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Abstract. Most building materials can be characterized as quasi-brittle composites with
a cementitious matrix, reinforced by some stiffening particles or elements. Their massive
exploitation motivates the development of numerical modelling and simulation of behaviour
of such material class under mechanical, thermal, etc. loads, including the evaluation of the
risk of initiation and development of micro- and macro-fracture. This paper demonstrates
the possibility of certain deterministic prediction, applying the dynamical approach using
the Kelvin viscoelastic model and cohesive interface properties. The existence and con-
vergence results rely on the semilinear computational scheme coming from the method of
discretization in time, using several types of Rothe sequences, coupled with the extended
finite element method (XFEM) for practical calculations. Numerical examples refer to ce-
mentitious samples reinforced by short steel fibres, with increasing number of applications
as constructive parts in civil engineering.
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1. Introduction

Study of behaviour of quasi-brittle composites under mechanical, thermal, etc.,

loads belongs to research priorities in civil engineering, utilizing such composites

as constructive parts of buildings and engineering structures. These parts are of-

ten made from a material with a cementitious matrix, reinforced by some stiffening

(e.g. various metal, glass or plastics as polyethylene or polypropylene fibres), with

the aim to reduce the danger of cracking in tension: cf. [22] for the fibre reinforced
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concrete technology, [30] for the review of steel fibre reinforced composites (as the

most frequently applied ones) and [25] for certain simplified methodology of com-

putational design of such fibre composites, with the relevant software support [12].

However, a proper computational prediction of strain, stress, etc. development in

such composites cannot be based on simple calculations well-known from linear elas-

ticity and related fracture mechanics. Following [54], two stages of damage can be

recognized:

i) formation of micro-fractured zones, reducing the stiffness of a structure,

ii) creation of macro-cracks, whose later opening and closing is conditioned by the

cohesive characteristics of new interfaces.

At least the following scales should be distinguished: matrix particles (at 10−3 m),

hardening fibres (at 10−2 m) and laboratory samples (at 10−1 m) or real structures in

situ (even greater). Consequently, a reasonable setting of material parameters on the

macroscopic scale supported by appropriate experiments, producing some (typically

incomplete) data on material structure as random or intentionally oriented fibre

directions, may be complicated in general. Selected problems of this kind prefer-

ring non-destructive or low-invasive testing approaches, namely direct photographic,

roentgenographic and tomographic ones, and indirect electromagnetic ones relying

on certain changes in stationary magnetic or harmonic electromagnetic fields, are

discussed in [57] with numerous further references.

Various arguments on the non-negligible non-deterministic character of both input

data and relevant physical processes motivate some authors to the attempts to han-

dle the evolution of damage by stochastic considerations, genetic algorithms or other

soft computing approaches like [53], [14] or [41], by statistical physics using [48], or

by computational peridynamics, avoiding all gradient evaluations, following [38], [15]

and [27]. Unlike such approaches, in this paper we shall try to develop a rather simple

deterministic physical, mathematical and computational model, up to its software

implementation, based on the principle of energy conservation from classical me-

chanics, incorporating the kinetic and deformation energy, similarly to [37], together

with certain energy dissipation (structural and mass damping).

However, the detailed description and computational analysis of particular micro-

cracks cannot be performed easily in most engineering applications. The thermody-

namic approach of [51] and [40], especially in Part 4.3, introduces additional internal

variables to displacements and temperature and combines a fully implicit discretiza-

tion, based on both Galerkin and Rothe methods, with the analysis of non-linear

Nemytskǐı operators and enthalpy transformation to verify the existence of certain

energetic solution of a needed initial and boundary value problem. In our paper,

initiation and development of particular micro-cracks will be incorporated using the

damage zone representation by [21] and [28], utilizing numerous ideas of [47], adopt-
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ing the non-local model from [16]. This model was later reformulated by [17] and

is frequently referred as the Eringen one in the last 2 decades. Fortunately, the re-

cent result [18] on the ill-possedness of the non-local approach [17], referring to the

incomplete existence analysis of [1] for boundary conditions significant in practical

applications, is not addressed to our formulation as explained by [58]. Moreover,

according to [55], such conception can be considered as a suitable procedure for

a multi-scale approach, avoiding any interpolation between macro- and micro-scale

variables. For the strain-stress relations we shall work with the viscoelastic Kelvin

law, generating the so-called structural damping, accompanied by the mass damping

due to the Rayleigh model in the sense of [43].

The above sketched considerations will be incorporated in our model problem. As

its natural generalization, we shall consider also a finite set of matrix/fibre interfaces,

as well as of interfaces inside the matrix or even inside any fibre, depending on the

process of activation of macro-cracks. All such interfaces will be assumed to satisfy

the cohesive model developed by [46], [32], [6] (for various types of fibre composites),

[33] (for ceramics) and [36] (for a rather general class of damage propagation).

For most existence and convergence proofs we shall use the method of discretiza-

tion in time, based on the convergence properties of Rothe sequences, following [49],

devoted to linear problems. Moreover, we need to handle 2 types of non-linear

terms, coming from i) and ii), as introduced above. For practical evaluations of fully

discretized problems we shall prefer the extended finite element method (XFEM),

working with the adaptive enrichment of the set of base functions near geometric sin-

gularities. This method, including numerous modifications with their special names

and specific notations, as generalized finite element method (GFEM) or partition of

unity method (PoUM), has its own rich history; the progress in several decades can

be traced from the comparison of pioneering works [2], [3] and [19] with the later

monograph [31] and the recent articles [37] and [56].

However, we shall pay attention namely to the convergence properties independent

of the choice of XFEM adaptive strategies as discussed by [29].

