk‖ so that inequality (3.2) implies

δk0
> τ
‖gk‖

‖Bk‖
.

By the above explanation along with the fact that τ ∈ (0, 1) we can conclude

that (3.1) is valid. �

Lemma 3.3. Suppose that dk0
is the solution of the subproblem (1.2) with ra-

dius δk0
. Then

(3.3) ‖dk0
‖ > min

{ ‖gk‖
‖Bk‖

, δk0

}
.

P r o o f. By Theorem 4.1 of [15], when dk0
lies strictly inside the feasible region

of subproblem (1.2), we must have Bkdk0
= −gk such that the Cauchy-Schwarz

inequality yields

‖dk0
‖ >

‖gk‖

‖Bk‖
.

In the other case dk0
lies on the boundary of the feasible region of the subprob-

lem (1.2) which implies ‖dk0
‖ = δk0

. So, from the above discussion we can conclude

that (3.3) is valid. �

By (3.1) and (3.3), we can also obtain a lower bound for δkp
. Note that, at

the iteration k of the NATR algorithm, for any p > 1 the solution dkp
lies on the

boundary of the region defined by δkp
. Since the objective is fixed for each iteration,

when the trial step dkp
is rejected by the ratio test, the new radius δkp+1

is set to
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exclude dkp
from the new region. Thus, by the contraction of the inner loop of the

NATR algorithm, we have

δkp
= ckp−1

‖dkp−1
‖ = ckp−1

δkp−1

= ckp−1
ckp−2

‖dkp−2
‖ = ckp−1

ckp−2
δkp−2

...

=

p−1∏

i=0

cki
‖dk0
‖.

This equation along with (3.1), (3.3) and the fact that α0 is a lower bound and α1

an upper bound for cki
for any i > 0 yield that

(3.4) αp
0 min

{
τ
‖gk‖

‖Bk‖
, δ̄
}
6 δkp

6 αp
1 δ̄.

In Lemma 3.4, we propose a lower bound for the denominator of the ratio r̂k

defined by (1.11) which is used in Lemma 3.5 to prove that the inner loop of the

NATR algorithm terminates in a finite number of inner iterations.

Lemma 3.4. Suppose that (H2) holds, the sequence {xk} is generated by the

NATR algorithm, and dkp
is an approximate solution of subproblem (1.2) with ra-

dius δkp
, that satisfies (1.3). Then,

(3.5) mk(0)−mk(dkp
) >

1

2
cαp

0‖gk‖min
{
τ
‖gk‖

M
, δ̄
}
∀ k ∈ N.

P r o o f. By (1.3), for dkp
we have

mk(0)−mk(dkp
) > c

1

2
‖gk‖min

{
δkp

,
‖gk‖

‖Bk‖

}
.

This inequality along with the assumption (H2) and inequality (3.4) result in

mk(0)−mk(dkp
) >

1

2
cαp

0‖gk‖min
{
τ
‖gk‖

M
, δ̄
}
.

So, the proof is completed. �

Lemma 3.5. Suppose that the assumption (H2) holds. Then the inner loop of

the NATR algorithm is well-defined.
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P r o o f. By contradiction, assume that the inner loop of the NATR algorithm

at the iteration k is not well-defined. Since xk is not the optimum, ‖gk‖ > ε.

Now, let dkp
be the solution of subproblem (1.2) corresponding to p ∈ N ∪ {0}

at xk. It follows from Lemma 3.1 and (3.5) that

∣∣∣
f(xk)− f(xk + dkp

)

mk(0)−mk(dkp
)
− 1

∣∣∣ =
∣∣∣
f(xk)− f(xk + dkp

)− (mk(0)−mk(dkp
))

mk(0)−mk(dkp
)

∣∣∣

6
o(‖dkp

‖)
1
2cα

p
0‖gk‖min{τ‖gk‖/M, δ̄}

6
o(‖dkp

‖)
1
2cα

p
0εmin{τε/M, δ̄}

.

By (3.4), we have δkp
6 αp

1 δ̄. So, if the inner loop of the NATR algorithm cycles

infinitely many times (or p→∞), then δkp
tends to zero. Thus, the feasibility of dkp

,

‖dkp
‖ 6 δkp

, implies that the right-hand side of the above equation tends to zero.

This means that for a sufficiently large p, we get

f(xk)− f(xk + dkp
)

mk(0)−mk(dkp
)

> µ.

This inequality along with the fact that Ck > fk yield that

r̂k =
Ck − f(xk + dkp

)

mk(0)−mk(dkp
)
> µ,

which means that the inner cycle of the NATR algorithm is terminated in the finite

number of internal iterations. �

The following lemma illustrates some properties of the sequences {xk} and {Ck},

generated by the NATR algorithm. The statement of this lemma is used to prove

the global convergence of the NATR algorithm.

Lemma 3.6. Suppose that the assumption (H1) holds and the sequence {xk}

is generated by the NATR algorithm. Then fk+1 6 Ck+1 6 Ck. Therefore, the

sequence {xk} is contained in the level set L(x0) and the sequence {Ck} is convergent.

