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Abstract. We analyze an ordinary differential system with a hysteresis-relay nonlinearity
in two cases when the system is autonomous or nonautonomous. Sufficient conditions for
both the continuous dependence on the system parameters and the boundedness of the
solutions to the system are obtained. We give a supporting example for the autonomous
system.
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1. Introduction

Proofs of the existence of periodic modes in nonlinear control systems, studies of

their properties and configurations in phase spaces are the main problems of nonlinear

oscillation theory [1]. Concurrently, one can solve the problem of constructing the

periodic modes with given properties due to the choice of system parameters. In the

paper, we discuss some aspects of solutions to the problem for the ODE system with

a hysteresis-relay nonlinearity and an external disturbance. Apart from the periodic

solutions, we study the bounded solutions to such systems, i.e. the solutions located

in some bounded domain of the phase space.

Systems with hysteresis have been explored for a long time (see, e.g., [5], [8], [18],

[20], [21], [31]). Nevertheless, the interest in research of these systems does not fade

away nowadays. From the latest papers in this direction, we should mention [2],

[4], [6], [7], [11], [14]–[17], [19], [22], [24], [27], [28], [32]–[35]. In general, hysteresis

c© Institute of Mathematics, Czech Academy of Sciences 2021.

DOI: 10.21136/AM.2021.0085-20 65

http://dx.doi.org/10.21136/AM.2021.0085-20


occurs almost everywhere in nature, namely, in several phenomena in hydrology [6],

biology, engineering, physics, and so on [32]. The dynamic behaviour of hysteresis

systems depends on the parameters that are set with some accuracy and can change

in physical systems over time. For this reason, the problems for the existence of

bounded modes as well as their stability and bifurcation while the parameters change

are studied. The most important researches of global dynamics and bifurcation are

based on using the smooth and non-smooth Preisach operators, searching for fixed

points, and studying periodic solutions and their properties by different methods [2],

[6], [22], [24], [27], including topological methods, for instance, the equivariant degree

method [4].

For applications, scientists use widely the models of hysteresis coupled, as a rule,

with PDEs [33]. Here we consider a non-ideal scalar relay as a hysteresis model

coupled with ODEs. First, the non-ideal relay is the simplest model of discontinuous

hysteresis [32]. Second, it is one of the few known nonlinearities that can be described

by the Preisach model [11], involving its vector extension [33]. We develop the results

discussed in [14]–[16], [34], [35] and investigate the dynamics of the control system

governed by an N -dimensional system of ODEs. As the control, we consider the

hysteresis-relay nonlinearity that is often used in automatic control systems [29].

In nonautonomous systems, periodic (see [12], [14]–[17], [34], [35]) or nonperiodic

functions (see [26]) can stand for external disturbances. The studied mathematical

model describes numerous automatic devices with a relay installed, for example, on

river or sea vessels [9], [23].

At first, we consider the transformation of a closed set into itself via the Schauder

fixed-point theorem. This transformation is given by the set of solutions to the

system of ODEs. Assuming that there exists at least one periodic solution with 2n

(n ∈ N) switch points, we construct a system of transcendental equations with respect

to the switch instants of the representative point of this periodic solution. Then,

using the implicit function theorem, we obtain the conditions under which the move

times between switch points depend locally continuously on the system parameters.

Also, we find sufficient conditions for both the boundedness of steady-state modes

and the continuous dependence of the periodic solutions on the system parameters,

including the parameters of the feedback control and the external disturbance. These

sufficient conditions provide a configuration robustness to the steady-state modes,

give the property similar to a dissipativity one for the system and the property similar

to the property of the Lagrange stability for the solutions. The above-mentioned

dissipativity and stability properties are known for systems with continuous right-

hand sides. For example, in [10], the decay rates for the energy are intrinsically

described by the solution to a dissipative ODE. This differs from the present paper,

in which the system of ODEs with a discontinuous nonlinearity is investigated.
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2. Statement of the problem

We describe the mathematical model by the system of ODEs

(2.1) Ẋ = AX +BF (σ) +Kf(t), σ = 〈Γ, X〉.

Here X is the state vector such that X ∈ R
N , where R

N is an N -dimensional

Euclidean space. The (N ×N) matrix A and the (N × 1) vectors B, K, Γ are real

and constant. We denote the scalar product of the vectors Γ and X by 〈Γ, X〉.