2. Physical and mathematical preliminaries

For our first model problem, let us consider a domain Ω in the 3-dimensional Eu-

clidean space R3, whose exterior Lipschitz boundary ∂Ω consists of 2 disjoint parts Θ

(for homogeneous Dirichlet boundary conditions) and Γ (for non-homogeneous Neu-

mann boundary conditions), Θ having a non-zero measure on ∂Ω (to avoid insuffi-

cient support). Let R3 be supplied by a Cartesian coordinate system x = (x1, x2, x3).

Moreover, we shall work with the time t ∈ I from an interval I = [0, T ] with some

final time value T , assumed as finite here. For the brevity of notation we shall work
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with the Hamilton operator ∇ = (∂/∂x1, ∂/∂x2, ∂/∂x3) and with upper dots instead

of ∂/∂t. Moreover, any comma followed by k ∈ {1, 2, 3} will be seen as ∂/∂xk ap-

plied to the preceding variable: e.g. 2εij(v) = vi,j + vj,i with i, j ∈ {1, 2, 3} can
be understood as the definition of linearized strain, applicable to any differentiable

virtual displacement v(x) = (v1(x), v2(x), v3(x)), related to an initial configuration.

The Einstein summation rule for indices i, j, k, l ∈ {1, 2, 3} will be active, too.
The introduction of Lebesgue, Sobolev and Bochner spaces of functions on Ω

and ∂Ω and abstract functions mapping I to them is compatible with [50]. To

present our approach as simply as possible now, we shall work namely with the

special Hilbert spaces H = L2(Ω)3, Z = L2(∂Ω)3, ZΓ = L2(Γ)3 and V = {v ∈
W 1,2(Ω)3 : v = O on Θ}, supplied with norms denoted by |·| both in H and H ×H ,

|·|Γ in ZΓ and ‖·‖ in V , as well as with scalar products (·, ·) both in H and H ×H ,

together with 〈·, ·〉Γ in ZΓ; O means the zero vector from R
3 here. Slight natural

generalizations (which may bring technical difficulties in proofs), motivated by much

more detailed references from [50], are left to the curious reader. We shall also utilize

upper star symbols for dual spaces, ⊂ for continuous embeddings, ⋐ for compact
embeddings, ∼= for the identification of a space with its dual in the sense of the Riesz
representation theorem.

The following properties of the above introduced spaces (for all notations see [50]

again) will be needed:

Lemma 2.1 (Sobolev embedding). We have V ⋐ H . Consequently, from any

weakly convergent sequence in V , a strongly convergent subsequence in H can be

selected.

P r o o f. See [50], p. 16, and [13], p. 40. �

Lemma 2.2 (trace operator). We have V ⋐ Z; |v|2Γ 6 T‖v‖2 for any v ∈ V with

a positive T independent of v. Consequently, from any weakly convergent sequence

in V , a strongly convergent subsequence in Z can be selected.

P r o o f. See [50], p. 17, and [13], p. 275. �

Lemma 2.3 (Korn). There holds |ε(v)|2 > K‖v‖2 for any v ∈ V with a positive K

independent of v. Consequently, to the standard norm ‖v‖2 = |v|2 + |∇v|2 an
alternative norm is generated by |ε(v)|2 in V .

P r o o f. For the inequality see [50], p. 22. The consequence follows from the obvi-

ous estimate, referring to linear elasticity, K‖v‖2 6 |ε(v)|2 = 1
4 (vi,j+vj,i)(vi,j+vj,i) 6

vi,jvi,j = |∇v|2 6 ‖v‖2. �

818



Lemma 2.4 (Eberlein-Shmul’yan). All spaces H , V , L2(I,H) and L2(I, V ) are

reflexive. Consequently, from any bounded sequence in such space, a weakly conver-

gent subsequence can be selected.

P r o o f. For H and V (see [50], p. 15) L2(I,H) can be interpreted as L2(Ω × I)

with a quite similar result. For the details on duality pairing L2(I, V )∗ ∼= L2(I, V ∗)

see [50], p. 201. For the consequence cf. [50], pp. 5 and 210, with [13], p. 67. �

Lemma 2.5 (Gelfand triple). In the triple V ⊂ H ∼= H∗ ⊂ V ∗ both inclusions

are dense; W 1,2,2(I, V, V ∗) ⊂ C(I,H).

P r o o f. See [50], p. 190; W 1,2,2(I, V, V ∗) here denotes a Bochner-Sobolev space

of abstract functions from L2(I, V ) with time derivatives belonging to L2(I, V ∗). �

Lemma 2.6 (Aubin-Lions lemma). We have W 1,2,2(I, V, V ∗) ⋐ L2(I,X) with

X ∈ {H,Z}.

P r o o f. See [50], p. 194. �

3. A model problem with micro-cracks

Let us introduce a displacement in a deformable body (a priori uknown), occu-

pying the domain Ω, u(x, t) = (u1(x, t), u2(x, t), u3(x, t)), related to the reference

initial configuration (at t = 0) such that the homogeneous Cauchy initial conditions

u1(x, 0) = u2(x, 0) = u3(x, 0) = 0 and u̇1(x, 0) = u̇2(x, 0) = u̇3(x, 0) = 0 are sat-

isfied for almost every x ∈ Ω. We shall assume that u ∈ V = W 1,2,2,2(I, V, V, V ∗);

thus u(·, t), u̇(·, t) ∈ V and ü(·, t) ∈ V ∗ for any t ∈ I—cf. (3.22) in the proof of

Theorem 3.1, including the identification of particular limits below. Both initial

conditions can be written as

(3.1) u(·, 0) = O, u̇(·, 0) = O on Ω.

