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Abstract. Approximately 150 map projections are known, but the inverse forms have
been published for only two-thirds of them. This paper focuses on finding the inverse
forms of van der Grinten projections I–IV, both by non-linear partial differential equations
and by the straightforward inverse of their projection equations. Taking into account the
particular cases, new derivations of coordinate functions are also presented. Both the direct
and inverse equations have the analytic form, are easy to implement and are applicable to
the coordinate transformations.
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1. Introduction

The wider aspects of the spherical representation of the Earth’s curved surface on

a flat map are studied in mathematical cartography. Currently, many map projec-

tions of different distortion characteristics exist. Since for large-scale, maps confor-

mity is preferred, small-scale maps are usually equal-area (the true area of the map

objects is preserved) or compromise (balanced angular, length and areal distortions).

Approximately 150 map projections are known. However, many of them represent

more cartographic art. In cartographic practice, approximately 100 is used, but

actively less than 30. Inverse forms were published for less than two-thirds of them

(including Grinten projections I and III). In this paper, we will try to improve existing

solutions and find a more straightforward analytical representation.

The van der Grinten projections (I–IV) called globular (evoking a spherical

globe), belong to the important map projections widely used in cartography.

Providing a conventional image of the Earth, in which the hemisphere or plani-

sphere is depicted as a circle and the meridian or parallel images are circular

arcs, they are mainly used in atlases or on wall maps. Grinten projections are
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popular especially in American cartography [10], they are frequently used for

political maps; see Figure 1. While they are designed to allow an easy con-

struction of meridians and parallels by ruler and compass, finding the analytic

form of the projection equations is relatively complicated. The inverse forms

have been published for projections I and III, otherwise, only the numerical so-

lution exists (Newton-Raphson method). Unfortunately, the iterative methods

do not provide good results around singular points, where a convergence may

be lost.

Knowledge of the inverse form of projections is crucial in many applications, espe-

cially when reprojecting a map into different projections, processing heterogeneous

data in GIS or cartometric analyses of early maps [1], [2], [4]. The numerical ap-

proach to inverse brought several unwanted and disturbing artifacts or missing pixels,

especially around the singular points of digitized maps. Block-based non-linear trans-

formations with raster partitioning represent a slight improvement, but they bring

problems with C1 continuity along the boundaries of the blocks.

Therefore, finding the inverse in the analytic form represents a problem which can

be utilized in many cartographic applications.

Initially, this paper provides a unified approach of derivation based on the in-

tersection of the meridian and parallel arcs, leading to a system of quadratic and,

eventually, cubic, equations. Subsequently, two approaches for finding the inverse

forms are compared: a) the straightforward inverse of the projection equations, b) an-

alytic solution of the partial differential equations. However, for the Grinten I and IV

projections, the analytic form for the ϕ coordinate cannot be found; only a numerical

solution of the partial differential equations is available.

2. State of art

The globular-like projection, later called van der Grinten I, was invented by the

American cartographer Alphons Johann van der Grinten in 1898 [16]. As well as the

second, this apple-shaped projection, showing the Earth as the union of two circular

segments, later called van der Grinten IV, was published in two papers [17], [18].

The alternative approach to the derivation of projection IV can be found in [12], its

equations in [19]. Two different modifications of the original projection have been

described in [20]. The first version, where the meridians and parallels intersect each

other at right angles, was later denoted in Roman numerals as II and the variant

with straight parallels as III. Altogether, they belong to the family of van der Grinten

projections. While their geometric properties, allowing direct construction by ruler

and compass, have been described in the above-mentioned papers, the projection

equations were derived later; see [16], [7].
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Figure 1. Reprint of the world map in the van der Grinten I. projection [9].

An analysis of the cartographic properties of projection III as well as the derivation

of projection equations and attempts to find its inverse form can be found in [5]. More

effort is concentrated on projection I. The analytic form of the projection I equations

using the trigonometric functions was presented in [11], some corrections are in [14].

These equations were published in [15], [7] and implemented in the well-known open-

source library Proj [6], which is the standard tool for coordinate transformations in

geoinformatics. A modified derivation of projection I, leading to the cubic equations

as well as its inverse form, can be found in [13].

Unlike Grinten projections I and III, the inverse forms for the remaining projec-

tions have not been published yet. For projections I and III, we will try to improve

the existing solution and find a more suitable analytic form.

3. Map projection and its properties

Let the sphere S2 ⊂ R
3 with radius R be centered at the origin of the Cartesian

coordinate system, let the local coordinate system {ϕ, λ}-spherical latitude and lon-
gitude be the reference surface, and let the plane σ with Cartesian coordinate system

{x, y} be the projected surface.
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Definition 3.1. The projection of the set M = 〈−π/2, π/2〉 × 〈−π, π〉 into R
2,

given by the equations x = f(ϕ, λ), y = g(ϕ, λ), where f and g are real continuous

functions defined on M , is called the map projection P of the sphere S2 into the

plane σ.

Definition 3.2. The projection P : S2 → σ is called to be continuous at the

point Q = [ϕ, λ] if the coordinate functions f, g are continuous at Q.

Definition 3.3. The projection P : S2 → σ is injective on the set M if for any

different points Q1, Q2 ∈ S2 we have P(Q1) 6= P(Q2).

Theorem 3.4 (see [8]). If the projection P on the boundary of Q is non-singular,

then the inverse projection P
−1 is non-singular on the boundary of P(Q) and the

Jacobian determinants D, D′ of both projections are reciprocal.

R em a r k 3.5. The projection P will still be non-singular if, instead of the closed

interval M , an open interval M = (−π/2, π/2) × (−π, π) will be considered. From

the sphere S2, the North Pole A = [π/2, 0] and South Pole B = [−π/2, 0] will be

removed, since they are singular due to parameterization {ϕ, λ}.

The regular projection P between local coordinate systems [ϕ, λ] ∈ (−π/2, π/2)×
(−π, π) of the sphere S2 and [x, y] ∈ R

2 of the plane is given by

(3.1) x = f(ϕ, λ), y = g(ϕ, λ).

In accordance with Theorem 3.4, the inverse projection P
−1 exists such that

(3.2) ϕ = f−1(x, y), λ = g−1(x, y).

The differentials of the coordinate functions are

(3.3) P :

[

dx

dy

]

=







∂x

∂ϕ

∂x

∂λ
∂y

∂ϕ

∂y

∂λ







[

dϕ

dλ

]

, P
−1 :

[

dϕ

dλ

]

=







∂ϕ

∂x

∂ϕ

∂y
∂λ

∂x

∂λ

∂y







[

dx

dy

]

.

From (3.3) the vector of the differentials of the spherical coordinates can be found

using the inverse matrix

[

dϕ

dλ

]

=
1

D







∂y

∂λ
−∂x

∂λ

− ∂y

∂ϕ

∂x

∂ϕ







[

dx

dy

]

,
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and, after comparison with P
−1, we get

∂y

∂λ
= D

∂ϕ

∂x
,

∂x

∂λ
= −D

∂ϕ

∂y
,

∂y

∂ϕ
= −D

∂λ

∂x
,

∂x

∂ϕ
= D

∂λ

∂y
,

the Jacobian determinants are

(3.4) D =
∂x

∂ϕ

∂y

∂λ
− ∂x

∂λ

∂y

∂ϕ
, D′ =

1

D
=

∂ϕ

∂x

∂λ

∂y
− ∂ϕ

∂y

∂λ

∂x
.

Matrix P rows are the tangent vectors of curves in the plane with squares

(∂ϕ

∂x

)2

+
(∂ϕ

∂y

)2

=
1

D2

[(∂x

∂λ

)2

+
(∂y

∂λ

)2]

=
G

D2
,(3.5)

(∂λ

∂x

)2

+
(∂λ

∂y

)2

=
1

D2

[( ∂x

∂ϕ

)2

+
( ∂y

∂ϕ

)2]

=
E

D2
,(3.6)

their dot product is

(3.7)
∂ϕ

∂x

∂λ

∂x
+

∂ϕ

∂y

∂λ

∂y
= − 1

D2

( ∂x

∂ϕ

∂x

∂λ
+

∂y

∂ϕ

∂y

∂λ

)

= − F

D2
.

Definition 3.6. The quadratic differential form

(3.8) (ds′)2 = E dϕ2 + 2F dϕdλ+Gdλ2

is called the first fundamental form of the plane σ, where the factors E,F,G are the

right-hand sides of (3.5)–(3.7).