The function F (σ) stands for the non-ideal relay with the thresholds l1, l2, the

outputs m1, m2 and positive spin unlike [28]. Without restricting the generality, we

put l1 < l2 and m1 < m2. The function F (σ(t)) is defined for t > 0 in the class of

continuous functions and given as in [25]: F (σ) = m1 follows from σ(t) 6 l1, F (σ) =

m2 follows from σ(t) > l2, and F (σ(t1)) = F (σ(t2)) follows from l1 < σ(t) < l2
(t1 < t 6 t2). Thus, if σ(0) 6 l1 or σ(0) > l2, then one value of F (σ(t)) corresponds

to σ(t), and if l1 < σ(0) < l2, then two values of F (σ(t)) correspond to σ(t). The

hysteresis loop presented in the coordinates (σ, F ) by σ = σ(t), F = F (σ(t)) is

followed counter-clockwise. In general, if at the initial instant t = t0 we have σ(t0) ∈

(l1, l2), then it is necessary to specify F (σ(t0)) = m1 or F (σ(t0)) = m2 and follow the

positive spin in the plane (σ, F ): the value of F (σ(t)) is kept constant for all t > t0
until σ(t) crosses the threshold value l2 from below or the threshold value l1 from

above, respectively; at these instants (when σ(t) = li, i = 1, 2) the value of F (σ(t))

is changed to m1 or m2, respectively. According to [19], the set of possible states

of the non-ideal relay is the set of points {(σ, F )} that belong to the two half-lines

F = m1 for σ < l2 and F = m2 for σ > l1.

The function F (σ) characterizes a relay with hysteresis and is used to describe

mechanical, electromagnetic, chemical, biological phenomena, for example, a spatial

delay of control mechanisms in the model of a ship autopilot or the friction in me-

chanical systems. Relays provide the basic bricks to build Preisach models, which

are well known in the field of magnetic, ferromagnetic, and smart (shape-memory)

materials.

Note that, in automatic control systems, the elements of the matrix A characterize

the plant, the vector B consists of gain coefficients in the subsystem of final control-

ling units, the vector Γ defines the feedback and is called the relay-feedback vector.

The vector Γ indicates the way in which the hyperplanes 〈Γ, X〉 = li (i = 1, 2) and,

therefore, the solutions to this system are arranged in the phase space. Further, these

hyperplanes are called switch surfaces. It is certain that the analysis of systems with

a relay feedback is quite a task [3], [13], [36].

The function f(t) stands for an external or testing input disturbance imposed

on the automatic system. In engineering practice, as a rule, the disturbance is
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carried out in the form of a jump, an exponential curve, a polynomial or sine. Such

simplifications are often not quite adequate to actual input disturbances. That is

why we consider f(t) from the class of continuous functions bounded at least on

a finite time interval, i.e. |f(t)| 6 M = const. The function f(t) can be periodic or

nonperiodic.

Usually the systems with real roots of characteristic equations are studied (see,

for example, [3], [15], [16], [30], [34], [35]). In [14], we analyze the complex roots. In

this paper, we continue the research along this line.

We assume that the matrix A has no pure imaginary eigenvalues, i.e. the eigenval-

ues of the form qi, where q ∈ R, i2 = −1. Then there exists the matrix (U − eAt)−1

and putting X(0) = X(T ) = X0, we have

X0 = (U − eAT )−1

∫ T

0

eA(T−τ)(BF (σ(τ)) +Kf(τ)) dτ,

where U is the identity matrix. For the analytical representation of the solution

to (2.1), we use Cauchy’s form. We may thus consider

(2.2) σ(t) =

〈
Γ, eAtX0 +

∫ t

0

eA(t−τ)(BF (σ(τ)) +Kf(τ)) dτ

〉
.

Equation (2.2) makes it possible to obtain the system of equations for the instants and

points of intersection of the solutions with the switch surfaces 〈Γ, X〉 = li (i = 1, 2),

which determine splitting the function F (σ) into linear parts. We show that in the

next sections.

The outline of the paper is as follows. In Section 3, the sufficient condition for

the steady-state motions of (2.1) to be bounded is established. In Section 4, the

system of transcendental equations with respect to the switch instants and formulae

for switch points are presented. The main result on the configuration robustness of

periodic motions is given in Theorem 4.1. In Section 5, we apply Theorem 4.1 to the

N -dimensional system of ODEs in case when the disturbance is absent (Theorem 5.1)

and provide a supporting example with N = 2.