Analogous simplified notations will be used for further functions, too. Let us note

that just the zero-valued u(·, 0) and u̇(·, 0) in (3.1), referring to certain stationary
initial status, are considered in numerous engineering applications; if needed, the

following considerations can be repeated for a non-homogeneous form of (3.1) without

substantial difficulties.

For an arbitrary v ∈ V the energy conservation for our model problem can be

presented as

(3.2) (v, ̺ü) + β(v, ̺u̇) + α(ε(v), σ̇) + (ε(v), (1 −D)σ) = (v, f) + 〈v, g〉Γ on I,
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where ̺ ∈ L∞(Ω) is the material density and σ ∈ L2(I, L2(Ω)3×3
sym) refers to all stress

components. Its symmetry comes from the assumptions on Boltzmann continuum;

for much more general considerations of this type, including constitutive laws, cf. [4],

p. 18. The energy dissipation in (3.2), driven by the prescribed body forces f ∈
L2(I,H) and surface forces g ∈ L2(I, Z3

Γ), is taken into account using the positive

damping factors α for structural damping due to the parallel Kelvin viscoelastic

model, and the real non-negative factor β for mass damping, compatible with the

Rayleigh damping model by [43]. We shall assume that ̺ > ̺0 on Ω for a positive

constant ̺0. Finally, D can be presented as a local damage factor with values

between 0 and 1− ς , using an additional positive constant ς ; D = 0 holds always for

t = 0 (no micro-cracking is present). This factor should depend on σ or ε(u) directly,

non-increasing in time t ∈ I, which can be guaranteed by its evaluation in the form

(3.3) D(u)(t) = max
ξ∈[0,t]

D∗(u(ξ))

etc., for particular t ∈ I. Its practical design, namely the form of the continuous

mapping D∗ from V to L∞(Ω), based on the non-local Eringen theory, will be dis-

cussed later.

Let us notice that the strong formulation corresponding to (3.2) can be derived, at

least in the sense of distributions, from integration by parts. Following the approach

of [58] (where the quasi-static case is discussed in all details), for each i (respecting

the brief notation σij,j forcing divergence ∂σij/∂xj, etc.) we receive

̺(üi + βu̇i)− σij,j = fi on Ω× I,(3.4)

σijνj = gi on Γ× I,

ui = O on Θ× I,

where ν = (ν1, ν2, ν3) means the local unit normal vector associated with Γ. In

addition to the 1st evolution equation of (3.4), referring to the classical Cauchy

equilibrium condition, we can see both an explicit Neumann boundary condition in

the 2nd equation and a Dirichlet one in the 3rd equation.

The local stress-strain relation can be taken in the simple form

(3.5) σ = (1−D)Cε(u) + αCε(u̇)

with C ∈ L∞(Ω)
(3×3)×(3×3)
sym , containing (in general) 21 material parameters, C(x)

being positive definite in the sense Cijkl(x)aijakl > C0aijaij , involving a positive

constant C0. In particular, for an isotropic homogeneous medium, setting α = 0

formally (the needed generalization with α > 0 is straightforward) and zero-valuedD
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(no damage occurs yet), using the Kronecker symbol δij = 1 for i = j, 0 otherwise,

we have σij = 2λ1εij(u) + λ2δijεkk(u) with only 2 positive Lamé factors λ1 and λ2;

frequently they are expressed as λ1 = µE/(1+µ)/(1−2µ), 2λ2 = E/(1+µ) utilizing

the well-known Young modulus E and the Poisson ratio µ; such characteristics will

be referenced e.g. from Section 5.

Inserting (3.5) into (3.2), taking (3.3) into account (without explicit highlighting),

we obtain

(3.6) (v, ̺ü)+β(v, ̺u̇)+α(ε(v), Cε(u̇))+(ε(v), (1−D)Cε(u)) = (v, f)+〈v, g〉Γ on I.

Let I be divided into a finite number m of subsets Ims = {t ∈ I : (s− 1)τ < t 6 sτ},
where s ∈ {1, . . . ,m}, with the final aim m → ∞; τ(m) = T/m is considered

(the argument m will be omitted formally). We are able to work with the Clément

quasi-interpolation fm of f in L2(I,H) and gm of g in L2(I, ZΓ), assuming t ∈ Ims ,

s ∈ {1, . . . ,m}, i.e. fm(t) = fm
s and gm(t) = gms , where

fm
s =

1

τ

∫ sτ

(s−1)τ

f(ξ) dξ, gms =
1

τ

∫ sτ

(s−1)τ

g(ξ) dξ.

This yields

(3.7) τ

m∑

s=1

|fm
s |2 =

1

τ

m∑

s=1

∣∣∣∣
∫ sτ

(s−1)τ

f(ξ) dξ

∣∣∣∣
2

6

∫

I

|f(ξ)|2 dξ

τ

m∑

s=1

|gms |2Γ =
1

τ

m∑

s=1

∣∣∣∣
∫ sτ

(s−1)τ

g(ξ) dξ

∣∣∣∣
2

Γ

6

∫

I

|g(ξ)|2Γ dξ,

which will be needed later, cf. (3.17).