Definition 3.7. The quadratic differential form

(3.9) ds2 = dϕ2 + cos2 ϕdλ2

is called the first fundamental form of the unit sphere S2, parametrized with

X(ϕ, λ) = [cosϕ cosλ, cosϕ sinλ, sinϕ].

ds

P

S

Q

T

ω

S2 :

α

α

ϕ

λ

λ+ dλ

ϕ+ dϕ

dsp =cosϕ dλ

dsm = dϕ

ds′

P ′

S′

Q′

T ′

α′

α′

ω′

0 x

y

dx

dy

ds′
m

ds′
p

σ :

Figure 2. Spherical quadrangle PTQS and its image P ′T ′Q′S′ in P.
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Let P [ϕ, λ] and Q[ϕ+ dϕ, λ+ dλ] be two infinitesimally close points on the great

circle of the sphere S2, P ′[x, y] and Q′[x+ dx, y+ dy] their images in σ : P(P ) = P ′,

P(Q) = Q′, see Figure 2. The meridians m(ϕ), m(ϕ + dϕ) and parallels p(λ),

p(λ + dλ) form the infinitesimal spherical quadrangle PTQS. The lengths dsm of

the meridian arc between points P, S, and dsp of the parallel arc between points

S, Q are

dsm = dϕ, dsp = cosϕdλ.

The great circle passing through the points P , Q intersects the meridian m(ϕ) at

angle α representing the azimuth, where

sinα =
dsp
ds

, cosα =
dsm
ds

,

ds is the arc of PQ. Then

(3.10) dϕ = cosα ds, dλ =
sinα

cosϕ
ds.

Definition 3.8. The ratio

µ =
ds′

ds

of an infinitesimal element ds′ in the plane σ to that of the corresponding infinitesimal

element ds on the sphere S2 is called a local linear scale at P ′.

Substituting for ds′, dϕ, dλ from (3.8) and (3.10), we get

µ2 =
(ds′

ds

)2

= E cos2 α+
G

cos2 ϕ
sin2 α+

F

cosϕ
sin 2α.

It is obvious that the local linear scale µ depends both on the position (ϕ, λ) of P

and the azimuth α of PQ.

R em a r k 3.9. For the azimuth α = 0,

(3.11) h2 = µ2 = E

is the local linear scale µ2 along a meridian. For the azimuth α = π/2,

(3.12) k2 = µ2 =
G

cos2 ϕ

is the local linear scale µ2 along a parallel.
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Substituting for dx, dy from (3.3), the direction γ of the line tangent to the curve

P ′Q′ at P ′ is

tan γ =
dy

dx
=

∂y
∂ϕ

dϕ+ ∂y
∂λ

dλ
∂x
∂ϕ

dϕ+ ∂x
∂λ

dλ
=

∂y
∂ϕ

cosϕ cosα+ ∂y
∂λ

sinα
∂x
∂ϕ

cosϕ cosα+ ∂x
∂λ

sinα
.

R em a r k 3.10. The direction γm = γ (α = 0) of a meridian and γp = γ

(α = π/2) of a parallel at P ′ are

tan γm =
∂y

∂ϕ

/∂x

∂ϕ
, tan γp =

∂y

∂λ

/∂x

∂λ
.

Angle ω′ between the projected meridian m(ϕ) and parallel p(λ) at P ′ is their

difference

ω′ = γm − γp,

where

tanω′ = tan(γm − γp) =
tan γm − tan γm
1 + tan γm tan γp

=
H

F

and

H =
√

EG− F 2 =
∂x

∂λ

∂y

∂ϕ
− ∂x

∂ϕ

∂y

∂λ
= −D.

R em a r k 3.11. Since both the meridians and parallels form the regular parame-

trization of the sphere, the angle between m(ϕ) and parallel p(λ) at P is ω = π/2.

Definition 3.12. The projection P is called orthogonal if the angle between the

projected meridian m(ϕ) and parallel p(λ) at P ′ is ω′ = π/2, and

(3.13) F =
∂x

∂ϕ

∂x

∂λ
+

∂y

∂ϕ

∂y

∂λ
= 0.

The area dΣ of the corresponding infinitesimal triangle PSQ on the sphere S2 and

dΣ′ of its image P ′S′Q′ in the plane σ are

dΣ =
1

2
dsm dsp sinω, dΣ′ =

1

2
ds′m ds′p sinω

′,

where

sinω′ =
tanω′

√
1 + tan2 ω′

=
H√

F 2 +H2
=

H√
EG

.

Definition 3.13. The ratio of areas

(3.14) ℘ =
dΣ′

dΣ
= hk sinω′ =

H

cosϕ

of the infinitesimal triangle P ′S′Q′ in the plane σ to that of the corresponding

infinitesimal triangle PSQ on the sphere S2 is called a local area scale at P ′.
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3.1. Partial differential equations of the inverse transformation. A sub-

stitution for h, k, ℘ into (3.5)–(3.6) leads to the following differential equations.

Definition 3.14. The partial differential equations

(∂λ

∂x

)2

+
(∂λ

∂y

)2

=
h2

℘2 cos2 ϕ
,(3.15)

(∂ϕ

∂x

)2

+
(∂ϕ

∂y

)2

=
k2

℘2
(3.16)

are the equations of the projection P
−1 inverse to P, where h, k are the local linear

scales (3.11)–(3.12), and ℘ is the local area scale (3.14) at P ′.

R em a r k 3.15. For most Grinten projections, the partial differential equations

(3.15)–(3.16) have the general form of

(3.17)
(∂w

∂x

)2

+
(∂w

∂y

)2

= h(x, y)g(w),

the right-hand side is the function of x, y, w. Then (3.17) is the non-linear partial

differential equation of the first order

(3.18) f(x, y, w, p, q) = 0

with the solution w(x, y), where p = ∂w/∂x, q = ∂w/∂y.

Definition 3.16. The partial differential equation (3.18), which is equivalent to

the system of ordinary differential equations

(3.19)
dp

∂f
∂x

+ p∂f
∂z

=
dq

∂f
∂y

+ q ∂f
∂z

=
dz

−p∂f
∂p

− q ∂f
∂q

=
dx

−∂f
∂p

=
dy

−∂f
∂q

,

has the solution (x(t), y(t), z(t), p(t), q(t)) satisfying the condition f(x(t), y(t), z(t),

p(t), q(t)) = 0, which is called a Monge strip.

R em a r k 3.17. A set of ordinary differential equations (3.19) is called Lagrange-

Charpit equations of (3.18).

Definition 3.18. Let f(x(t), y(t), z(t), p(t), q(t)) be the Monge strip satisfy-

ing (3.19). The curve in (x, y)-plane given by (x(t), y(t)) is called a characteristic

curve of (3.18).

R em a r k 3.19. For most map projections except simple cases (including ele-

mentary projections), where x = f(λ), y = g(ϕ), finding a closed-form solution for

the problem is difficult.
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Using the substitution

(3.20) dz =
dw

√

h(x, y)
, z =

∫

1
√

h(x, y)
dw,

(3.17) is transformed to a simpler form

(∂z

∂x

)2

+
(∂z

∂y

)2

= h(x, y),

which represents the non-linear partial differential equation of the first order

(3.21) f(x, y, z, P,Q) = 0, P =
∂z

∂x
, Q =

∂z

∂y
.

The closed-form solution can be found only for some specific types of the right-hand

side h(x, y). For the Grinten III projection, (3.21) has a simple form of

P 2 +Q2 − h(x) = 0,

see Section 4.1.1. For some kinds of map projections, their inverse forms are more

straightforward.

R em a r k 3.20. In orthogonal projections, where ω′ = π/2 and ℘ = hk, the

partial differential equations (3.15)–(3.16) simplify to

(∂λ

∂x

)2

+
(∂λ

∂y

)2

=
1

k2 cos2 ϕ
=

1

( ∂x
∂λ

)2 + ( ∂y
∂λ

)2
,(3.22)

(∂ϕ

∂x

)2

+
(∂ϕ

∂y

)2

=
1

h2
=

1

( ∂x
∂ϕ

)2 + ( ∂y
∂ϕ

)2
.(3.23)

R em a r k 3.21. Since y = g(ϕ), parallels are represented by equally spaced

straight lines, and (3.16) transforms into

(3.24) dϕ =
k

℘
dy.

Since x = f(λ), meridians are represented by straight lines, and (3.15) transforms

into

(3.25) dλ =
h

℘ cosϕ
dx.

For the Grinten III. projection, the solution of (3.24) leads to the exact differential

equation, see Section 4.1.1.
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4. Inverse forms of van der Grinten projections

Like other globular projections, van der Grinten projections can easily be con-

structed by ruler and compass. While the meridians are formed by circular arcs

equally spaced along the equator and concave toward the central meridian, the par-

allels are circular arcs concave to the nearest pole or straight lines. The planisphere

is represented by a circle (I–III) or by the union of two circular segments (IV); see

Figure 3. Van der Grinten projections are neither conformal, nor equal-area, nor

equidistant.

(a)

(c)

(b)

(d)

Figure 3. Graticules of van der Grinten projections: (a) projection I, (b) projection II,
(c) projection III, (d) projection IV.

