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Abstract. An energy conservative scheme is proposed for the regularized long wave (RLW)
equation. The integral method with variational limit is used to discretize the spatial deriva-
tive and the finite difference method is used to discretize the time derivative. The energy
conservation of the scheme and existence of the numerical solution are proved. The con-
vergence of the order O(h2 + τ

2) and unconditional stability are also derived. Numerical
examples are carried out to verify the correctness of the theoretical analysis.
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1. Introduction

Consider the initial boundary value problem for the regularized long wave (RLW)

equation

(1.1) ut + ux − uxxt + uux = 0

with the initial condition

(1.2) u(x, 0) = u0(x), x ∈ [xl, xr],

and boundary condition

(1.3) u(xl, t) = u(xr, t) = 0, t ∈ [0, T ].
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The physical boundary requires u → 0 as |x| → ∞. So, if −xl ≫ 0 and xr ≫ 0,

problem (1.1)–(1.3) is in accordance with the Cauchy problem for equation (1.1).

The RLW initial boundary value problem (1.1)–(1.3) has the conservation law

(1.4) E(t)
.
=

∫ xr

xl

(u(x, t) + ux(x, t)) dx = const.,

where E(t) is a positive constant which relates to the initial condition.

The RLW was first proposed by Peregrine [24], [25]. It is a representative form

of a nonlinear long wave which can describe a lot of important physical phenomena,

such as shallow waves and ionic waves, etc. [31], [28].

There is some theoretical work available for the regularized long wave equation.

In [6], Chertovskih et al. consider space-periodic evolutionary and travelling-wave

solutions to the regularized long wave equation with damping and forcing. Existence,

uniqueness and smoothness of the evolutionary solutions for smooth initial conditions

are established. In [1], the locally and globally well-posed initial value problem for

the symmetric regularized long wave equation is studied. The existence and nonlinear

stability of periodic travelling wave solutions are also proved in [1]. In [12], [30], [9],

the existence and uniqueness of the solution and the existence of weak attractors are

proved for the symmetric regularized long wave equation with a damping term.

It is usually impossible to find analytical solutions for the RLW equation, espe-

cially when the nonlinear terms are involved [19], [24]. Therefore, finding its numer-

ical solutions is of practical importance. Various types of methods have been used

to solve (1.1), like the H1-Galerkin mixed finite element method [11], the B-spline

finite element method [27], [10], [17], [18], finite difference methods [31], [37], the

distributed approximating functional method [26], and the Haar wavelet combined

with the finite difference method [23]. Moreover, [8], [2], [34], [32], [5], [7], [36], [4]

also display interesting numerical results for the RLW equation. In recent research,

Lin Bin et al. solved the RLW equation using the parametric spline method in [20]

and non-polynomial splines method in [21]. Hammad derived a Chebyshev spectral

collocation scheme for the RLW equation in [13]. In [35], energy and momentum pre-

serving schemes were proposed and designed using the discrete variational derivative

method and the finite volume method to solve the modified RLW equation. In [29],

a collocation method depending on the cubic trigonometric B-spline approach based

on a finite difference scheme was suggested to solve the modified RLW equation. In

[15], [16], the B-spline Galerkin finite element space discretization with different time

discretization was used to solve the RLW equation numerically. In [3], a numerical

scheme for the equation was developed and analyzed by the Petrov-Galerkin method

for the RLW equation in which the element shape functions are cubic and weight
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functions are quadratic B-splines. In [33] two conservative and fourth-order compact

finite difference schemes were proposed and analyzed for solving the RLW equation.

Taking these backgrounds into account, in this paper we propose a new conserva-

tive scheme using the integral method with variational limit for the RLW equation

which has the second-order accuracy both in space and time and conserves energy.

This paper is organized as follows. In Section 2, we present the discretization

scheme. The scheme is obtained by using the integral method with variational limit

to discretize the space and the finite difference method to discretize the time. In

Section 3, we discuss discrete conservation laws. In Section 4, we prove the scheme

is solvable and present an a priori estimate for the solution of the scheme. The con-

vergence and stability for the proposed scheme are proved in Section 5. In Section 6,

we give some numerical experiments to test the convergence precision and energy

conservation, to calculate the three invariants and to simulate two waves collision.