For any unknown um, introducing the differences Dum
s = um

s − um
s−1 with s ∈

{1, . . . ,m}, taking um
0 = O and Dum

0 = O formally, due to (3.1), we can set some

linear Lagrange splines

(3.8) um(t) = um
s−1 +

t− (s− 1)τ

τ
Dum

s

and standard and retarded simple functions

(3.9) ūm(t) = um
s , ŭm(t) = um

s−1

for t ∈ Ims . Let us recall that u
m(t) and ūm(t) for m ∈ {1, 2, . . .} by (3.8) and (3.9)

are just 2 classical sequences of Rothe, as introduced in [49]. To handle the 1st

additive term of (3.6) properly, we need also certain quadratic interpolation

(3.10) Um(t) = um
s−1 +

t− (s− 1)τ

2τ
(Dum

s +Dum
s−1) +

(t− (s− 1)τ)2

2τ2
D2um

s ,

821



where D2um
s = Dum

s − Dum
s−1. Thus, we are able to rewrite (3.6) in its time-

discretized form

(3.11) (v, ̺Üm) + β(v, ̺u̇m) + α(ε(v), Cε(u̇m))

+ (ε(v), (1 − D̆
m)Cε(ūm)) = (v, fm) + 〈v, gm〉Γ,

where D̆m refers to the evaluation ofD with ŭm, instead of u by (3.6); this is a simple

function with certain values um
s−1, denoted by Dm

s−1 for brevity, cf. (3.12). For any

step-by-step evaluation with s ∈ {1, . . . ,m}, taking t ∈ Ims only, (3.11) gets the form

(3.12)
1

τ2
(v, ̺D2um

s ) +
β

τ
(v, ̺Dum

s ) +
α

τ
(ε(v), Cε(Dum

s ))

+ (ε(v), (1 −D
m
s−1)Cε(um

s )) = (v, fm
s ) + 〈v, gms 〉Γ.

The following theorem guarantees the solvability of (3.6) assuming (3.1), utilizing

the computational construction of sequences by (3.12).

Theorem 3.1. Let us consider a damage factor by (3.3). There exist a solution

u ∈ V satisfying (3.6) for any v ∈ V together with the Cauchy initial condition (3.1).

Moreover, u, u̇ ∈ C(I,H) and up to subsequences,

{Üm}∞m=1 converges weakly to ü in L2(I, V ∗),(3.13)

{u̇m}∞m=1 converges weakly to u̇ in L2(I, V ),

{u̇m(t)}∞m=1 converges weakly to u̇ in H for any t ∈ I,

{ūm(t)}∞m=1 converges weakly to u in V for any t ∈ I,

{ŭm(t)}∞m=1 converges weakly to u in V for any t ∈ I,

{ŭm(t)}∞m=1 converges strongly to u in H for any t ∈ I,

{U̇m}∞m=1 converges strongly to u̇ in L2(I,H),

using the sequences {um}∞m=1, {ūm}∞m=1, {ŭm}∞m=1 and {Um}∞m=1, induced by (3.8),

(3.9) and (3.10), for the time-discretization scheme (3.11).

P r o o f. Let us choose v = Dum
s in (3.12), with the aim to derive some a priori

bounds for the above introduced sequences generated by Um, um, ūm and ŭm with

integer m. We receive

(3.14)
1

τ2
(Dum

s , ̺D2um
s ) +

β

τ
(Dum

s , ̺Dum
s ) +

α

τ
(ε(Dum

s ), Cε(Dum
s ))

+ (ε(Dum
s ), (1−D

m
s−1)Cε(um

s )) = (Dum
s , fm

s ) + 〈Dum
s , gms 〉Γ.

822



The same results remain true with arbitrary r ∈ {1, . . . , s} instead of s. Using the
obvious relation 2a(a − b) = a2 − b2 + (a − b)2 valid for any real a and b, the sum

of all equations (3.14), understanding r as well as p ∈ {1, . . . , s − 1} (needed in the
following 6th left-hand-side additive term exclusively) as Einstein summation indices,

is then

(3.15)
1

2τ2
(Dum

s , ̺Dum
s ) +

1

2τ2
(D2um

r , ̺D2um
r )

+
β

τ
(Dum

r , ̺Dum
r ) +

α

τ
(ε(Dum

r ), Cε(Dum
r ))

+
1

2
(ε(um

s ), (1 −D
m
s−1)Cε(um

s )) +
1

2
(ε(um

p ), (Dm
p −D

m
p−1)ε(u

m
p ))

+
1

2
(ε(Dum

r ), (1−D
m
r−1)Cε(Dum

r ))

= (Dum
r , fm

r ) + 〈Dum
r , gmr 〉Γ.

All left-hand-side additive terms are non-negative, namely the 6th one thanks

to (3.3), thus the 2nd, 3rd and 6th ones can be bounded by zero from below. The

more precise estimates for the 1st, 4th and 5th terms, applying Lemma 2.3 to the 4th

and 5th ones, are

(3.16)
1

2τ2
(Dum

s , ̺Dum
s ) >

̺0
2τ2

|Dum
s |2,

α

τ
(ε(Dum

r ), Cε(Dum
r )) >

αC0K

τ
δrr‖Dum

r ‖2,
1

2
(ε(um

s ), (1−D
m
s )Cε(um

s )) >
ςC0K

2
‖um

s ‖2.