Two approaches for finding the inverse forms are presented. Since the straight-

forward inverse leads to the system of quadratic or cubic equations, the partial

differential equations of the inverse transformation need to be transformed to the

set of ordinary differential equations. However, this method has some limitations if

the right-hand side has an overcomplicated form; this is typical for Grinten I and IV

projections when the analytic solution cannot be found.
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4.1. Van der Grinten projection III. The sphere projects into a unit circle,

the meridians are circular arcs equally spaced along the Equator, the parallels are

straight lines. The projection preserves true scales along the Equator, but the areal

distortion increases rapidly towards the boundaries.

Let us place the center of the unit circle at the origin O of the Cartesian coordinate

system. The projected Equator CD is aligned with the x-axis, the projected central

meridian AB with the y-axis, where A,B are the images of the North and South

Poles, see Figure 4.

Cm = [n, 0]C D0

A

B

N

P

F E G

J LK

km

Figure 4. Van der Grinten projection III, a geometric construction of meridians and parallels.

For the parallel of latitude ϕ construction, the line AO is divided by equally spaced

points E[0, t], where t : 1 = ϕ : π/2, t ∈ (0, 1〉. Point E defines the auxiliary line
FG, F [−

√
1− t2, t], parallel to CD. The point F is projected from D to AO as the

point J [0, y]. From two similar triangles ODJ , EFJ we have

|FE|
t− y

=
1

y
,

the y coordinate satisfies

(4.1) y =
1−

√
1− t2

t
.

The line KL parallel to CD, passing through the point J , represents the required

parallel image. The meridian arc passing through the point N [s, 0] has the center at

the point of intersection Cm[n, 0] of the bisector AN and the x-axis. Since s ∈ (0, 1〉,
we have λ : π = s : 1, the arc center is

(4.2) n =
s2 − 1

2s
=

λ2 − π
2

2πλ
,
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its radius rm is

rm =
√

1 + n2 = s+ n =
1 + s2

2s
.

The point of intersection of the meridian and parallel arcs can be found by solving

the system of equations

(x − n)2 + y2 = 1 + n2, y =
1−

√
1− t2

t
.

The results are summarized in Theorem 4.1.

Theorem 4.1. The Projection III is given by the equations

(4.3) x = n±
√

1− y2 + n2, y =
1−

√
1− t2

t
,

where n is the coordinate of the center of the meridian arc and t = 2ϕ/π is the

parameter.

R em a r k 4.2. Substituting for y and n into (4.1) leads to the quadratic equation

for the coordinate x

ax2 + bx+ c = 0

with the factors

a = st2, b = t2(1− s2), c = 2s(1− t2 −
√

1− t2),

where s = λ/π is the parameter.

R em a r k 4.3. The particular cases are solved as follows:

If λ = 0, then x = 0 and the y coordinate holds (4.1).

If ϕ = 0, then x = λ/π and y = 0.

If ϕ = ±π/2, then x = 0 and y = ±1.

4.1.1. Inverse form using partial differential equations. Initially, the in-

verse form of the Grinten III projection will be found by solving (3.15)–(3.24). For

the x-coordinate, which is a function of ϕ, λ, the solution will be more difficult.

Recall that the coordinate function for y depends only on ϕ:

(4.4) y(ϕ) =
1−

√

1− t2(ϕ)

t(ϕ)
,
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where t(ϕ) = 2ϕ/π. The local linear scale along a parallel is

k =
1

cosϕ

∂x

∂n

∂n

∂λ
,

the local area scale is

(4.5) ℘ =
1

cosϕ

∂x

∂n

∂n

∂λ

∂y

∂t

∂t

∂ϕ
,

their fraction is
k

P
=

1
∂y
∂t

∂t
∂ϕ

=
π

2∂y
∂t

.

Rewriting (4.4) as an implicit function

t2 − 2yt+ y2t2 = 0,

after the differentiation we have

∂y

∂t
=

1

1− yt
− y

t
= π

2ϕ(1 + y2)− πy

2ϕ(π − 2ϕy)
.

Because ∂ϕ/∂x = 0, (3.24) transforms to

∂ϕ

∂y
=

π

2∂y
∂t

,

which is the exact differential equation

(2ϕ(1 + y2)− πy) dϕ+ ϕ(2ϕy − π) dy = 0,

since
∂

∂y
(2ϕ(1 + y2)− πy) =

∂

∂ϕ
(ϕ(2ϕy − π)).

The general solution is

ϕ(2ϕ(1 + y2)− πy) + ϕy(2ϕy − π) = c,

where c ∈ R is an arbitrary constant of integration. For c = 0, the inverse equation

of the Grinten III projection has the form of

(4.6) ϕ =
πy

1 + 2y2
.
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Recall that the coordinate function for x depends both on ϕ, λ:

x(ϕ, λ) = n(λ)±
√

1− y2(ϕ) + n2(λ), n(λ) =
s2(λ) − 1

2s(λ)
,

where s(λ) = λ/π. The local linear scale along a meridian is

(4.7) h =
∂t

∂ϕ

√

(∂x

∂t

)2

+
(∂y

∂t

)2

.

Using the substitution c =
√

1− y2 + n2, the partial derivatives have the form of

∂n

∂λ
=

π
2 + λ2

2πλ2
,
∂x

∂n
=

c± n

c
,
∂x

∂t
=

∂x

∂y

∂y

∂t
= ±y

c

∂y

∂t
,
∂x

∂λ
=

∂x

∂n

∂n

∂λ
=

c± n

c

π
2 + λ2

2πλ2
.

After back substitution into (4.7)

h =
2
√

c2 + y2

cπ

∂y

∂t
, ℘ =

2

π

(c± n)

c cosϕ

∂n

∂λ

∂y

∂t
,

the fraction transforms into

h

℘ cosϕ
=

√
1 + n2

(c± n)∂n
∂λ

.

Then the partial differential equation (3.15) has the form of

(4.8)
(∂λ

∂x

)2

+
(∂λ

∂y

)2

=
1 + n2

(c± n)2(∂n
∂λ

)2
.

Taking into account that

(c± n)2 = x2, 1 + n2 =
(λ2 + π

2)2

4π
2λ2

,

(4.8) simplifies into

(4.9)
(∂λ

∂x

)2

+
(∂λ

∂y

)2

=
λ2

x2
.

Considering (3.20), after substitution

dz =
dλ

λ
, z = lnλ, λ = ez,

equation (4.9) transforms into

(∂z

∂x

)2

+
(∂z

∂y

)2

=
1

x2
,
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which is the non-linear partial differential equation of the first order. Using the

Lagrange-Charpit method, it can be rewritten to

(4.10) x2P 2 + x2Q2 − 1 = 0, P =
∂z

∂x
, Q =

∂z

∂y
.

Then the auxiliary Lagrange-Charpit equations, transforming the partial differential

equation into a set of ordinary differential equations, are

dP

−x(P 2 +Q2)
=

dQ

0
=

dz

x2(P 2 +Q2)
=

dx

Px2
=

dy

Qx2
.

The second member has to be understood as the asymptotic notation. Since dQ = 0,

we get Q = a, where a ∈ R is the arbitrary constant of integration. Putting it

into (4.10), we get

x2P 2 + x2a2 = 1 ⇒ P 2 =
1− a2x2

x2
.

Since we know that

dz =
∂z

∂x
dx+

∂z

∂y
dz = P dx+Q dy,

integrating on both sides, we get

dz =

√
1− a2x2

x
dx+ a dy,

where

(4.11) z =

∫

√
1− a2x2

x
dx+ ay + b,

b ∈ R is the arbitrary constant of integration. Using the substitution t2 = 1− a2x2,

the integral can be rewritten to the form of

∫

√
1− a2x2

x
dx =

∫

t2

t2 − 1
dt = t+

1

2
ln

t− 1

t+ 1
=

√

1− a2x2 + ln
1−

√
1− a2x2

ax
.

After back substitution into (4.11)

z =
√

1− a2x2 + ln
1−

√
1− a2x2

ax
+ ay + b = lnλ,

the general solution of the partial differential equation is

(4.12) λ = eay+b+
√
1−a2x2 1−

√
1− a2x2

ax
.
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The arbitrary constants of integration a, b are chosen so that the curve (4.12) passes

through the unit circle x2 + y2 = 1 and z = 0. Since

y +
√

1− x2 = 0,

we choose a = 1, b = 0, and after comparison with (4.12), the associated particular

solution is

(4.13) λ =
1−

√
1− x2

x
=

1 + y

x
.

4.1.2. Straightforward inverse of projection equations. Due to the simple

form of the projection equations, the straightforward inverse is efficient.

Theorem 4.4. The inverse formulas of van der Grinten projection III have the

form of

(4.14) ϕ =
π

2
t, λ = πs,

where s is the solution of a system of quadratic equations

(4.15) 1 + 2sn− s2 = 0, x2 + y2 − 2nx = 1.

It leads to the quadratic equation for s

(4.16) xs2 + (1− x2 − y2)s− x = 0,

where longitude λ takes the sign of x. Subsequently, the parameter t is determined

from (4.1)

(4.17) t =
2y

1 + y2
.