Finally, the conclusions are drawn in Section 7.

2. Construction of the conservative scheme by the integral method

with variational limit

2.1. Brief introduction to the integral method with variational limit.

The integral method with variational limit is a new numerical method for solving

differential equations. It has been successfully applied to solve the Klein-Gordon

equation in [22]. Eliminating the derivative by integrating is the main idea of the

integral method with variational limit.

For example, when the highest order derivative in space is the second order one,

we integrate each term of the equation,

∫

xx

u(x)
def
=

∫ xj+ε2

xj

dxb

∫ xj

xj−ε1

dxa

∫ xb

xa

u(x) dx,

where ε1 and ε2 are undetermined coefficients. Then we can eliminate all the deriva-

tives in x directions of order less than second (see [22]).

The integral method with variational limit transforms a partial differential equa-

tion into an integral equation and provides an effective method to solve differential

equations. By using the “weighted” information at all points in the region around

the mesh point, and not just only the information at the mesh points, the integral

method with variational limit can be used to design many interesting schemes with

excellent properties by adjusting bounds for parameters and choosing an appropriate

interpolation function.
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2.2. Some notations. For positive integers J and N , let h = (xr − xl)/J be

the space step xj = xl + jh, j = 0, 1, . . . , J − 1, J , and let τ = T/N be the time

step tn = nτ , n = 0, 1, . . . , N . Define un
j = u(xj , tn), Ωh = {uj ; uj = u(xj),

j = 0, 1, . . . , J, u0 = uJ = 0}.
First we introduce the notations

δ+x u
n
j =

un
j+1 − un

j

h
, δ−x u

n
j =

un
j − un

j−1

h
, δxu

n
j =

un
j+1 − un

j−1

2h
,

δ2xu
n
j =

un
j+1 − 2un

j + un
j−1

h2
, δtu

n
j =

un+1
j − un−1

j

2τ
, ūn

j =
un−1
j + un+1

j

2
.

For any two grid functions u, v ∈ Ωh, we define the discrete inner product as

(u, v) = h

J−1
∑

j=1

ujvj .

The discrete L2-norm and infinity norm are defined as

‖v‖ =
√

(v, v), ‖v‖∞ = max
j

|vj |.

In this paper, we denote by C a general positive constant, which may take different

values at different occurrences and is independent of h and τ .

2.3. Constructing an energy conservative scheme for the RLW equation.

We construct an energy conservative scheme for the RLW equation by the integral

method with variational limit in this subsection.

Firstly, integrating each term of (1.1) from xa to xb with respect to x, we get

(2.1)

∫ xb

xa

∂u

∂t
dx+ u(xb, t)− u(xa, t)−

∂2u(xb, t)

∂xb∂t
+

∂2u(xa, t)

∂xa∂t

+
1

2
((u(xb, t))

2 − (u(xa, t))
2) = 0.

Secondly, notice that

(2.2)

∫ xj+ε2

xj

∫ xj

xj−ε1

(∂2u(xb, t)

∂xb∂t
− ∂2u(xa, t)

∂xa∂t

)

dxa dxb

= ε1
∂u(xj + ε2, t)

∂t
− (ε1 + ε2)

∂u(xj , t)

∂t
+ ε2

∂u(xj − ε1, t)

∂t
,

748



then integrate each term of equation (2.1) from xj − ε1 to xj with respect to xa and

from xj to xj + ε2 with respect to xb , and (2.1) can be rewritten as

(2.3)

∫ xj+ε2

xj

∫ xj

xj−ε1

∫ xb

xa

∂u(x, t)

∂t
dx dxa dxb

+

∫ xj+ε2

xj

∫ xj

xj−ε1

(u(xb, t)− u(xa, t)) dxa dxb

− ε1
∂u(xj + ε2, t)

∂t
− ε2

∂u(xj − ε1, t)

∂t
+ (ε2 + ε1)

∂u(xj , t)

∂t

+
1

2

∫ xj+ε2

xj

∫ xj

xj−ε1

((u(xb, t))
2 − (u(xa, t))

2) dxa dxb = 0,

where ε1 and ε2 are undetermined coefficients.