Using the Cauchy-Schwarz and the Young inequalities, the 1st and 2nd rigth-hand-

side terms of (3.14) then admit the estimates

(3.17) (Dum
r , fm

r ) 6 |Dum
r ||fm

r | 6 ε

2τ
δrr|Dum

r |2 + τ

2ε
δrr|fm

r |2

6
ε

2τ
δrr‖Dum

r ‖2 + τ

2ε
δrr|fm

r |2,

〈Dum
r , gmr 〉Γ 6 |Dum

r |Γ|gmr |Γ 6
ε

2τ
δrr|Dum

r |2Γ +
τ

2ε
δrr|gmr |2Γ

6
εT

2τ
δrr‖Dum

r ‖2 + τ

2ε
δrr|gmr |2Γ,

where ε is an arbitrary positive constant; the constant T in the last inequality comes

from Lemma 2.2. Comparing (3.16) and (3.17) with respect to (3.7), we obtain

(3.18)
1

τ2
|Dum

s |2 + 1

τ
δrr‖Dum

r ‖2 + ‖us‖2 6 c,
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where c is a positive constant independent of τ (as well as of m, s, etc.). The evident

consequences of (3.18) are:

(3.19) {u̇m}∞m=1 is bounded in L2(I, V ),

{u̇m(t)}∞m=1 is bounded in H for any t ∈ I,

{ūm(t)}∞m=1 is bounded in V for any t ∈ I,

{ŭm(t)}∞m=1 is bounded in V for any t ∈ I.

Moreover, from (3.11), converted to the form

(3.20) (v, ̺Üm) = − β(v, ̺u̇m)− α(ε(v), Cε(u̇m))

− (ε(v), (1 − D̆
m)Cε(ūm)) + (v, fm) + 〈v, gm〉Γ,

we are able to derive an additional estimate for Üm, using the dual space to L2(I, V )

as suggested by [50], p. 205; cf. also the comment to the proof of Lemma 2.4. Taking

‖v‖ 6 1, (v, ̺Üm) in (3.20) can be bounded from its right-hand side again, using

the Cauchy-Schwarz inequalities and further arguments similarly to (3.17), together

with the knowledge of all results (3.19); thus, we have (v, ̺Üm) 6 ĉ for a positive

constant ĉ and consequently,

(3.21) {̺Üm}∞m=1 is bounded in L2(I, V ∗).

Let us notice that (3.21) remains true without the positive multiplier ̺ ∈ L∞(Ω).

From (3.21) and (3.19) we can now conclude, following Lemma 2.5, up to subse-

quences that

{Üm}∞m=1 converges weakly to u′′ in L2(I, V ∗),(3.22)

{u̇m}∞m=1 converges weakly to û in L2(I, V ),

{u̇m(t)}∞m=1 converges weakly to u′ in H for any t ∈ I,

{ūm(t)}∞m=1 converges weakly to ū in V for any t ∈ I,

{ŭm(t)}∞m=1 converges weakly to ŭ in V for any t ∈ I,

{ŭm(t)}∞m=1 converges strongly to ŭ in H for any t ∈ I,

{U̇m}∞m=1 converges strongly to u⋄ in L2(I,H),

etc., where u′′, û, u′, ū and ŭ are some elements of corresponding spaces, see

Lemma 2.6 for the last proposition, too. The strong convergence of {D̆m}∞m=1,

seemingly as in that for {ŭm(t)}∞m=1 in the 6th proposition of (3.22), is inherited

from the formal introduction of D here and will need more detailed analysis.
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In particular, considering t ∈ I, by Lemma 2.6 u⋄(t) coincides with
∫ t

0
u′′(ξ) dξ;

also further limits can be unified. The 2nd and 3rd propositions (3.22) man-

ifest the weak convergence of the same sequence both to û and to u′, e.g. in

L2(I,H), thus û = u′. The obvious estimate max
t∈I

(|um(t)− ūm(t)|, |um(t)− ŭm(t)|) 6
max

s∈{1,...,m}
|Dum

s | 6 √
cτ , referring to (3.18), implies u = ū = ŭ and u̇ = u′, where

u(t) =
∫ t

0
u′(ξ) dξ. Thus, it remains to identify u′′ with ü only, as the most delicate

task. Let us work with symbols [·] for integration over I for brevity. The following
integration by parts, inspired by [50], p. 210, can be helpful:

(3.23) [(w, u′′)] = lim
m→∞

[(w, Üm)] = − lim
m→∞

[(ẇ, U̇m)]

= − lim
m→∞

[(ẇ, U̇m − u̇m)]− lim
m→∞

[(ẇ, u̇m)]

= − lim
m→∞

[(ẇ, U̇m − u̇m)]− [(ẇ, u̇)]

is valid for each w from the space of distributions C∞
0 (I). Moreover, for arbitrary

t ∈ Ims , s ∈ {1, . . . ,m}, we can write

(3.24) U̇m − u̇m =
t− (s− 1)τ

τ2
D2um

s +
1

2τ
(Dum

s +Dum
s−1)−

1

τ
Dum

s

=
t− (s− 1)τ

τ2
D2um

s +
1

2τ
(Dum

s−1 −Dum
s )

=
t− (s− 1/2)τ

τ2
D2um

s = (t− (s− 1/2)τ)Üm.

Let us remind that 0 6 t− (s− 1
2 )τ 6 1

2τ here. Thus, inserting (3.24) into the result

of (3.23), the limit in its 1st additive term vanishes, whereas the 2nd additive term

is sufficient to identify u′′ with ü, etc., as explained by Buncure [7], p. 49. Thus, the

modified form of (3.22) is just (3.13); also the convergence of {D̆m}∞m=1 can work

with u. This enables the limit passage from (3.11) to (3.6) finally; u, u̇ ∈ C(I,H)

follows from Lemma 2.5. �

Let us recall that the crucial step for the design of a model with micro-cracks is the

reasonable choice of the damage factor D. Here we shall demonstrate how to express

it as an appropriate function of σ, with certain regularizing properties. This can be

done using some kernel (typically radial basis or similar) operator K ∈ L2(Ω × Ω),

introduced as

(3.25) A(w(x)) =

∫

Ω

K(x, x̃)w(x̃) dx̃

for x ∈ Ω and w ∈ H by [17]. From the mathematical point of view, such non-

local approach to engineering mechanics relies on the properties of compact linear

825



operators, discussed in [13], Part 2.2, in details; for its computational implementation

cf. [5] and [39]. The following regularization (compactness) property of the kernel K,

taken from L2(Ω×Ω), is useful: if {wk}∞k=1 is a sequence converging weakly to w inH ,

then taking w̃ = A(w) and w̃k = A(wk) up to a subsequence, {w̃k}∞k=1 converges

strongly to w̃ in H . Two different ways of verification of this result can be found in

[13], pp. 80 and 81.