R em a r k 4.5. The particular cases are solved as follows:

If x = 0, then ϕ = π/2t and λ = 0.

If y = 0, then ϕ = 0 and the quadratic equation transforms to

xs2 + (1 − x2)s− x = 0

with the solution of

s =
x2 − 1± (x2 + 1)

2x
.

Because s ∈ (0, 1〉, then λ = πx.
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4.2. Van der Grinten projection II. For the derivation of projection II, the

above-mentioned facts regarding projection III will be used. While the world is

enclosed in a unit circle, the parallels are circular arcs unequally spaced along the

central meridian. All meridians intersect parallels at right angles, but the projection

is not conformal. For the construction, see Figure 5.

Cm = [n, 0]C D0

A

B

N

P

F
E

G

J
M

Cp = [0,m]

km

kp

Figure 5. Van der Grinten projection II, a geometric construction of meridians and parallels.

Analogously, the line AO is divided by equally spaced points E[0, t], t ∈ (0, 1〉.
The auxiliary line FG, F [−

√
1− t2, t], parallel to CD, passes through the point E.

The point F is projected from D to AO as the point J [0, y]. Likewise, the meridian

arc is defined by the three points F, J,G, where J lies on the Equator.

The radius of the parallel arc is determined from the right triangle CpFO using

the geometric mean theorem |FE|2 = |CpE| · t, which leads to

|CpE| = 1− t2

t
.

The parallel center is

(4.18) m = |CpE|+ t =
1

t
,

its radius is determined from the right triangle CpGO or CpFE, as

r2p = m2 − 1 =
1− t2

t2
.
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The meridian arc is constructed analogously to projection III. The point of intersec-

tion of the meridian and parallel arcs can be found by solving the system of quadratic

equations

(x− n)2 + y2 = 1 + n2,(4.19)

x2 + (y −m)2 = m2 − 1.(4.20)

Subtracting one from the other leads to the linear equation

(4.21) nx−my + 1 = 0.

Substituting for y into (4.19) leads to the quadratic equation for x

(4.22) (m2 + n2)x2 + 2xn(1−m2) + 1−m2 = 0.

Its factors a, b, c are functions of s, t:

a = s2 +
1

s2
+

4

t2
− 2, b =

4(s2 − 1)(t2 − 1)

st2
, c = 4

(

1− 1

t2

)

.

Substituting for x into (4.20) leads to the quadratic equation for y

(4.23) (m2 + n2)y2 − 2ym(1 + n2) + 1 + n2 = 0,

the factors a, b, c can be expressed as

a = s2 +
1

s2
+

4

t2
− 2, b = −2(s2 + 1)2

s2t
, c =

(s2 + 1)2

s2
.

Let us summarize the results into a theorem.

Theorem 4.6. The image of the point P [ϕ, λ] in van der Grinten projection II is

given by (4.19)–(4.20), where from (4.18) it is m = 1/t and n = (s2 − 1)/(2s).

R em a r k 4.7. Alternatively, instead of solving (4.23), from (4.19), the y coor-

dinate holds

y =
√

1− x2 + 2xn.

R em a r k 4.8. Particular situations when ϕ = 0 or λ = 0 are solved analogously

to projection III.
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4.2.1. Inverse form using partial differential equations. The projection

equations can be rewritten to the form of

x2 − 2xn+ y2 − 1 = 0,(4.24)

x2 + y2 − 2ym+ 1 = 0.(4.25)

Initially, it needs to be verified whether the projection is orthogonal. Since the

projection equations are composite functions of m,n, s, t, we have

∂x

∂ϕ
=

∂x

∂m

∂m

∂t

∂t

∂ϕ
,

∂y

∂ϕ
=

∂y

∂m

∂m

∂t

∂t

∂ϕ
,

∂x

∂λ
=

∂x

∂n

∂n

∂s

∂s

∂λ
,

∂y

∂λ
=

∂y

∂n

∂n

∂s

∂s

∂λ
.

The orthogonality condition (3.13) transforms into

∂x

∂ϕ

∂x

∂λ
+

∂y

∂ϕ

∂y

∂λ
=

∂m

∂t

∂t

∂ϕ

∂n

∂s

∂s

∂λ

( ∂x

∂m

∂x

∂n
+

∂y

∂m

∂y

∂n

)

= 0.

Hence, the projection is orthogonal if

(4.26)
∂x

∂m

∂x

∂n
+

∂y

∂m

∂y

∂n
= 0.

Partial derivatives of m,n with respect to ϕ, λ are:

∂m

∂t
= − 1

t2
= − π

2

4ϕ2
,

∂t

∂ϕ
=

2

π

,
∂m

∂ϕ
=

∂m

∂t

∂t

∂ϕ
= − π

2ϕ2
,

and
∂n

∂s
=

s2 + 1

2s2
=

π
2 + λ2

2λ2
,

∂s

∂λ
=

1

π

,
∂n

∂λ
=

∂n

∂s

∂s

∂λ
=

π
2 + λ2

2πλ2
,

partial derivatives of (4.21) with respect to m,n are:

dx

dm
=

y

n
,

dx

dn
= −x

n
,

dy

dm
= − y

m
,

dy

dn
=

x

m
,

dy

dx
=

n

m
,

dx

dy
=

m

n
.

For the projection equations (4.24)–(4.25), the implicit differentiation with respect

to x, y,m, n is used. The partial derivatives with respect to m are

2xdx− 2n dx+ 2y
dy

dx
dx+ 2y

dy

dm
dm = 0 ⇒ dx

dm
=

y2

xm− nm+ yn
,

2x
dx

dy
dy − 2m dy + 2y dy + 2x

dx

dm
dm− 2y dm = 0 ⇒ dy

dm
=

yn− xy

xm− nm+ yn
.
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Analogously, the partial derivatives with respect to n are

2xdx− 2n dx+ 2y
dy

dx
dx− 2xdn+ 2y

dy

dn
dn = 0 ⇒ dx

dn
=

xm− yx

xm− nm+ yn
,

2x
dx

dy
dy − 2m dy + 2y dy + 2x

dx

dn
dn = 0 ⇒ dy

dn
=

x2

xm− nm+ yn
.

Proceed with verification of the projection orthogonality. After substituting into

partial derivatives they become

∂x

∂m

∂x

∂n
=

y2x(m− y)

(xm− nm+ yn)2
,

∂y

∂m

∂y

∂n
=

x2y(n− x)

(xm− nm+ yn)2
.

Then, using condition (4.26), substituting from (4.21), and with respect to (4.25),

we have

∂x

∂m

∂x

∂n
+

∂y

∂m

∂y

∂n
=

yx(ym− y2 + xn− x2)

(xm− nm+ yn)2
= −yx(x2 − 2my + y2 + 1)

(xm− nm+ yn)2
= 0.

Since the projection is orthogonal, the area scale holds ℘ = hk, and the partial

differential equations transform into (3.22)

(∂λ

∂x

)2

+
(∂λ

∂y

)2

=
1

( ∂x
∂λ

)2 + ( ∂y
∂λ

)2
,

(∂ϕ

∂x

)2

+
(∂ϕ

∂y

)2

=
1

( ∂x
∂ϕ

)2 + ( ∂y
∂ϕ

)2
.

The squares of the first derivatives are

(∂x

∂λ

)2

+
(∂y

∂λ

)2

=
(∂n

∂s

∂s

∂λ

)2[(∂x

∂n

)2

+
( ∂y

∂n

)2]

,

( ∂x

∂ϕ

)2

+
( ∂y

∂ϕ

)2

=
(∂m

∂t

∂t

∂ϕ

)2[( ∂x

∂m

)2

+
( ∂y

∂m

)2]

,

where

( ∂x

∂m

)2

+
( ∂y

∂m

)2

=
y4 + y2(n− x)2

(xm− nm+ yn)2
,(4.27)

(∂x

∂n

)2

+
( ∂y

∂n

)2

=
x2(m− y)2 + x4

(xm− nm+ yn)2
.(4.28)

With the use of (4.24)–(4.25), the numerators of both fractions can be rewritten to

the form of

y4 + y2(n− x)2 = y2(1 + n2), x2(m− y)2 + x4 = x2(m2 − 1),
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as well as with (4.24)–(4.25) and (4.21), the denominator is

(xm− nm+ yn)2 = m2 − n2 +m2n2 − (my − nx)2 = (1 + n2)(m2 − 1).

After back substitution into (4.27)–(4.28), the squares of the first derivatives simplify

to
( ∂x

∂m

)2

+
( ∂y

∂m

)2

=
y2

m2 − 1
,

(∂x

∂n

)2

+
( ∂y

∂n

)2

=
x2

n2 + 1
,

and their reciprocals become

1

( ∂x
∂m

)2 + ( ∂y
∂m

)2
=

m2 − 1

y2
,

1

( ∂x
∂n

)2 + ( ∂y
∂n

)2
=

n2 + 1

x2
.