P r o o f. By the NATR algorithm, at the successful iteration k, we have

Ck − fk+1 > µ(mk(0)−mk(dkp
)) > 0.

This inequality along with (2.2) and the definition of the sequence {Mk} imply that

Ck+1 = max
06j6nk+1

{fk+1−j} 6 max{fk+1, Ck} = Ck.
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Thus

(3.6) fk+1 6 Ck+1 6 Ck 6 C0 = f0.

The last equation means that {xk} is contained in the level set L(x0). Accordingly,

the assumption (H1) and (3.6) yield that {Ck} is decreasing and bounded from below.

Therefore, the sequence {Ck} is convergent. �

Now, we are ready to present the global convergence theorem.

Theorem 3.1. Suppose that the assumptions (H1) and (H2) hold. Then the

NATR algorithm either terminates in a finite number of steps, or generates an infinite

sequence {xk} such that

(3.7) lim inf
k→∞

‖gk‖ = 0.

P r o o f. If the NATR algorithm terminates in a finite number of steps, then the

proof is trivial. Hence, assuming that the sequence {xk} generated by this algorithm

is infinite, we show that (3.7) holds. To this end, suppose that there exists a constant

ε0 > 0 such that

(3.8) ‖gk‖ > ε0

for all k. Let Ck = fik , where fik = argmax
{

max
06j6nk

{fk−j}
}
. Then, by Lemma 3.6,

the sequence {fik} is a convergent subsequence of {fk}. By the fact that r̂k > µ, we

have

fik − fk+1 > µ(mk(0)−mk(dkp
)).

Next, by replacing k with ik − 1, we conclude that

fiik−1
− fik > µ(mik−1(0)−mik−1(d(ik−1)p)).

This inequality along with Lemma 3.4 yield that

fiik−1
− fik > µ

[1
2
cαp

0‖gik−1‖min
{
τ
‖gik−1‖

M
, δ̄
}]

> µ
[1
2
cαp

0ε0 min
{
τ
ε0
M

, δ̄
}]

.

Taking limit in this inequality when k →∞ implies that

0 > µ
[1
2
cαp

0ε0 min
{
τ
ε0
M

, δ̄
}]

,

which is a contradiction. Thus, equation (3.7) is valid. �
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4. Numerical results

In this part of the paper, we report some numerical experiments that indicate the

efficiency of the proposed algorithm. The results have been obtained by implement-

ing two versions of the NATR algorithm and the adaptive nonmonotone algorithm

proposed by Xue et al. [22] in MATLAB environment on a laptop (CPU Corei7-2.5

GHz, RAM 12 GB) and comparing the results of solving a collection of 228 un-

constrained optimization test problems from the CUTEst collection [10]. The test

problems and their dimensions are listed in Table 1.

In this section, we use the following notations:

⊲ AINTR: The adaptive nonmonotone algorithm proposed by Xue et al. [22].

⊲ NATR1: Nonmnotone adaptive trust region method (the NATR algorithm)

based on the modified BFGS update formula used in [13].

⊲ NATR2: Nonmnotone adaptive trust region method (the NATR algorithm)

based on the scaled memoryless BFGS update formula used in [22].

For the NATR algorithm we used the following radius dependent parameters:

γ(δ) =





1.5 if
δ̄

2
< δ 6 δ̄,

1.9 if
δ̄

5
< δ 6

δ̄

2
,

2 if
δ̄

10
< δ 6

δ̄

5
,

3 if 10−6 < δ 6
δ̄

10
,

3.5 o.w.

and c(δ) =





0.3 if
δ̄

10
< δ 6 δ̄,

0.45 if 10−6 < δ 6
δ̄

10
,

0.6 o.w.

similar to [22], the other parameters are chosen as τ = 0.01, N = 15, µ = 0.07,

δ̄ = 100, ε = 10−6‖g0‖ and for the NATR algorithm the remaining parameters are

selected as N = 10, I = 6 and ν = 10. The trust region subproblems are solved by

the Steihaug-Toint scheme [21].

To visualize the whole behaviour of the algorithms, we use the performance profiles

proposed by Dolan and More [7]. The results of 14 test problems (the red ones in

the table) are excluded from comparison because all the tested algorithms failed to

solve them. So, the comparison of the algorithms is based on the remaining 214

test problems. Among these 214 test problems, NATR1, NATR2 and AINTR faced

with 9, 42 and 49 failures, respectively.