The needed generalization introduced by [20] for w ∈ L2(Ω)3×3
sym or that for w ∈ H ,

referring to principal stresses by [23], Part 1.5, is straightforward. Namely, [34] works

with K(x, x̃) = K(|x− x̃|3), where |·|3 means the norm in R
3 and K(|x − x̃|3) is ob-

tained using Green functions of a special bi-Helmholtz equation; for certain class of

brittle fracture this can be traced up to atomistic considerations, working with dis-

location and disclination defects. However, for more complicated material structures

such transparent theory is not available; e.g. for practical computational simula-

tions of behaviour of fibre-reinforced concrete structures under mechanical loads [12]

recommends the “generalized Mazars model” with several heuristic parameters, re-

specting anisotropy together with different behaviour under tension and pressure

like [28] and [24], inspired by [44], [45] and [21].

Thus, we are ready, using σ from (3.5), for any fixed time ξ ∈ I, to derive (at least

theoretically) all non-local stress values

(3.26) σ̃(ξ) = A(σ(ξ))

belonging to L2(Ω)3×3
sym . Thanks to (3.26), it only remains to set

(3.27) D∗(u(ξ)) = ω(|σ̃(ξ)|3×3),

taking ω as a real continuous non-decreasing function (containing some additional

experimentally validated parameters typically) for the right-hand side of (3.3), |·|3×3

here means the norm in R
3×3. Clearly, the resulting damage factor D, obtained

from (3.3) with (3.27), depends on u from (3.2) in a rather complicated way. Nev-

ertheless, such formulation of (3.3) together with (3.25) enables us to exploit the

results on Nemytyskǐı mappings by [13], p. 134: if a sequence converges weakly to

u ∈ V for a fixed t ∈ I together with the sequence or corresponding time derivatives

converging to u̇, then thanks to (3.5), the operator A generates a weakly convergent

sequence to σ̃ ∈ H ; after the regularization (3.26), the same, up to a subsequence,

converges strongly to σ̃ ∈ H , etc. Consequently, thanks to the continuity of ω

by (3.27), we are allowed to come to the strong limit of the corresponding sequence

induced by (3.3), which may be helpful to overcome the non-linearity of our model

problem. However, the design of a sufficiently general class of functions ω admit-

ting all above sketched mathematical considerations and applicable in engineering
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practice (regardless of both physical and geometrical linearizations, connected with

the existence of a positive ς) cannot be seen as a closed problem; for a particular

examples cf. [28] and [58].

4. Implementation of macro-cracks

Instead of one domain Ω, as introduced in Section 3, let us consider a union

of a finite number of adjacent domains, denoted again by Ω, whose boundary ∂Ω

consists of 3 parts: of 2 exterior ones, analogical to Γ and Θ, and of a set of internal

interfaces Λ. Such notion of interfaces can cover both potential locations of macro-

cracks as well as existing interfaces between particular components of a composite,

e.g. between a cementitious matrix and stiffening fibres in building applications.

For simplicity, let us consider a material specimen occupying an open set Ξ with

its boundary ∂Ξ in the 3-dimensional Euclidean space R3, compounded from a finite

number of domains Ω× with their boundaries ∂Ω× in the following sense:

a) The union of closures of all domains Ω× is identical to the closure of the domain

Ω in R
3.

b) Every boundary ∂Ω× consists of a part belonging to ∂Ξ (external boundary) and

from that non-belonging to ∂Ξ (internal boundary); the 1st one will be denoted

by Ψ×, the 2nd one by Λ×. (Some of them can be empty.) Cohesive interface

conditions will be applied later on Λ×.

c) Every boundary part Ψ× is the union of its disjoint subsets Θ× and Γ×. (Some

of them can be empty.) Homogeneous Dirichlet boundary conditions will be

then prescribed on Θ× (supported boundary part), unlike Neumann boundary

conditions (inhomogeneous in general) on Γ× (unsupported boundary part).

d) The unions of above introduced sets Θ×, Γ× and Λ× are certain sets Ω, Γ and Λ.

Similarly, the union of all Ω× generates an open set Ω (i.e. Ξ without interior

boundaries) with its boundary ∂Ω.

We shall also work with the notation δv(x) for the differences of triples of values v(x)

from the neighbour domains Ω×; the same notation is applicable to arbitrary ṽ(x, t),

dependent also on t ∈ I, replacing v(x) here.

One can notice that such rather extensive list of assumptions tries to save the

validity of Lemmas 2.1, . . . , 2.6, to be able to adopt the proof of Theorem 3.1 without

serious difficulties. The potential modification of this approach for a finite dimension

other than 3 (namely as 2 in illustrative examples) is left to the patient reader.

Evidently a model problem with macro-cracks could be studied separately; however,

we shall now try to implement macro-cracking to the results of Section 3 directly.
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All notations need certain extensions. Namely, we shall utilize also the Hilbert

space ZΛ = L2(Λ)3, its norm |·|Λ and its scalar product 〈·, ·〉Λ. For the analysis
of potential opening and further behaviour of cracks let us consider such surface

tractions T ∈ L2(I, ZΛ) that

(4.1) T = λ(δu)

on Λ× I; possible forms of just introduced function λ can be found in [32] and [33].