The right-hand side of (3.23) is

1

( ∂x
∂ϕ

)2 + ( ∂y
∂ϕ

)2
=

4ϕ4

π
2

m2 − 1

y2
=

ϕ2(π2 − 4ϕ2)

π
2y2

,

the right-hand side of (3.22) is

1

( ∂x
∂λ

)2 + ( ∂y
∂λ

)2
=

4π
2λ4

(π2 + λ2)2
n2 + 1

x2
=

4π
2λ4

(π2 + λ2)2
(λ2 − π

2)2 + 4π
2λ2

4π
2λ2x2

=
λ2

x2
.

Then the partial differential equations of the inverse transformation have the form

of

(∂ϕ

∂x

)2

+
(∂ϕ

∂y

)2

=
ϕ2(π2 − 4ϕ2)

π
2y2

,(4.29)

(∂λ

∂x

)2

+
(∂λ

∂y

)2

=
λ2

x2
.

Since the second equation is analogous to Grinten III, our effort concentrates on the

first one. Using the substitution

dz =
π

ϕ
√

(π2 − 4ϕ2)
dϕ,

we have

(4.30) z = π

∫

1

ϕ
√

(π2 − 4ϕ2)
dϕ.

The next substitution

u =
√

π
2 − 4ϕ2, du = − 4ϕ

√

π
2 − 4ϕ2

dϕ,
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transforms the integral into the form of

∫

1

ϕ
√

(π2 − 4ϕ2)
dϕ = −

∫

1

π
2 − u2

du

=
1

π

(

ln |π − u| − 1

2
ln |π2 − u2|

)

=
1

π

ln
|π −

√

π
2 − 4ϕ2|

|2ϕ| .

Putting it into (4.30) leads to

z = ln
|π −

√

π
2 − 4ϕ2|

|2ϕ| ,

and the partial differential equation (4.29) simplifies to

(∂ϕ

∂x

)2

+
(∂ϕ

∂y

)2

=
1

y2
.

Using the Lagrange-Charpit method, it can be rewritten to

(4.31) y2P 2 + y2Q2 − 1 = 0, P =
∂z

∂x
, Q =

∂z

∂y
.

Then the auxiliary Lagrange-Charpit equations are

dP

0
=

dQ

−y(P 2 +Q2)
=

dz

y2(P 2 +Q2)
=

dx

Py2
=

dy

Qy2
.

Their solution is analogous to Grinten III. From the first member, we get P = a.

Putting it into (4.31), we get Q2 = (1− a2y2)/y2, z is the solution of

(4.32) z = ax+ b+

∫

√

1− a2y2

y
dy,

where
∫

√

1− a2y2

y
dy =

√

1− a2y2 + ln
1−

√

1− a2y2

ay
,

a, b ∈ R are the arbitrary constants of integration. Putting it into (4.32), we get

(4.33) z = ax+ b+
√

1− a2y2 + ln
1−

√

1− a2y2

ay
= π ln

|π −
√

π
2 − 4ϕ2|

|2ϕ| .

Using the substitution

(4.34) K = eax+b+
√

1−a2y2 1−
√

1− a2y2

ay
,
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equation (4.33) transforms into the quadratic equation

|2ϕ|K = |π −
√

π
2 − 4ϕ2|, ϕ(ϕ+ ϕK2 − πK) = 0.

For ϕ 6= 0 the general solution of the partial differential equation is

(4.35) ϕ =
πK

1 +K2
.

The arbitrary constants of integration a, b are chosen analogously to the Grinten III

projection, when the curve (4.34) passes through the unit circle. Since

x+
√

1− y2 = 0,

we choose a = 1, b = 0, and after comparison with (4.34), the associated particular

solution is

(4.36) K =
1−

√

1− y2

y
=

1 + x

y
.

4.2.2. Straightforward inverse of projection equations. The inverse formu-

las are analogous to projection III, see (4.14). Using (4.18), t is determined from the

linear equation

t =
1

m
=

2y

1 + x2 + y2
.

Analogously, s can be obtained using (4.15).

R em a r k 4.9. Alternatively, n is determined from (4.22)–(4.23) as

n =
x2 + y2 − 1

2x
.

Substitution into (4.2) leads to the quadratic equation for λ

λ =
π

2x
(x2 + y2 − 1±

√

(x2 + y2 − 1)2 + 4x2),

where λ takes the sign of x.

R em a r k 4.10. Particular situations when x = 0 or y = 0 are solved analogously

to projection III.
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4.3. Van der Grinten projection I. The world is enclosed in a circle; the

meridians and parallels are circular arcs. Unlike projection II, they do not intersect

each other at right angles. The graticule is similar to the Lagrange projection, but

the projection is not conformal. In general, projection I is the most popular of the

Grinten family.

Cm = [n, 0]C D0

A

B

N

P

F E G

J

H

I
K L

M

Cp = [0,m]

km

kp

Figure 6. Van der Grinten projection I, a geometric construction of meridians and parallels.

Since the meridian arc construction is analogous to its predecessors, the parallel

arc requires more effort, see Figure 6. Initially, the line OA is divided by equally

spaced points E[0, t], t ∈ (0, 1). The end point F [−
√

(1− t2, t)] of auxiliary line FE

is projected from D[1, 0] to AO as point J [0, j]; it will be the lowest point of the

parallel arc. From the equation of FD

y(1 +
√

1− t2) + t(x− 1) = 0,
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the second coordinate of the point J holds

(4.37) j =
t

1 +
√
1− t2

.

Unlike previous projections, two additional points of the parallel arc are required.

Point H , H [t − 1, t], lies on the intersection of lines CA and FG of two similar

triangles, COA and HEA. The intersection point of two lines, HD and AO is

I[0, v], its coordinate v = t/(2 − t) is determined from the similar triangles, HEI,

and IOD. The line KL parallel to CD passing through the point J represents the

lowest point of the parallel arc. For further calculations, let us denote its coordinate

as K[k1, k2], where

k1 = −
√

1− v2 = −2
√
1− t

2− t

and

(4.38) k2 = v =
t

2− t
.

The center of the parallel arc represents an intersection of the bisector MCp of

the line KJ and the line AB. From the equation of MCp, M [ 1
2
k1,

1

2
(k2 + j)],

(4.39) k1x+ (k2 − j)y =
1− j2

2
,

the parallel arc center coordinate is

(4.40) m =
1− j2

2(k2 − j)
=

(2− t)(t+ 1 +
√
1− t2)

2t2
,

and its radius

rp =
1 + j(j − 2k2)

2(k2 − j)
=

2− t− t2

t(t− 1 +
√
1− t2)

.

The point of intersection of the meridian and parallel arcs can be found by solving

the system of quadratic equations

(x− n)2 + y2 = 1 + n2,(4.41)

x2 + (y −m)2 = (m− j)2.(4.42)

Subtracting one from the other leads to the linear equation

(4.43) −2nx+ 2my = 1− j2 + 2mj.
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Substituting for y into (4.41) leads to the quadratic equation for x

(4.44) 4(m2 + n2)x2 + 4nx(1− j2 + 2mj − 2m2) + (1 − j2 + 2mj)2 − 4m2 = 0,

the factors are functions of s, t

a = s2 +
1

s2
+

(t− 2)2(t+ t′ + 1)2

t4
− 2,

b =
2(1− s2)[t6 + 16(t′ + 1) + t4(t′ + 7)− 8t2(2t′ + 3)]

st4(t′ + 1)2
,

c =
8(t2 − 1)(t′ + 1)

t4
,

where t′ =
√
1− t2, and x takes the sign of λ. Substituting for x into (4.42) leads to

the quadratic equation for y

(4.45) 4(m2+n2)y2+4my(j2−2mj−2n2−1)+(j2−2mj−1)2−4jn2(j−2m) = 0,

where the factors are functions of s, t

a = s2 +
1

s2
+

(t− 2)2(t+ t′ + 1)2

t4
− 2,

b =
(t− 2)(t+ t′ + 1)[t+ s4t+ 2s2(t′ + 1)]

s2t3
,

c =
(t+ s4t+ 2s2)(t′ + 1)

s2t2
.

Let us summarize the results in a new theorem.

Theorem 4.11. The image of the point P [ϕ, λ] in van der Grinten projection I

is given by (4.44)–(4.45).

R em a r k 4.12. Alternatively, instead of solving (4.45), the second coordinate

may be determined from (4.41)

(4.46) y =
√

1− x2 + 2xn.

R em a r k 4.13. Particular situations when ϕ = 0 or λ = 0 are solved analogously

to projection III.
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4.3.1. Inverse form using partial differential equations. The projection

equations can be rewritten as

x2 − 2xn+ y2 − 1 = 0,(4.47)

x2 + y2 − 2ym+ 2mj − j2 = 0.(4.48)

Taking into account (4.37), t can be expressed as a function of j

(4.49) t =
2j

1 + j2
,

we obtain

(4.50)
√

1− t2 =
1− j2

1 + j2
.