3. Bounded solutions

Relay feedback systems show a few various behaviours. Unbounded solutions

correspond to the resonance in systems [28]. In this section we consider bounded

(periodic as well as nonperiodic) solutions, which are also of interest in applications.

In the phase space, the trajectory of any solution to system (2.1) can be pieced

out of the trajectories in virtue of the linear systems

(3.1) Ẋ = AX +Bm1 +Kf(t), Ẋ = AX + Bm2 +Kf(t).
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Sewing together these trajectories happens by continuity at the points on the switch

surfaces 〈Γ, X〉 = li (i = 1, 2). We assume that the solutions to (2.1) are in the

class of periodic functions with even number of switch points. These switch points

coincide with the sewing points. A closed bounded phase trajectory corresponds to

the periodic solution of (2.1). In the (N + 1)-dimensional space (X, t), the whole

integrated curve consisting of the pieces of integrated curves in virtue of (3.1) con-

forms to the periodic solution of (2.1). These pieces are repeated with a period that

we call the period of forced oscillations in system (2.1). We denote this period by Tf .

The switch points of the periodic solution have the following properties:

X i = X(t0,mj , t0) = X(t0,mj, t0 + Tf ), 〈Γ, X i〉 = lk ∀ i, j, k = 1, 2,

where t0 is the initial instant. Generally, along with the periodic solutions, sys-

tem (2.1) can have nonperiodic solutions with the switch points that belong to the

switch surfaces 〈Γ, X〉 = li (i = 1, 2) as well.

Now we give Theorem 3.1.

Theorem 3.1. Let the above assumptions with respect to the right-hand side of

system (2.1) hold. In addition, let all the eigenvalues of the matrix A have negative

real parts and let the conditions−〈Γ, A−1Bm2〉 < l1, −〈Γ, A−1Bm1〉 > l2 be fulfilled.

Then all the steady-state motions of system (2.1) belong to some bounded domain of

the phase space or, in other words, the representative point of any solution to (2.1)

reaches some bounded domain of the phase space for a finite time and stays inside

this domain.

P r o o f. Let us consider the geometry of the phase space of system (2.1). Since A

has the eigenvalues with negative real parts, one can allocate two convex compact

sets on the switch surfaces, using the Lyapunov functions. By virtue of the solution

to system (2.1), these sets are mapped into themselves. Zero solution of the system

Ẋ = AX is asymptotically stable. As a consequence, there exist both the positive

definite function V (X) and the negative definite function W (X) that are related by

dV/dt = W (X) in view of the system Ẋ = AX . Here V (X) = X⊤V0X and V0 is

a constant, where ⊤ means the transpose. Next we establish the conditions under

which the total derivative of the function V (X) is negative by virtue of (2.1), i.e.

(3.2)
dV

dt

∣∣∣
(2.1)

= X⊤W0X + (B⊤F (σ) +K⊤f(t))V0X

+X⊤V0(BF (σ) +Kf(t)) < 0,

where W0 = A⊤V0 + V0A.
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Inequality (3.2) is valid if the inequality

(3.3) ‖X‖ >
1

‖A‖

(
max
i=1,2

|mi| · ‖B‖+M · ‖K‖
)

holds, where M is a constant such that |f(t)| 6 M .

The equations of the form V (X) = C, where C is a constant, provide closed

surfaces in the phase space. Obviously, there is the minimum value of C at which

inequalities (3.2) and (3.3) are fulfilled.

In order for the surface V (X) = minC to cross the switch surfaces, it is necessary

that the conditions −〈Γ, A−1Bm2〉 < l1, −〈Γ, A−1Bm1〉 > l2 are met.

The last conditions mean that system (2.1) has the form Ẋ = 0 at the points

Xi = −A−1Bmi (i = 1, 2) when f(t) ≡ 0 and, in the phase space of the system,

these points lie outside the ambiguity zone of the function F (σ).

Now if the initial points X are taken from the domain bounded by the surface

V (X) = minC, then the trajectory of the representative point does not leave this

domain of the phase space in virtue of (2.1). The intersection of the set given by

the inequality V (X) 6 minC with the switch surfaces provides the convex compact

sets Si (i = 1, 2) defined by the system

〈Γ, X〉 = li, i = 1, 2,

‖X‖ 6
1

‖A‖

(
max
i=1,2

|mi| · ‖B‖+M · ‖K‖
)
.