Especially λ(δu) = λ0δu with a real constant λ0 → ∞ forces δu → O on Λ, i.e. the

continuity of u without no active macro-cracking. In general, we shall assume the

Lipschitz continuity of λ in the sense

(4.2) |λ(δv)|Λ 6 λ⋆|δv|Λ

for any v ∈ V and a positive λ⋆. For certain finite N independent of v, from (4.2)

we have:

(4.3) |δv|Λ 6 N
√
T‖v‖, |λ(δv)|Λ 6 λ⋆N

√
T‖v‖.

The existence of N comes from b), d) above: traces by the analogy of Lemma 2.2 are

related to any Ω× at most N -times, from corresponding cohesive boundary parts Λ×.

In the proof of Theorem 4.1 below we are allowed to take only T instead of N2T

formally, without any loss of generality.

Thus, we obtain the slight modification of (3.2):

(4.4) (v, ̺ü) + β(v, ̺u̇) + α(ε(v), σ̇) + (ε(v), (1 −D)σ)

= (v, f) + 〈v, g〉Γ + 〈δv, T 〉Λ on I.

Inserting (4.1) into (4.4), we receive the analogy of (3.2):

(4.5) (v, ̺ü) + β(v, ̺u̇) + α(ε(v), σ̇) + (ε(v), (1 −D)σ)

= (v, f) + 〈v, g〉Γ + 〈δv, λ(δu)〉Λ on I.

In most of the following equations, unlike (4.4) extending (3.2) and (4.5) extend-

ing (3.6), we shall discuss only additional rigth-hand-side terms for brevity. In par-

ticular, this means 〈δv, λ(δŭm)〉Λ in (3.11), 〈δv, λ(δum
s−1)〉Λ in (3.12); no improved

linearization will be considered, although the evaluation of λ(·) is typically less com-
plicated as that of D(·). Such approach will be useful in the proof of the following
theorem, too.

Theorem 4.1. Let us consider a damage factor by (3.3) and a cohesive interface

by (4.1), (4.2). There exists a solution u ∈ V satisfying (4.5) for any v ∈ V to-

gether with the Cauchy initial condition (3.1). Moreover, u, u̇ ∈ C(I,H) and up to

subsequences, (3.13) remains valid.
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P r o o f. All common ideas are the same as in the proof of Theorem 3.1. The above

announced additional terms are 〈δDum
s , λ(δum

s−1)〉Λ in (3.14) and 〈δDum
r , λ(δum

r−1)〉Λ
in (3.15) (involving the sum over r ∈ {1, . . . , s}). The extension of (3.17), making
use of (4.3), reads

(4.6) 〈δDum
r , λ(δum

r )〉Λ 6 |δDum
r |Γ|δum

r−1|Γ 6
ε

2τ
δrr|δDum

r |2Γ +
τ

2ε
δrr|δum

r−1|2Γ

6
εT

2τ
δrr‖Dum

r ‖2 + τT

2ε
δrr‖um

r−1‖2.

The last rigth-hand-side additive term of (4.6) causes the modification of (3.18)

(4.7)
1

τ2
|Dum

s |2 + 1

τ
δrr‖Dum

r ‖2 + ‖us‖2 6 c+ cτδrr‖ur‖2.

However, the 2nd right-hand-side additive term can be removed from (4.7), using the

Gronwall lemma by [13], p. 99; its simple discrete version from [9] is sufficient here.

Thus, we come back to (3.18) with some larger value of c. All remaining steps can be

then performed following the proof of Theorem 4.1 with obvious modifications. �

5. Computational strategy with illustrative examples

The computational scheme (3.12) by Section 3, including its extension by Section 4,

for the evaluation of um
s , s ∈ {1, . . . ,m} refers to the numerical analysis of m elliptic

problems of infinite dimension. In practical calculations, instead of v in (3.12) from

an infinite-dimensional space V , we consider a finite number n of test functions ϕn
i ,

where i ∈ {1, . . . , n} refers to a new Einstein summation index; the approximation
of um

s from (3.12) with n unknown parameters can be then constructed as

(5.1) um
s (x) = unm

is ϕn
i (x)

for any x from Ω or its suitable approximation. Consequently, step-by-step with

s ∈ {1, . . . ,m}, by (3.12) and (5.1) we choose ϕn
i as particular elements from a basis

of certain finite-dimensional space V n, approximating V (which can be a subspace

of V in a special case).

Typically ϕn
i are functions with small compact support, applicable in Ω, as well as

on Θ, Γ and Λ, or their approximations, to create a sparse system of linear algebraic

equations, and unm
is refer to nodal displacement values. The guarantee of solvability

of such system, together with the convergence properties for n → ∞, depend on
certain (semi-)regularity of such decomposition due to the XFEM-based adaptive
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enrichment functions, namely near geometric singularities. Here we shall apply the

approach of [29] to demonstrate the possibility of effective numerical simulations.

As an illustrative 2-dimensional example, the test task is a relatively simple body

with an a priori crack of a circular shape (fulfilling the plane strain condition). A uni-

form load was applied to the surface of this a priori crack, and thus the formation of

the following cracks emanating from this stress concentrator is assumed using XFEM.

The basic calculation system was the commercial software Abaqus 2018, into which

a user subroutine in the Fortran 90 language was implemented, realizing the mod-

elling of matrix damage using exponential law, based on the planar element CPE4.