The total number of function evaluations, the total number of iterations and the

running time of each algorithm are considered as performance indexes. Note that at
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Problem name Dim Problem name Dim

ARGLINA 100, 200 ARGLINB 100, 200

ARGLINC 100, 200 BDQRTIC 100, 500, 1000, 5000

BROWNAL 100, 200, 1000 BRYBND 100, 500

CHAINWOO 100 CURLY10 100

CURLY20 100 CURLY30 100

EIGENALS 110, 2550 EIGENBLS 110, 2550

EIGENCLS 462, 2652 EXTROSNB 100,1000

FREUROTH 100, 500, 1000, 5000 GENROSE 100, 500

LIARWHD 100, 500, 1000, 5000 MANCINO 100

MODBEALE 200, 2000 MSQRTALS 100, 529

MSQRTBLS 100, 529 NONDIA 100, 500, 1000, 5000

NONSCOMP 100, 500, 1000, 5000 OSCIGRAD 100, 1000

OSCIPATH 100, 500 PENALTY1 100, 500, 1000

PENALTY2 100, 200 SENSORS 100, 1000

SPMSRTLS 100, 499, 1000, 4999 SROSENBR 100, 500, 1000, 5000

SSBRYBND 100 TQUARTIC 100, 500, 1000, 5000

VAREIGVL 100, 500, 1000, 5000 WOODS 100, 1000, 4000

ARWHEAD 100, 500, 1000, 5000 BOX 100, 1000

BOXPOWER 100, 1000 COSINE 100, 1000

CRAGGLVY 100, 500, 1000, 5000 TESTQUAD 1000, 5000

DIXMAANA 300, 1500, 3000 DIXMAANC 300, 1500, 3000

DIXMAAND 300, 1500, 3000 DIXMAANE 300, 1500, 3000

DIXMAANF 300, 1500, 3000 DIXMAANG 300, 1500, 3000

DIXMAANH 300, 1500, 3000 DIXMAANI 300, 1500, 3000

DIXMAANJ 300, 1500, 3000 DIXMAANK 300, 1500, 3000

DIXMAANL 300, 1500, 3000 DIXMAANM 300, 1500, 3000

DIXMAANN 300, 1500, 3000 DIXMAANO 300, 1500, 3000

DIXMAANP 300, 1500, 3000 DQRTIC 100, 500, 1000, 5000

EDENSCH 2000 ENGVAL1 100,1000, 5000

FLETCBV2 100 FLETCHCR 100, 1000

FMINSRF2 121, 961, 1024 FMINSURF 121, 961, 1024

INDEFM 100, 1000, 5000 NCB20 110, 1010

NONCVXU2 100, 1000, 5000 NONCVXUN 100, 1000, 5000

NONDQUAR 100, 500, 1000, 5000 PENALTY3 100

Table 1. List of test problems.
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POWELLSG 100, 500, 1000, 5000 POWER 100, 500, 1000, 5000

QUARTC 100, 500, 1000, 5000 SCHMVETT 100, 500, 1000, 5000

NCB20B 100,180,500,1000,2000 SPARSINE 100, 1000, 5000

SPARSQUR 100, 1000, 5000 TOINTGSS 100, 500, 1000, 5000

VARDIM 100, 200 DIXON3DQ 100, 1000

DQDRTIC 100, 500, 1000, 5000 TRIDIA 100, 500, 1000, 5000

BROYDN7D 100,500,1000,5000 SINQUAD 100, 500, 1000, 5000

Table 1. (continued).

each iteration of the considered algorithms, the gradient of the objective function is

computed just once, so the total number of iterations and the total number of the gra-

dient evaluations are the same. Figure 1 illustrates the performance profile of these

algorithms, where the performance index is the total number of function evaluations.

It can be seen that the NATR1 is the best solver with the probability around 55%,

while the probability of solving a problem as the best solver is around 42% and 30%

for NATR2 and AINTR, respectively.
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Figure 1. Performance profiles for the number of function evaluations.

The performance index in Figure 2 is the total number of iterations. From this

figure, we observe that NATR1 obtains the most wins on approximately 58% of all

test problems and the probability of being the best solver is 41% and 29% for NATR2

and AINTR, respectively.
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Figure 2. Performance profiles for the number of iterations.

The performance profiles for the running times are illustrated in Figure 3. From

this figure, it can be observed that NATR1 is the best algorithm. Another important

factor of these three figures is that the graph of the NATR1 algorithm grows up faster

than the others.
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Figure 3. Performance profiles for the running times.

From the presented results, we can conclude that the radius dependent shrinkage

parameter and the new nonmonotone procedure are effective to improve the efficiency

of the IATR algorithm [13] compared with the nonmonotone algorithm proposed

by Xue [22].
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5. Conclusion

In this paper, we have proposed a new nonmonotone adaptive trust region algo-

rithm to solve unconstrained optimization problems. The new algorithm incorporates

a recently proposed adaptive trust region algorithm with nonmonotone techniques.

We show that setting a constant shrinkage parameter for the adaptive trust region

may impose unnecessary additional computational costs to the algorithm that affect

its efficiency. Therefore, we consider a radius dependent shrinkage parameter in the

new algorithm. Further, we propose a new nonmonotone parameter that prevents

sudden increments in the objective function values.

The global convergence of the new algorithm is investigated under some mild

conditions. Numerical experiments show the efficiency and robustness of the new

algorithm in solving a collection of unconstrained optimization problems from the

CUTEst package. It is concluded that exploiting the new ideas is a practical means to

increase the efficiency of the nonmonotone adaptive trust region algorithms and these

ideas also can be used in other nonmonotone and adaptive trust region algorithms

which suffer from similar drawbacks mentioned in this paper.
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