The solution to (2.1) defines the continuous operator of the form

P (X0, T (X0)) = eA(T (X0)−t0)

(
X0 +

∫ T (X0)

t0

e−A(τ−t0)(BF (σ) +Kf(τ)) dτ

)
,

where X0 = X(t0) and T (X0) is the time for the representative point to return into

the set Si along the trajectory of the solution to (2.1).

Thus, in the phase space, we have found the sets mapped into themselves in virtue

of the solution to (2.1). The switch points belong to the sets Si (i = 1, 2) in the

phase space. Theorem 3.1 is proved. �
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4. Periodic solutions

Let system (2.1) have at least one periodic solution with 2n switch points, where n

is an integer. We denote the switch surfaces σ = li of R
N by Li (i = 1, 2). Let the

representative point of the required solution begin its motion at the pointX1 ∈ L1 at

t0 = 0 and reach the point X2 ∈ L2 at t1 in virtue of (3.1) provided that mi = m1.

Next let it reach X3 ∈ L1 at t2 in virtue of (3.1) provided that mi = m2, then

X4 ∈ L2 at t3 in virtue of (3.1) provided that mi = m1, and so on. At last, let

the representative point come back at the initial point X2n+1 = X1 at t2n in virtue

of (3.1) provided that mi = m2. Then the instant t2n coincides with Tf , where Tf

is the period of forced oscillations.

Considering the form of F (σ) and the selected class of periodic solutions to (2.1),

we construct the system of equations with respect to the parameters (switch instants

and corresponding points) of the periodic solutions

X2 = eAt1X1 +

∫ t1

0

eA(t1−τ)(Bm1 +Kf(τ)) dτ,(4.1)

X3 = eA(t2−t1)X2 +

∫ t2

t1

eA(t2−τ)(Bm2 +Kf(τ)) dτ,

X4 = eA(t3−t2)X3 +

∫ t3

t2

eA(t3−τ)(Bm1 +Kf(τ)) dτ,

...

X2n+1 = X1 = eA(t2n−t2n−1)X2n +

∫ t2n

t2n−1

eA(t2n−τ)(Bm2 +Kf(τ)) dτ,

where X1, . . . , X2n are the switch points and t1, . . . , t2n are the switch instants.

System (4.1) is written on account of the conditions necessary for the existence of

at least one periodic solution to system (2.1) with 2n switch points. For later use,

we introduce the notations

∫ t1

0

eA(t1−τ)(Bm1 +Kf(τ)) dτ = Q1,

∫ t2

t1

eA(t2−τ)(Bm2 +Kf(τ)) dτ = Q2,

∫ t3

t2

eA(t3−τ)(Bm1 +Kf(τ)) dτ = Q3,

...∫ t2n

t2n−1

eA(t2n−τ)(Bm2 +Kf(τ)) dτ = Q2n.
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It is clear that all the vectors Xj can be expressed in terms of X1, i.e., we have

the relation

(4.2) Xj = EjX
1 + Ij , j = 2, 2n+ 1,

where Ej and Ij are given by the expressions

Ej = eAtj−1 ,

Ij = eA(tj−1−t1)Q1 + δj2e
A(tj−1−t2)Q2 + δj3e

A(tj−1−t3)Q3 + . . .+ δj2nQ2n,

and

δjk =

{
0 for j 6 k,

1 for j > k,
where k = 2, 2n.

After that we write 2n scalar equations according to the conditions for the

points Xj to belong to Li (i = 1, 2), namely,

(4.3) 〈Γ, X2l−1〉 = l1, 〈Γ, X2l〉 = l2, l = 1, n,

where Xj (j = 2, 2n+ 1) are defined by (4.2). We use (4.3) together with the last

equation of (4.2),

(4.4) X2n+1 = X1 = E2n+1X
1 + I2n+1,

for finding the Tf -periodic solutions to (2.1) with 2n switch points. Equations (4.3)

and (4.4) are equivalent to system (4.1).

In case when the matrix U − E2n+1 is nonsingular, the point X
1 is eliminated

from (4.3) via the equality

X1 = (U − E2n+1)
−1I2n+1.

Then we obtain 2n transcendental equations with respect to tj (j = 1, 2n).