The following basic input data corresponding to reinforced cement paste were used

for this task: the Young modulus E = 3.2GPa, the Poisson constant µ = 0.3 and the

tensile strength 10 MPa—cf. the discussion under (3.5) on some special structures

of C. For approximately 20mm long and 3mm thick circular steel fibres, the Young

modulus E = 190GPa and the same Poisson constant µ = 0.3 were used.

All figures show a typical distribution of principal stresses under plain strain condi-

tions. Figure 1 shows the distribution for quasi-static loads in certain representative

time for the pure cement paste. In the initial period, four germs of initial cracks

are formed evenly distributed along the circular initiator. The germs closer to the

plane of symmetry are running first as expected. Directions that are not blocked by

the fibres will run. Figure 2 presents the comparable result near 1 or 2 stiffening

fibres, where reinforcing metal fibres are introduced into the structure. The influence

of fibre blocking and their orientation is clear. Directions that are not blocked by

the fibres will run. Figure 3 demonstrates the non-local handling of stress near the

crack tip. Its left part attempts to illustrate the algorithm used to calculate the

stress concentrators in front of the crack tip. This picture has a schematic character,

indicates how the stresses are calculated with the help of a non-local approach. The

question is from which distance from the crack front it is appropriate to calculate the

stress distribution ahead the crack tip. Figure 4 reflects the Mazars model, evaluat-

ing the stress by certain exponential formula (cf. [44] and [21]). The former Mazars

model has gaps in the modelling of the behaviour of concrete during loading; the

new formulation was proposed to improve behaviour in bi-compression and shear-

ing. It was achieved by introduction of one new internal variable into the classical

Mazars model. It corresponds to the maximum of equivalent deformation reached

during loading. The damage factor is dependent on the stress concentration in front

of the local crack, therefore the real stress value is essential for the prediction of

the crack growth, especially the non-local approach can give credible direction of

damage. Figure 5 tries to implement some homogenized material structure with

“smeared cracks”, inspired by [28], where reinforcement has the influence to the

whole structure. XFEM approach reflects the increasing strength of structure.
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Figure 1. Principle stresses in the pure cement paste.

Figure 2. Principle stresses near 1 or 2 stiffening fibres.

Figure 3. Non-local handling of stress near the crack tip.
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Figure 4. Application of Mazars model.

Figure 5. Application of crack homogenization.

6. Some modifications and generalizations

Numerous computational tools in fracture mechanics ignore the first couple of

additional terms in (3.2), which switches to a quasi-static problem where the time

evolution of damage relies on the 3rd additive term; even in our illustrative exam-

ples the 1st and 2nd terms are not dominant. Clearly, the 2nd condition (3.1) is not

applicable. Some estimates from Sections 3 and 4 degenerate, namely the 1st inequal-

ity (3.16) to 0 = 0. Thus, less regular results in comparison with the above discussed

dynamic case can be expected and their derivation cannot be easily repeated. The

remedy is to seek for u ∈ W 1,2,2(I, V, V ⋆) instead of u ∈ W 1,2,2,2(I, V, V, V ⋆); all

details of such approach can be found in [58].
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Other seemingly useful generalization ideas can rely on the removal of too strict

assumptions, e.g. that on the Lipschitz boundary for Lemmas 2.1,. . ., 2.6, thus also

for Theorems 3.1 and 4.1. Indeed, results like [26] (on Sobolev embeddinng on arbi-

trary domains), [7] (on improved trace operators), [8] (on weaker Bochner-Sobolev

evolution triples), etc., offer this way. However, we have ignored it here, at least from

three reasons: i) the original version of this paper, prepared for the (rarely physical)

discussion at the seminar PANM (Programs and Algorithms of Numerical Mathemat-

ics) in Hejnice (Czech Republic) in June 2020 was intended to be as reader-friendly

as possible, ii) numerous technical difficulties in proofs have to be overcome, often

those occurring in practical modelling and simulation software tools exceptionally,

iii) such generalizations do not handle more significant limitations of our approach:

iii–1) the non-local damage factor implemented into certain linearized model, work-

ing with small strains and linearized empirical constitutive (strain-stress) relations

in the case of micro-cracking, iii–2) the careful description of geometrical properties

of Ω, Λ, etc., admitting the macroscopic cracks only at a finite number of prescribed

interfaces. Because of iii–1) we are not able to detect a total loss of stiffness in some

part of Ω properly, whereas iii–2) may not cover some practical XFEM techniques

correctly. Certain inspiration for a future (much more complicated) proper finite-

strain formulation can be found in [40], Part 4.2.4, in confrontation with [10] and

[35], together with the scale-bridging using structured deformation, following [11],

[42] and [52].

7. Conclusion

We have demonstrated the possibility of simultaneous deterministic study of dy-

namics of micro- and macro-cracking in quasi-brittle composites, using the standard

linearized viscoelastic model with two non-linear terms, covering i) the non-local

evaluation of damage factor D for micro-cracking and ii) the cohesive behaviour of

macroscopis cracks. Some unclosed problems occur even in such linearized theory,

namely in the physically and mathematically proper interpretation of D, ad hoc

implemented in available software packages.

The limitations of the presented approach, sketched in the preceding section, can

be seen as motivations for continuing research in the near future. Its possible aim of

high practical importance can be the development, verification and validation of the

computational tool for prediction of quasi-brittle behaviour of structural components

from fibre reinforced composites under mechanical loads, with methodology based on

the physical model incorporating most significant physical processes, namely elastic

and plastic deformation, crack initiation and propagation in a matrix and alternative

debonding and rupture of fibres.
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