Thirdly, the following Lagrange interpolation is used to approximate u(x) in equa-

tion (2.3) near the point x = xj ,

(2.4) u(x, t) =

j+1
∑

p=j−1

( j+1
∏

r=j−1
r 6=p

x− xr

xp − xr

)

u(xp, t) +R(x, t),

where R(x, t) is the truncation error and there exists ξ between x and xj such that

R(x, t) =
1

6

∂3

∂x3
u(ξ, t)(x − xj−1)(x − xj)(x − xj+1).

Letting ε1 = ε2 = ε and substituting (2.4) into (2.3), each term of (2.3) can be

written as

∫ xj+ε2

xj

∫ xj

xj−ε1

∫ xb

xa

∂u(x, t)

∂t
dxdxa dxb(2.5)

=
ε5

12h2

∂u(xj−1, t)

∂t
+
(

− ε5

6h2
+ ε3

)∂u(xj , t)

∂t
+

ε5

12h2

∂u(xj+1, t)

∂t
+R1,

∫ xj+ε2

xj

∫ xj

xj−ε1

(u(xb, t)− u(xa, t)) dxa dxb(2.6)

= − ε3

2h
u(xj−1, t) +

ε3

2h
u(xj+1, t)+R2,

ε1
∂u(xj + ε2, t)

∂t
− (ε1 + ε2)

∂u(xj , t)

∂t
+ ε2

∂u(xj − ε1, t)

∂t
(2.7)

=
ε3

h2

∂u(xj−1, t)

∂t
− 2ε3

h2

∂u(xj , t)

∂t
+

ε3

h2

∂u(xj+1, t)

∂t
+R3,
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and

(2.8)

∫ xj+ε2

xj

∫ xj

xj−ε1

((u(xb, t))
2 − (u(xa, t))

2) dxa dxb

=
ε5

4h3
((u(xj+1, t))

2 − (u(xj−1, t))
2)

+
(ε3

h
− ε5

2h3

)

(u(xj+1, t)− u(xj−1, t))u(xj , t) +R4.

Dividing (2.5)–(2.8) by the integral factor
∫ xj+ε2

xj

∫ xj

xj−ε1

∫ xb

xa
1 dxdxa dxb = ε3, which

is introduced by integration, we obtain

(2.9)
ε2

12h2
((uj−1)t + (uj+1)t) +

(

1− ε2

6h2

)

(uj)t +
1

2h
(uj+1 − uj−1)

− 1

h2
((uj−1)t + (uj+1)t) +

2

h2
(uj)t +

ε2

8h3
((uj+1)

2 − (uj−1)
2)

+
( 1

2h
− ε2

4h3

)

(uj+1 − uj−1)uj +R′
1 +R′

2 −R′
3 +

R′
4

2
= 0,

where R′
i = Ri/ε

3, i = 1, 2, 3, 4.

From the Taylor formula, we have

(2.10) (un
j )t =

un+1
j − un−1

j

2τ
+O(τ2), un

j = ūn
j +O(τ2).

Then equation (2.9) can be rewritten as

(2.11)
ε2

12
δ2xδtu

n
j + δtu

n
j + δxū

n
j − δ2xδtu

n
j +

ε2

8h3
((ūn

j+1)
2 − (ūn

j−1)
2)

+
( 1

2h
− ε2

4h3

)

(ūn
j+1 − ūn

j−1)ū
n
j +R′

1 +R′
2 −R′

3 +
R′

4

2
+O(τ2) = 0.

Omitting R′
1, R

′
2, R

′
3, R

′
4 and O(τ2) in (2.11), and letting ε = 2h/

√
3, we obtain

the scheme

(2.12)
(h2

9
− 1

)

δ2xδtU
n
j + δtU

n
j + δxU

n
j +

1

3
(Un

j δxU
n
j + δx(U

n
j )

2) = 0.