Assume that the solutions X1, tj (j = 1, 2n) exist under some conditions on the

parameters of (4.3) and (4.4). Further, all the other points Xj (j = 2, 2n) are

calculated by (4.2). If we connect the obtained points by arches of the integrated

curves in virtue of (2.1) in the given sequence, then we may say that there exist the

specified periodic solutions to (2.1).

Next, eliminating X1 from (4.3), we come to the system

〈Γ, (U − E2n+1)
−1I2n+1〉 = l1,(4.5)

〈Γ, E2n(U − E2n+1)
−1I2n+1 + I2n〉 = l2,

〈Γ, E2n−1(U − E2n+1)
−1I2n+1 + I2n−1〉 = l1,

...

〈Γ, E2(U − E2n+1)
−1I2n+1 + I2〉 = l2.
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Note that system (4.5), as a rule, cannot be solved analytically. However, it is

possible to obtain conditions under which the specified system has a solution.

The following theorem is valid.

Theorem 4.1. Let system (2.1) satisfy the conditions of Theorem 3.1 and also

have at least one periodic solution with 2n (n ∈ N) isolated switch points located

on the switch surfaces 〈Γ, X〉 = li (i = 1, 2). Then these 2n switch points depend

locally continuously on the specified parameters if

∆ =

∣∣∣∣∣∣∣

〈Γ, (X1)′t1〉 . . . 〈Γ, (X
1)′t2n〉

...

〈Γ, (X2n)′t1〉 . . . 〈Γ, (X
2n)′t2n〉

∣∣∣∣∣∣∣
6= 0,

where (X i)′tj are the partial derivatives of the elements of the vectorsX
i with respect

to tj (i, j = 1, 2n).

P r o o f. In the phase space, the switch surface-to-switch surface move times tj

are the functions of the system parameters, i.e.

tj = tj(aik, bk, kk, γk,m1,m2, l1, l2, β1, . . . , βv), j = 1, 2n.

Here aik are the elements of A; bk, kk, and γk are the elements of the vectors B, K,

and Γ (i, k = 1, N), respectively; m1, m2, l1, l2 are the parameters of F (σ); the con-

stants β1, . . . , βv (v ∈ N) are the parameters of f(t). We take these parameters for in-

dependent variables. Next we apply the implicit function theorem. System (4.5) has

the real solution tj (j = 1, 2n) if∆ 6= 0. More precisely, the functions defined by (4.3)

meet the conditions of the implicit function theorem and the Jacobian ∆ is not

equal to zero at some point R̃ = R̃(ãik, b̃k, k̃k, γ̃k, m̃1, m̃2, l̃1, l̃2, β̃1, . . . , β̃v, t̃1, . . . , t̃2n),

where the point R̃ satisfies (4.3). Then there exists a neighbourhood O of R̃ and the

functions tj (j = 1, 2n) which are uniquely determined and continuous in O so that

tj = tj(aik, bk, kk, γk,m1,m2, l1, l2, β1, . . . , βv),

t̃j = tj(ãik, b̃k, k̃k, γ̃k, m̃1, m̃2, l̃1, l̃2, β̃1, . . . , β̃v),

where j = 1, 2n and i, k = 1, N . Theorem 4.1 is proved. �

R em a r k 4.1. On practical grounds, some parameters of system (2.1) can be

fixed. Then you should not consider them as the parameters on which the functions

tj (j = 1, 2n) depend.
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R em a r k 4.2. The geometrical meaning of Theorem 4.1 is that the space config-

uration of the periodic mode of the system remains unchanged while the parameter

values vary only slightly. In other words, the switch points move continuously along

the switch surfaces, and also the number of these points does not change. Thus there

exists the configuration robustness for the periodic mode.

5. Autonomous system

We consider system (2.1) when f(t) ≡ 0, that is, the autonomous system

(5.1) Ẋ = AX +BF (σ), σ = 〈Γ, X〉.

System (5.1) has been studied for many years (see, for example, [29]), but by now

there are no comprehensive results on the dynamics of this system. Obviously, it is

convenient for applied scientists to have at least sufficient conditions on the param-

eters of the matrix A, the vectors B, Γ, and the function F (σ) under which there

exist stationary oscillations of system (5.1) with specific properties. In this section,

we use Theorem 4.1 to study the dynamics of (5.1). Let the representative point

of the solution to (5.1) begin its motion at the point X1 ∈ L2 at t = 0. The next

theorem is valid.