Analogously, considering (4.38), for k2 we have

k2 =
j

j2 − j + 1
,

after substitution into (4.40), we get

m =
1 + j3

2j2
.

Since the projection equations are composite functions of j,m, n, s, t, the partial

derivatives ∂ · /∂ϕ have the general form of

∂x

∂ϕ
=

∂j

∂t

∂t

∂ϕ

( ∂x

∂m

∂m

∂j
+

∂x

∂j

)

,
∂y

∂ϕ
=

∂j

∂t

∂t

∂ϕ

( ∂y

∂m

∂m

∂j
+

∂y

∂j

)

,

the partial derivatives ∂ · /∂λ are

∂x

∂λ
=

∂x

∂n

∂n

∂s

∂s

∂λ
,

∂y

∂λ
=

∂y

∂n

∂n

∂s

∂s

∂λ
.

From (4.43), the coordinates can be expressed as

x =
j2 + 2my − 2mj − 1

2n
, y =

1− j2 + 2mj + 2nx

2m
,

their partial derivatives are

dx

dm
=

y − j

n
,

dx

dn
= −x

n
,

dy

dm
=

j − y

m
,

dy

dn
=

x

m
,

dx

dj
=

j −m

n
,

dy

dj
=

m− j

m
.
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For (4.47)–(4.48), the implicit differentiation with respect to x, y,m, n, j is used. The

partial derivatives with respect to m are

2xdx− 2n dx+ 2y
dy

dx
dx+ 2y

dy

dm
dm=0⇒ dx

dm
=

y(y − j)

xm− nm+ yn
,

2x
dx

dy
dy − 2m dy + 2y dy + 2x

dx

dm
dm− 2y dm+ 2j dm=0⇒ dy

dm
=

(j − y)(x− n)

xm− nm+ yn
,

the partial derivatives with respect to n are

2xdx− 2n dx+ 2y
dy

dx
dx− 2xdn+ 2y

dy

dn
dn = 0 ⇒ dx

dn
=

x(m− y)

xm− nm+ yn
,

2x
dx

dy
dy − 2m dy + 2y dy + 2x

dx

dn
dn = 0 ⇒ dy

dn
=

x2

xm− nm+ yn
.

Analogously, the partial derivatives with respect to j are

2xdx− 2n dx+ 2y
dy

dx
dx+ 2y

dy

dj
dj = 0 ⇒ dx

dj
=

y(j −m)

xm− nm+ yn
,

2x
dx

dy
dy − 2m dy + 2y dy + 2x

dx

dj
dj + 2m dj − 2j dj = 0 ⇒ dy

dj
=

(j −m)(n− x)

xm− nm+ yn
.

Using the chain rule, the local linear scales hold

h =
∂j

∂t

∂t

∂ϕ

√

( ∂x

∂m

∂m

∂j
+

∂x

∂j

)2

+
( ∂y

∂m

∂m

∂j
+

∂y

∂j

)2

,

k =
∂n

∂s

∂s

∂λ

√

(∂x

∂n

)2

+
( ∂y

∂n

)2 1

cosϕ
,

and the local area scale is

℘ =
∂n

∂s

∂s

∂λ

∂j

∂t

∂t

∂ϕ

[∂x

∂n

( ∂y

∂m

∂m

∂j
+

∂y

∂j

)

− ∂y

∂n

( ∂x

∂m

∂m

∂j
+

∂x

∂j

)] 1

cosϕ
.

Since

∂m

∂j
=

1

2
− 1

j3
,

∂m

∂ϕ
=

∂m

∂t

∂t

∂ϕ
= − π

2ϕ2
,

∂j

∂t
=

1

1− t2 +
√
1− t2

=
(1 + j2)2

2(1− j2)
,

the products of partial derivatives are

∂x

∂m

∂m

∂j
+

∂x

∂j
=

y[(y − j)(j3 − 2) + 2j3(j −m)]

2j3(xm− nm+ yn)
,

∂y

∂m

∂m

∂j
+

∂y

∂j
=

(n− x)[(y − j)(j3 − 2) + 2j3(j −m)]

2j3(xm− nm+ yn)
.
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Taking into account that

j −m =
j3 − 1

2j2

and using the substitution

c = (y − j)(j3 − 2) + 2j3(j −m) = y(j3 − 2) + j,

they can be rewritten to the form of

∂x

∂m

∂m

∂j
+

∂x

∂j
=

cy

2j3(xm− nm+ yn)
,

∂y

∂m

∂m

∂j
+

∂y

∂j
=

c(n− x)

2j3(xm− nm+ yn)
.

The products are

∂y

∂n

( ∂x

∂m

∂m

∂j
+

∂x

∂j

)

=
cx2y

2j3(xm− nm+ yn)2
,

∂x

∂n

( ∂y

∂m

∂m

∂j
+

∂y

∂j

)

=
cx(m− y)(n− x)

2j3(xm− nm+ yn)2
.

Taking into account (4.41), the sum of the squares of the derivatives is

( ∂x

∂m

∂m

∂j
+

∂x

∂j

)2

+
( ∂y

∂m

∂m

∂j
+

∂y

∂j

)2

=
c2(y2 + (n− x)2)

4j6(xm− nm+ yn)2
=

c2(1 + n2)

4j6(xm− nm+ yn)2
.

Since the difference of the products of the derivatives is

∂x

∂n

( ∂y

∂m

∂m

∂j
+

∂y

∂j

)

− ∂y

∂n

( ∂x

∂m

∂m

∂j
+

∂x

∂j

)

=
c[x(m− y)(n− x)− x2y]

2j3(xm− nm+ yn)2
= − cx

2j3(xm− nm+ yn)
,

its square is

[∂x

∂n

( ∂y

∂m

∂m

∂j
+

∂y

∂j

)

− ∂y

∂n

( ∂x

∂m

∂m

∂j
+

∂x

∂j

)]2

=
c2x2

4j6(xm− nm+ yn)2
.

Then the right-hand side of the first differential equation has the general form of

h2

℘2 cos2 ϕ
=

(( ∂x

∂m

∂m

∂j
+

∂x

∂j

)2

+
( ∂y

∂m

∂m

∂j
+

∂y

∂j

)2)

×
(∂n

∂s

∂s

∂λ

)−2[∂x

∂n

( ∂y

∂m

∂m

∂j
+

∂y

∂j

)

− ∂y

∂n

( ∂x

∂m

∂m

∂j
+

∂x

∂j

)]−2

.
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After the substitution, the fraction simplifies to

h2

℘2 cos2 ϕ
= π

2 c2(1 + n2)

4j6(xm− nm+ yn)2
4j6(xm− nm+ yn)2

c2x2

4s2

(s2 + 1)2

= 4π
2 (1 + n2)

x2

s4

(s2 + 1)2
=

λ2

x2
.

The first partial differential equation of the inverse transformation

(4.51)
(∂λ

∂x

)2

+
(∂λ

∂y

)2

=
λ2

x2

is similar to Grinten III and II equations. For the second partial differential equa-

tion we use an analogous approach. Taking into account (4.42), the squares of the

derivatives are

(∂x

∂n

)2

+
( ∂y

∂n

)2

=
x2(m− y)2 + x4

(xm − nm+ yn)2
=

x2(m− j)2

(xm − nm+ yn)2
.

The right-hand side of the second partial differential equation has the general form of

k2

℘2
=

((∂x

∂n

)2

+
(∂y

∂n

)2)(∂j

∂t

∂t

∂ϕ

)−2[∂x

∂n

( ∂y

∂m

∂m

∂j
+

∂y

∂j

)

− ∂y

∂n

( ∂x

∂m

∂m

∂j
+

∂x

∂j

)]−2

.

After the substitution, the fraction simplifies to

k2

℘2
=

x2(m− j)2

(xm − nm+ yn)2
4j6(xm− nm+ yn)2

c2x2

4π
2(1− j2)2

4(1 + j2)4

= 4π
2 j

6(m− j)2

c2
(1− j2)2

(1 + j2)4
= π

2 j2(1− j3)2

(y(j3 − 2) + j)2
(1 − j2)2

(1 + j2)4
.

Taking into account (4.49)–(4.50), we have

k2

℘2
=

[t(1− t)(2 + t)(1 −
√
1− t2)(1 + t−

√
1− t2)]2

4[(1−
√
1− t2)((4 − t2)y + t2)− 2t2(1 + t)y]2

=
[t(1− t)(2 + t)(1 + t−

√
1− t2)]2

4[y(4− t2 − 2(1 +
√
1− t2)(1 + t)) + t2]2

.