R em a r k 2.1. The purpose of letting ε = 2h/
√
3 is to design appropriate non-

linear terms to obtain a numerical scheme that can preserve the conservation of

energy. See the conservation of energy theorem (Theorem 3.2).
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R em a r k 2.2. The proposed numerical scheme (2.12) looks like a finite differ-

ence scheme with an additional regularization term 1
9h

2δ2xδtU
n
j . In fact, it comes

from the variable limit integral of the ut term. It is easy to see
1
9h

2δ2xδtU
n
j + δtU

n
j =

1
9δt(U

n
j−1+7Un

j +Un
j+1). This makes the variable limit integration method use more

space information for the discretization of ut and the introduction of this term may

make the numerical scheme more stable. The same phenomenon is more obvious in

the higher order variable limit integral scheme, see [22].

The matrix form of the above scheme (2.12) is

(2.13)
(h2

9
− 1

)

δ2xδtU
n + δtU

n + δxU
n +

1

3
(U

n
δxU

n
+ δx(U

n
)2) = 0,

where Un = (Un
1 , U

n
2 , . . . , U

n
J−1)

⊤, n = 0, 1, . . . , N .

R em a r k 2.3. Since (2.13) is a three level scheme, the first two layers are re-

quired to start this scheme. For the first level, taking initial conditions (1.2) into

consideration, we have

(2.14) U0 = (u0(x1), u0(x2), . . . , u0(xJ−1))
⊤.

And from the Taylor formula, we obtain the second level as

(2.15) U1
j = U0

j + τ(U0
j )t +

τ2

2
(U0

j )tt +O(τ3),

where (U0
j )t and (U

0
j )tt are the numerical values of ∂u(xj , 0)/∂t and ∂

2u(xj , 0)/∂t
2.

Noticing that ε = 2h/
√
3 and from (2.9), we can use the formulas

(h2

9
− 1

)

δ2x(U
0
j )t + (U0

j )t = −δxU
0
j − 1

3
(U0

j δxU
0
j + δx(U

0
j )

2)

and

(h2

9
− 1

)

δ2x(U
0
j )tt+(U0

j )tt = −δx(U
0
j )t−

1

3
((U0

j )tδxU
0
j +U0

j δx(U
0
j )t+2δx(U

0
j (U

0
j )t))

to calculate (U0
j )t and (U0

j )tt in (2.15).
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3. Conservation of energy

Before giving the conservation law, we introduce the following lemma:

Lemma 3.1 (see [38], [14]). For any two mesh functions u, v ∈ Ωh, we have

(δ2xu, v) = (δ+δ−u, v) = −(δ+u, δ+v), (δu, v) = −(u, δv), ‖δxu‖2 6 ‖δ+x u‖2.

Theorem 3.2. The solution of scheme (2.13)–(2.15) satisfies the energy conser-

vation law

En .
=

(

1− h2

9

)

(‖δ+x Un+1‖2 + ‖δ+x Un‖2)+‖Un+1‖2 + ‖Un‖2 = C,

where n = 0, 1, . . . , N − 1.

P r o o f. Computing the inner product of (2.13) with 2Un = Un+1 + Un−1, we

have from Lemma 3.1,

(δ2xδtU
n, Un+1 + Un−1) = −(δ+x δtU

n, δ+x (U
n+1 + Un−1))(3.1)

= − 1

2τ
(‖δ+x Un+1‖2 − ‖δ+x Un−1‖2),

(δtU
n, Un+1 + Un−1) =

1

2τ
(‖Un+1‖2 − ‖Un−1‖2)(3.2)

and

(3.3) (δxU
n
, Un+1 + Un−1) =

1

2
(δx(U

n+1 + Un−1), Un+1 + Un−1) = 0.

Notice that

(U
n
δxU

n
, U

n
) = h

J−1
∑

j=1

Un
j δxU

n
j U

n
j = h

J−1
∑

j=1

δxU
n
j (U

n
j )

2 = (δxU
n
, (U

n
)2).

Then we obtain

(3.4) (U
n
δxU

n
+ δx(U

n
)2, U

n
) = (U

n
δxU

n
, U

n
)− ((U

n
)2, δxU

n
) = 0.