Theorem 5.1. Let system (5.1) meet the conditions of both Theorem 3.1 and

Theorem 4.1 concerning the parameters of the matrix A, the vectors B, Γ, and the

function F (σ). In addition, let 〈Γ, B〉 6= 0. Then the unimodal periodic solution to

system (5.1) is locally continuously dependent on the parameters if the condition

〈Γ,Θ1(e
ATBm1 + eAτ1B(m2 −m1)−Bm2)〉〈Γ,Θ2e

Aτ2B(m1 −m2)〉

+ 〈Γ,Θ2e
Aτ1B(m2 −m1)〉〈Γ,Θ1(e

ATBm2 + eAτ2B(m1 −m2)−Bm1)〉

+ 〈Γ,Θ2(e
ATBm1 + eAτ1B(m2 −m1))〉〈Γ,Θ2(e

ATBm2 + eAτ2B(m1 −m2))〉

− 〈Γ,Θ2e
ATBm1〉〈Γ,Θ2e

ATBm2〉 6= 0

is satisfied. Here Θ1 = (U − eAT )−2eAT , Θ2 = (U − eAT )−1, and T = τ1 + τ2,

where τ1, τ2 are the switch surface-to-switch surface move times.

P r o o f. The switch points of the unimodal periodic solution [30] to an au-

tonomous system belong to the switch surfaces and are defined by the expressions

X1 = (U − eAT )−1

(
eAτ1

∫ T

τ1

eA(T−τ)Bm1 dτ +

∫ τ1

0

eA(τ1−τ)Bm2 dτ

)
,(5.2)

X2 = (U − eAT )−1

(
eAτ2

∫ τ1

0

eA(τ1−τ)Bm2 dτ +

∫ T

τ1

eA(T−τ)Bm1 dτ

)
.(5.3)
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Here, by analogy to (4.1), formulae (5.2) and (5.3) are written for the particular case

when the number of switch points is two, the period is T such that T = τ1 + τ2, and

〈Γ, X1〉 = l2, 〈Γ, X
2〉 = l1.

We consider the functions

(5.4) F1(τ1, τ2) = 〈Γ, X1〉 − l2 = 0, F2(τ1, τ2) = 〈Γ, X2〉 − l1 = 0.

By virtue of (5.2), (5.3), the functions F1 and F2 depend on the system parameters,

namely, on the parameters ofA, B, Γ, and F (σ). On the other hand, in a general case,

system (5.4) cannot be solved with respect to τ1 and τ2. Then (5.4) can be considered

as the equations defining the implicit functions τi(ajk, bk, γk,m1,m2, l1, l2), where

i = 1, 2 and j, k = 1, N .

In the multidimensional space of the parameters of A, B, Γ, and F (σ), we

fix the point G that goes with the values τ∗1 , τ
∗

2 . In some neighborhood of the

point (τ∗1 , τ
∗

2 , G), the functions F1, F2 are continuously differentiable with respect

to τ1, τ2 and all their parameters. Now we construct the determinant

d(τ1, τ2) =

∣∣∣∣∣∣∣

∂F1

∂τ1

∂F1

∂τ2
∂F2

∂τ1

∂F2

∂τ2

∣∣∣∣∣∣∣

and calculate it at the point G. If d(τ1, τ2) 6= 0, then there exist open sets V

and W (G ∈ V , (τ∗1 , τ
∗
2 ) ∈ W ) such that for any point of V there exists a

unique point (τ1, τ2) of W for which (5.4) holds. At the same time the functions

τ1(ajk, bk, γk,m1,m2, l1, l2), τ2(ajk, bk, γk,m1,m2, l1, l2) (j, k = 1, N) are differen-

tiable with respect to their arguments.

Next we find the determinant d(τ1, τ2). From (5.2), (5.3), it follows that

X1 = (U − eAT )−1(eAτ1A−1(eAτ2 − U)Bm1 +A−1(eAτ1 − U)Bm2),

X2 = (U − eAT )−1(eAτ2A−1(eAτ1 − U)Bm2 +A−1(eAτ2 − U)Bm1).