After the substitution for ϕ, the second partial differential equation has the form of

(4.52)
(∂ϕ

∂x

)2

+
(∂ϕ

∂y

)2

=
[ϕ(π − 2ϕ)(π + ϕ)(π + 2ϕ−

√

1− 4ϕ2)]2

π
4[2ϕ2 + y(2π

2 − 2ϕ2 − (π + 2ϕ)(π +
√

1− 4ϕ2))]2
.
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Due to the fact that the right-hand side is the function of ϕ, y and cannot be expressed

as a product of h(x, y)g(ϕ), the partial differential equation has no known analytical

solution. Therefore, the numerical approach is recommended.

4.3.2. Straightforward inverse of projection equations. The inverse formu-

las of van der Grinten projection I are analogous to projection III, see (4.14). The

parameter s is obtained from (4.16). Substituting for m, r from (4.37), and (4.39)

into (4.45) leads to the cubic equation for t

(4.53) at3 + bt2 + ct+ d = 0

with the factors
a = x4 + 2x2y(y + 1) + (y + 1)2(y2 + 1),

b = −2[x2(y − 1) + y(y + 1)2],

c = −4y(x2 + y2 + 1),

d = 8y2,

where ϕ = πt/2 takes the sign of y.

R em a r k 4.14. Particular situations when x = 0 or y = 0 are solved analogously

to projection III.

4.4. Van der Grinten projection IV. Projection IV, called apple-shaped, de-

picts the planisphere as a union of two circular fragments with a common boundary

at the central meridian AB = 1

2
|CD|, where CD is the equator image. Both the

meridians and the parallels are circular arcs. Unlike previous projections, the paral-

lels are equally spaced along the central meridian, see Figure 7.

The planisphere boundary, the meridians of the longitude of λ = ±π, has the

implicit equation

(4.54)
(

x± 3

4

)2

+ y2 =
25

16
.

For the parallel construction we use an analogous approach when the line OA is

divided by equally spaced points E[0, t], t ∈ (0, 1). The meridian of longitude λ = −π

intersects the Equator CD at the point I[ 1
2
, 0]. The point of intersection J [j1, t] of

the lines AC and FE, where

j1 = −|CO|
|OA| |EA| = −2(1− t),
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Figure 7. Van der Grinten projection IV, a geometric construction of meridians and parallels.

is projected from I into λ = −π as K[k1, k2]. The parallel arc passes through the

points K,E,L. Their coordinates are determined from the similar triangles KK ′I

and JJ ′I,

k2

−k1 +
1

2

=
t

2(1− t) + 1

2

.

Substituting for K into (4.54) leads to

k1 =
2(1− t)(3t− 5)

5 + 4t(t− 2)
, k2 =

t(5− 4t)

5 + 4t(t− 2)
.

Analogously, the radius rp of the parallel arc is evaluated using the similarity

rp
|ME| =

|KE|
k2 − t

,
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where |ME| = 0.5|KE|, and

rp =
k21 + (k2 − t)2

2(k2 − t)
=

(1− t)[5 + t(2 + t)]

2t2
.

Its center is Cp = [0,m], where

(4.55) m = rp + t =
5 + t(t2 − t− 3)

2t2
.

The circular arc passing through the point N [s, 0] has the center at the point of

intersection Cm[n, 0] of the bisector AN and the x− axis. Since s ∈ (0, 2〉, we have
s = 2λ/π. The point of intersection of the meridian and parallel arcs can be found

by solving the system of quadratic equations

(x− n)2 + y2 = 1 + n2,(4.56)

x2 + (y −m)2 = (m− t)2.(4.57)

Subtracting one from the other leads to the linear equation

(4.58) −2nx+ 2my = 1− t2 + 2mt.

Substituting for y into (4.56) leads to the quadratic equation for x

(4.59) 4(m2 + n2)x2 + 4nx(1 − t2 + 2mt− 2m2) + (1 − t2 + 2mt)2 − 4m2 = 0,

where the factors are functions of s, t

a = s2 +
1

s2
+

[5 + t(t2 − t− 3)]2

t4
− 2,

b =
(1− s2)(t− 1)[t(t4 + t3 + 6t+ 5)− 25]

st4
,

c =
(t− 1)2(t+ 1)(2t+ 5)(3t− 5)

t4
.

Substituting for x into (4.57) leads to the quadratic equation for y

(4.60) 4(m2+n2)y2+4my(t2− 2mt− 2n2− 1)+ (t2− 2mt− 1)2− 4tn2(t− 2m) = 0

with the factors

a = s2 +
1

s2
+

[5 + t(t2 − t− 3)]2

t4
− 2,

b =
(−t3 + t2 + 3t− 5)[t+ s4t− 2s2(t2 + 3t− 5)]

s2t3
,

c =
(t2 + 3t− s2t− 5)[s2(t2 + 3t− 5)− t]

s2t2
.

The results are summarized in the theorem.
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Theorem 4.15. The image of the point P [ϕ, λ] in van der Grinten projection IV

is given by (4.59)–(4.60).

R em a r k 4.16. Alternatively, the second coordinate may be determined from

equation (4.46).

R em a r k 4.17. The particular cases are solved as follows:

If λ = 0, then x = 0 and y = 2ϕ/π.

If ϕ = 0, then x = 2λ/π and y = 0.

If ϕ = ±π/2, then x = 0 and y = ±1.

4.4.1. Inverse form using partial differential equations. The projection

equations can be rewritten to

x2 − 2xn+ y2 − 1 = 0,(4.61)

x2 + y2 − 2ym+ 2mt− t2 = 0.(4.62)

Since the projection equations are composite functions ofm,n, s, t, the partial deriva-

tives ∂ · /∂ϕ have the general form of

∂x

∂ϕ
=

∂t

∂ϕ

( ∂x

∂m

∂m

∂t
+

∂x

∂t

)

,
∂y

∂ϕ
=

∂t

∂ϕ

( ∂y

∂m

∂m

∂t
+

∂y

∂t

)

,

the partial derivatives ∂ · /∂λ are analogous to the Grinten I projection. Therefore,

∂m

∂t
=

t3 + 3t− 10

2t3
,

∂t

∂ϕ
=

∂s

∂λ
=

2

π

,
∂n

∂s
=

s2 + 1

2s2
=

4π
2 + λ2

8λ2
,

and
∂m

∂ϕ
=

∂m

∂t

∂t

∂ϕ
=

t3 + 3t− 10

πt3
,

∂n

∂λ
=

∂n

∂s

∂s

∂λ
=

4π
2 + λ2

4πλ2
.

From (4.58), the coordinates can be expressed as

x =
t2 + 2my − 2mt− 1

2n
, y =

1− t2 + 2mt+ 2nx

2m
,

their partial derivatives are

dx

dm
=

y − t

n
,

dx

dn
= −x

n
,

dy

dm
=

t− y

m
,

dy

dn
=

x

m
,

dx

dt
=

t−m

n
,

dy

dt
=

m− t

m
.
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For (4.61)–(4.62), the implicit differentiation with respect to x, y,m, n, t is used. The

partial derivatives ∂ · /∂m are

2xdx− 2n dx+ 2y
dy

dx
dx+ 2y

dy

dm
dm=0⇒ dx

dm
=

y(y − t)

xm− nm+ yn
,

2x
dx

dy
dy − 2m dy + 2y dy + 2x

dx

dm
dm− 2y dm+ 2t dm=0⇒ dy

dm
=

(t− y)(x− n)

xm− nm+ yn
.

The partial derivatives with respect to n are analogous to the Grinten I projection.

The partial derivatives ∂ · /∂t are

2xdx− 2n dx+ 2y
dy

dx
dx+ 2y

dy

dt
dt = 0 ⇒ dx

dt
=

y(t−m)

xm− nm+ yn
,

2x
dx

dy
dy − 2m dy + 2y dy + 2x

dx

dt
dt+ 2m dt− 2t dt = 0 ⇒ dy

dt
=

(t−m)(n− x)

xm− nm+ yn
.

Using the chain rule, the local linear scales hold

h =
∂t

∂ϕ

√

( ∂x

∂m

∂m

∂t
+

∂x

∂t

)2

+
( ∂y

∂m

∂m

∂t
+

∂y

∂t

)2

,

k =
∂n

∂s

∂s

∂λ

√

(∂x

∂n

)2

+
(∂y

∂n

)2 1

cosϕ
,

and the local area scale is

℘ =
∂n

∂s

∂s

∂λ

∂t

∂ϕ

[∂x

∂n

( ∂y

∂m

∂m

∂t
+

∂y

∂t

)

− ∂y

∂n

( ∂x

∂m

∂m

∂t
+

∂x

∂t

)] 1

cosϕ
.

The products of the partial derivatives are

∂x

∂m

∂m

∂t
+

∂x

∂t
=

y(y − t)

xm− nm+ yn

t3 + 3t− 10

2t3
+

y(t−m)

xm− nm+ yn

=
y(y − t)(t3 + 3t− 10) + 2t3(t−m)

2t3(xm− nm+ yn)
,

∂y

∂m

∂m

∂t
+

∂y

∂t
=

(t− y)(x− n)

xm− nm+ yn

t3 + 3t− 10

2t3
+

(t−m)(n− x)

xm− nm+ yn

=
(n− x)[(y − t)(t3 + 3t− 10) + 2t3(t−m)]

2t3(xm− nm+ yn)
.