From (5.4), we obtain that

∂F1

∂τ1
= 〈Γ, (X1)′τ1〉,

∂F1

∂τ2
= 〈Γ, (X1)′τ2〉,(5.5)

∂F2

∂τ1
= 〈Γ, (X2)′τ1〉,

∂F2

∂τ2
= 〈Γ, (X2)′τ2〉.
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We calculate these derivatives, considering that the matrices (U − eAt)−1, eAt, A are

commutative and T = T (τ1, τ2) = τ1 + τ2. Then we have

(5.6) (X1)′τ1 = (U − eAT )−2eAT (eAτ1(eAτ2 − U)Bm1 + (eAτ1 − U)Bm2)

+ (U − eAT )−1(eAτ1(eAτ2 − U)Bm1 + eAτ1Bm2),

(X1)′τ2 = (U − eAT )−2eAT (eAτ1(eAτ2 − U)Bm1 + (eAτ1 − U)Bm2)

+ (U − eAT )−1eAτ1eAτ2Bm1,

(X2)′τ1 = (U − eAT )−2eAT (eAτ2(eAτ1 − U)Bm2 + (eAτ2 − U)Bm1)

+ (U − eAT )−1eAτ1eAτ2Bm2,

(X2)′τ2 = (U − eAT )−2eAT (eAτ2(eAτ1 − U)Bm2 + (eAτ2 − U)Bm1)

+ (U − eAT )−1(eAτ2(eAτ1 − U)Bm2 + eAτ2Bm1).

We substitute (5.6) into (5.5). We put Θ1 = (U − eAT )−2eAT , Θ2 = (U − eAT )−1,

Ψ1 = eATBm1 + eAτ1B(m2 −m1), and Ψ2 = eATBm2 + eAτ2B(m1 −m2). Then

d(τ1, τ2) = 〈Γ, (X1)′τ1〉〈Γ, (X
2)′τ2〉 − 〈Γ, (X1)′τ2〉〈Γ, (X

2)′τ1〉

= 〈Γ,Θ1Ψ1〉〈Γ,Θ2Ψ2〉+ 〈Γ,Θ1(−Bm2)〉〈Γ,Θ2Ψ2〉+ 〈Γ,Θ2Ψ1〉〈Γ,Θ2Ψ2〉

− 〈Γ,Θ1Ψ1〉〈Γ,Θ2e
ATBm2〉 − 〈Γ,Θ1(−Bm2)〉〈Γ,Θ2e

ATBm2〉

− 〈Γ,Θ2e
ATBm1〉〈Γ,Θ1Ψ2〉 − 〈Γ,Θ2e

ATBm1〉〈Γ,Θ1(−Bm1)〉

− 〈Γ,Θ2e
ATBm1〉〈Γ,Θ2e

ATBm2〉+ 〈Γ,Θ2Ψ1〉〈Γ,Θ1Ψ2〉

− 〈Γ,Θ2Ψ1〉〈Γ,Θ1Bm1〉.

Whence, it follows that

(5.7)

d(τ1, τ2) = 〈Γ,Θ1(Ψ1 −Bm2)〉〈Γ,Θ2e
Aτ2B(m1 −m2)〉

+ 〈Γ,Θ2e
Aτ1B(m2 −m1)〉〈Γ,Θ1(Ψ2 −Bm1)〉

+ 〈Γ,Θ2Ψ1〉〈Γ,Θ2Ψ2〉 − 〈Γ,Θ2e
ATBm1〉〈Γ,Θ2e

ATBm2〉

= 〈Γ,Θ1(e
ATBm1 + eAτ1B(m2 −m1)−Bm2)〉〈Γ,Θ2e

Aτ2B(m1 −m2)〉

+ 〈Γ,Θ2e
Aτ1B(m2 −m1)〉〈Γ,Θ1(e

ATBm2 + eAτ2B(m1 −m2)−Bm1)〉

+ 〈Γ,Θ2(e
ATBm1 + eAτ1B(m2 −m1))〉〈Γ,Θ2(e

ATBm2 + eAτ2B(m1 −m2))〉

− 〈Γ,Θ2e
ATBm1〉〈Γ,Θ2e

ATBm2〉.

If d(τ1, τ2) 6= 0, then the assumptions of the implicit function theorem are satisfied

for

τi(ajk, bk, γk,m1,m2, l1, l2)

(i = 1, 2, j, k = 1, N). Theorem 5.1 is proved. �
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E x am p l e 5.1. Now we apply Theorem 5.1 to system (5.1) when N = 2. Let

A =

(
−1 0

0 −1

)
, B =

(
−1

−1

)
, and F (σ) =

{
m1 = −1 if σ < l2 = 1,

m2 = 1 if σ > l1 = −1.