Taking into account that

(4.63) t−m =
(t− 1)(t2 + 2t+ 5)

2t2

and using the substitution

(4.64) c = (y − t)(t3 + 3t− 10) + 2t3(t−m) = y(t3 + 3t− 10) + t(t2 + 5),
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they can be rewritten to the form of

∂x

∂m

∂m

∂t
+

∂x

∂t
=

cy

2t3(xm− nm+ yn)
,

∂y

∂m

∂m

∂t
+

∂y

∂t
=

c(n− x)

2t3(xm− nm+ yn)
.

The products are

∂y

∂n

( ∂x

∂m

∂m

∂t
+

∂x

∂t

)

=
cx2y

2t3(xm− nm+ yn)2
,

∂x

∂n

( ∂y

∂m

∂m

∂t
+

∂y

∂t

)

=
cx(m− y)(n− x)

2t3(xm− nm+ yn)2
.

Taking into account (4.56), the sum of the squares of the derivatives is

( ∂x

∂m

∂m

∂t
+

∂x

∂t

)2

+
( ∂y

∂m

∂m

∂t
+

∂y

∂t

)2

=
c2(1 + n2)

4t6(xm− nm+ yn)2
.

Since the difference between the products of the derivatives is

∂x

∂n

( ∂y

∂m

∂m

∂t
+

∂y

∂t

)

− ∂y

∂n

( ∂x

∂m

∂m

∂t
+

∂x

∂t

)

= − cx

2t3(xm− nm+ yn)
,

its square is

[∂x

∂n

( ∂y

∂m

∂m

∂t
+

∂y

∂t

)

− ∂y

∂n

( ∂x

∂m

∂m

∂t
+

∂x

∂t

)]2

=
c2x2

4t6(xm− nm+ yn)2
.

Then, the right-hand side of the first differential equation has the general form of

h2

℘2 cos2 ϕ
=

(( ∂x

∂m

∂m

∂t
+

∂x

∂t

)2

+
( ∂y

∂m

∂m

∂t
+

∂y

∂t

)2)

×
(∂n

∂s

∂s

∂λ

)−2[∂x

∂n

( ∂y

∂m

∂m

∂t
+

∂y

∂t

)

− ∂y

∂n

( ∂x

∂m

∂m

∂t
+

∂x

∂t

)]−2

.

Then after the substitution, analogously to the Grinten I projection we have

h2

℘2 cos2 ϕ
=

λ2

x2
.

The first partial differential equation of the inverse transformation

(4.65)
(∂λ

∂x

)2

+
(∂λ

∂y

)2

=
λ2

x2

is similar to the Grinten I–III equations.
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For the second partial differential equation we use an analogous approach. Taking

into account (4.57), the squares of the derivatives are

(∂x

∂n

)2

+
( ∂y

∂n

)2

=
x2(m− y)2 + x4

(xm − nm+ yn)2
=

x2(m− t)2

(xm − nm+ yn)2
.

The right-hand side of the second partial differential equation has the general form of

k2

℘2
=

((∂x

∂n

)2

+
( ∂y

∂n

)2)( ∂t

∂ϕ

)−2[∂x

∂n

( ∂y

∂m

∂m

∂t
+

∂y

∂t

)

− ∂y

∂n

( ∂x

∂m

∂m

∂t
+

∂x

∂t

)]−2

.

Taking into account (4.55) and (4.63)–(4.64),

k2

℘2
= π

2 t
6(m− t)2

c2
=

π
2

4

t2(t− 1)2(t2 + 2t+ 5)2

(y(t3 + 3t− 10) + t(t2 + 5))2
,

after the back substitution for ϕ we have

k2

℘2
=

ϕ2(2ϕ− π)2(4ϕ2 + 4πϕ+ 5π
2)2

[y(8ϕ3 + 6π
2ϕ− 10π

3) + 2ϕ(4ϕ2 + 5π
2)]2

.

The second partial differential equation has the form of

(4.66)
(∂ϕ

∂x

)2

+
(∂ϕ

∂y

)2

=
ϕ2(2ϕ− π)2(4ϕ2 + 4πϕ+ 5π

2)2

[y(8ϕ3 + 6π
2ϕ− 10π

3) + 2ϕ(4ϕ2 + 5π
2)]2

.

Due to the complex form of its right-hand side, the partial differential equation has

no known analytical solution. Therefore, the numerical approach is recommended.

4.5. Straightforward inverse of projection equations.

Theorem 4.18. The inverse formulas of the van der Grinten projection IV have

the form of

(4.67) ϕ =
π

2
t, λ =

π

2
s,

where s is the solution of a system of quadratic equations

(4.68) x2 − 2xn+ y2 − 1 = 0, x2 + y2 − 2ym+ 2mt− t2 = 0,

the parameters m,n are obtained from (4.55) and (4.2), the longitude λ takes the

sign of x.
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Substituting for m, rp into (4.59) leads to the cubic equation for t

(4.69) at3 + bt2 + ct+ d = 0,

where

a = y + 1, b = −(x2 + y2 + y − 3), c = −(3y + 5), d = 5y,

and ϕ takes the sign of y.

R em a r k 4.19. The particular cases are solved as follows:

If x = 0, then ϕ = π/2y and λ = 0.

If y = 0, then ϕ = 0 and λ = π/2x.

4.6. Practical computation of projection equations. In cartography, the

coordinate functions are evaluated for the sphere of the radius R

X = cRx, Y = cRy,

where c ∈ R
+ is the user-defined multiplication constant. For projections I–III, we

usually choose c = π, for projection IV it is c = π/2, see [15]. To avoid problems

with a quadrant adjustment for x, y as well as for ϕ, λ in the inverse form, we take

their absolute values

t = 2
|ϕ|
π

, s =
|λ|
π

,

the calculations are performed for the first quadrant. Taking into account the central

meridian and Equator symmetries, the correct quadrant of X,Y depends on the sign

of ϕ, λ:

X = cR sign(λ)x, Y = cR sign(ϕ)y.

Finding the point of intersection of the meridian and parallel arcs led to quadratic

equations, where D > 0, so there are two distinct roots. For the x-coordinate, in

(4.3), (4.22), (4.44) and (4.59), the solution is x = (−b+
√
D)/(2a). For the coordi-

nate y, in (4.1), (4.23) and (4.45), or in (4.60) the solution is y = (−b−
√
D)/(2a)

or y = (−b+
√
D)/(2a), respectively.

In the inverse form of projections, the coordinates X , Y are reduced on the unit

sphere

(4.70) x =
|X |
cR

, y =
|Y |
cR

.

The cubic equation: at3 + bt2 + ct+ d = 0, used in projections I, IV, can be solved

using the Cardano formulas

Q =
3B −A2

9
, R =

9AB − 27C − 2A3

54
,
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where t in (4.49) and (4.69) is the solution of

t = 2
√

−Q cos
(θ + 4π)

3
− A

3

and

θ = arccos
R

√

−Q3
, A =

b

a
, B =

c

a
, C =

d

a
.

Analogously, in (4.16), the solution is s = (−b +
√
D)/(2a). The correct quadrant

of ϕ, λ takes the sign of coordinates X , Y

ϕ = sign(Y )
π

2
t, λ = sign(X)πs.

Finally, the inverse reprojection of the map [9] created in van der Grinten projection I

into the Mercator projection (EPSG code 3857) popular in many web map servers,

using the above-mentioned formulas, can be found in Figure 8.

Figure 8. Reprojection of the map [9] from Figure 2.1 in van der Grinten projection I into
the Mercator projection; a superimposition with Open-Street Maps.
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5. Conclusion

In this paper, a new derivation of van der Grinten projection I–IV equations and

their inverse have been presented. Two approaches—the straightforward inverse of

the projection equations, as well as the solution of the partial differential equations—

were compared. The straightforward inverse is easier to evaluate and works well for

all Grinten projections. Particular cases, when the point coincides with the poles,

lies on the Equator, or on meridians of the longitude λ = ±π, are involved.

However, the second approach is computationally more challenging, the partial

differential equations of the Grinten I and IV projections have no known analytical

solution; the numerical approach is recommended.

Knowledge of the inverse form of the equations is important for the re-projection

of maps into different projections, which is frequently used in digital cartography,

GIS, environmental science, or in cartometric analyses of early maps.

The proposed methods are non-iterative, easy to implement, and applicable to the

coordinate transformation software (e.g. the conversion library Proj. 4). Currently,

they are supported by the software tool detectproj for the analysis of the map

projection [3].

The source code in Matlab involving both the direct and inverse transformations

for projections I–IV is available free of charge at https://github.com/bayertom/

vangrinten
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