In (5.1), we replace the function F (σ) by its values either m1 or m2 in accordance

with the description of this function in Section 2. In the phase space, the switch

surfaces as well as the virtual stability points of the system Ẋ = AX+Bmi (i = 1, 2)

are symmetric with respect to the point X = 0. We have A−1 = A. According to

Theorem 3.1, the feedback vector Γ has to meet the conditions −〈Γ, A−1Bm2〉 < l1,

−〈Γ, A−1Bm1〉 > l2. From here it follows that the vector Γ =

(
γ1

γ2

)
has to satisfy

the condition γ1+γ2 > 1. We put γ1 = γ2 = 1. Since σ = 〈Γ, X〉, we have σ̇ = 〈Γ, Ẋ〉.

Therefore, in virtue of (5.1), we obtain σ̇ = 〈Γ, AX〉+ 〈Γ, B〉mi (i = 1, 2). Now we

have the equation σ̇ = ασ + 〈Γ, B〉mi, where α = −1, and its solution

(5.8) σ(t) = eα(t−t0)

(
σ0 + 〈Γ, B〉

∫ t

t0

e−α(τ−t0)mi dτ

)
,

where σ0 = σ(t0). Let t0 = 0 and σ(0) = l2 = 1, σ(τ1) = l1 = −1. Next we find

the move time τ1 from 〈Γ, X〉 = l2 = 1 to 〈Γ, X〉 = l1 = −1. Substituting the initial

conditions into (5.8), we obtain τ1 = ln 3. If σ(0) = l1 and σ(τ2) = l2, then τ2 = ln 3

due to symmetry of the phase portrait. The period of the solution with two switch

points is T = τ1 + τ2 = 2 ln 3. Since A⊤Γ = αΓ, such solution is unique. Uniqueness

of the solution is true for any vector Γ satisfying the condition γ1 + γ2 > 1. Further,

we have

Θ1 =

(
(eln 3 − e− ln 3)−2 0

0 (eln 3 − e− ln 3)−2

)
, Ψ1 =

(
(e− ln 3 − 2)e− ln 3

(e− ln 3 − 2)e− ln 3

)
,

Θ2 =

(
(1 − e−2 ln 3)−1 0

0 (1 − e−2 ln 3)−1

)
, Ψ2 =

(
2e− ln 3 − e−2 ln 3 − 1

2e− ln 3 − e−2 ln 3 − 1

)
,

and

eAT =

(
e−2 ln 3 0

0 e−2 ln 3

)
.

We substitute the last expressions into (5.7). After some transformations, we obtain

d(τ1, τ2) =
2e−2 ln 3

(e− ln 3 − 1)(e− ln 3 + 1)3
(γ1 + γ2)

2.

Then d(τ1, τ2) = 0 if γ1 + γ2 = 0. Except that, the vector Γ has to meet the condi-

tion γ1 + γ2 > 1. Therefore, for the vector Γ and corresponding move times τ1, τ2,
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we have d(τ1, τ2) 6= 0. The solutions with τ1 and τ2 describe the orbitally asymptot-

ically stable closed trajectories with two switch points. Consequently, there exists

a neighborhood of the point (ajk, bk, γk,m1,m2, l1, l2) in which τ1 and τ2 are con-

tinuously dependent on the system parameters, where j, k = 1, 2. This means the

robust asymptotic stability of unimodal periodic solutions.

6. Conclusion

In applied problems of nonlinear oscillation theory and control theory, much at-

tention is paid to qualitative behaviour of the studied systems. Sufficiently small

changes of the values of the system parameters should not lead to the qualitatively

different splitting of the phase spaces. The results obtained give us a reliable suf-

ficient condition for the boundedness of the solutions to the essentially nonlinear

nonautonomous systems (Theorem 3.1). In case when such systems have periodic

solutions, we have established the sufficient conditions under which the configura-

tions of these solutions are independent of sufficiently small changes of the system

parameters (Theorem 4.1, Theorem 5.1). Moreover, we have written out the formu-

lae allowing applied researchers to limit the choice of the system parameters. In the

supporting example we have shown the way how to apply these results to the real

automatic control system with the nonlinearity as a control and how to adjust the

settings to obtain the oscillations with desired properties.
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