From (3.2)–(3.4), we obtain

(3.5)
(

1− h2

9

)

(‖δ+x Un+1‖2 − ‖δ+x Un−1‖2)+‖Un+1‖2 − ‖Un−1‖2 = 0

for all n = 1, 2, . . . , N . Define En by

(3.6) En =
(

1− h2

9

)

(‖δ+x Un+1‖2 + ‖δ+x Un‖2)+‖Un+1‖2 + ‖Un‖2,

then equation (3.5) can be rewritten as En = En−1 for all n = 1, 2, . . . , N − 1.

This completes the proof. �
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R em a r k 3.3. When the space step h → 0, the energy conservation law (3.6) can

more strictly reflect energy conservation property (1.4) of original partial differential

equation (2.1)–(2.4).

4. Solvability and a priori estimate

Lemma 4.1 (see [33], Lemma 2.12; [38]). Let H be a finite dimensional inner

product space. Suppose that g : H → H is a continuous operator and there exists

α > 0 such that (g(z), z) > 0 for all z ∈ H with ‖z‖ = α . Then there exists z∗ ∈ H

such that g(z∗) = 0 and ‖z∗‖ 6 α.

Lemma 4.2 (Discrete Sobolev inequality [31], Lemma 2; [38]). For any discrete

function uh and for any given ε > 0, there exists a constant K(ε, n), depending

only ε and n, such that

‖un‖∞ 6 ε‖δ+x un‖+K(ε, n)‖un‖.

Theorem 4.3. The solution of scheme (2.13) exists.

P r o o f. From (2.14)–(2.15), the solution exists for n = 0 and n = 1. Suppose

that there exist U0, U1, . . . , Un satisfying scheme (2.14)–(2.15) for 0 6 n 6 N − 1.

Next we prove that there exists Un+1 satisfying scheme (2.13)–(2.15). Let ω be an

operator defined on Ωh by

ω(ζ) =
(h2

9
− 1

)

δ2x(ζ − Un−1) + (ζ − Un−1) + τδxζ +
τ

3
(ζδxζ + δx(ζ)

2).

Taking the inner product of ω(ζ) with ζ, similarly to the proof of Theorem 3.2, by

the Cauchy-Schwarz inequality, and when h is small enough, we have

(4.1) (ω(ζ), ζ) =
(

1− h2

9

)

(‖δ+x ζ‖2 − (δ+x U
n−1, δ+x ζ)) + ‖ζ‖2 − (Un−1, ζ)

>
9− h2

9
‖δ+x ζ‖2 −

9− h2

18
(‖δ+x Un−1‖2 + ‖δ+x ζ‖2)

+ ‖ζ‖2 − 1

2
(‖Un−1‖2 + ‖ζ‖2)

>
1

2
‖ζ‖2 − 1

2
(‖δ+x Un−1‖2 + ‖Un−1‖2).

Therefore, for all ζ ∈ Ωh and ‖ζ‖2 = ‖δ+x Un−1‖2+‖Un−1‖2+1, we have (ω(ζ), ζ) > 0.

From Lemma 4.1, there exists ζ∗ such that ω(ζ∗) = 0. Let Un+1 = 2ζ∗ −Un−1 then

Un+1 is the solution of scheme (2.13)–(2.15). �
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Next, we present an a priori estimate for the solution of scheme (2.13)–(2.15).

Theorem 4.4. Assume that u0 ∈ H1
0 [xl, xr]. Then

‖Un‖ 6 C, ‖δ+x Un‖ 6 C, ‖Un‖∞ 6 C,

where C is a generic positive constant depending on the initial condition u0(x) and

independent of h and τ .

P r o o f. From (2.15) and (3.6), when h is small enough we have

(4.2) En = E0 =
(

1− h2

9

)

(‖δ+x U1‖2 + ‖δ+x U0‖2)+‖U1‖2 + ‖U0‖2

6 ‖δ+x U1‖2 + ‖δ+x U0‖2 + ‖U1‖2 + ‖U0‖2 = C.

When h is small enough, we have 1 − h2/9 > 0, thus from (4.2) and the definition

of En we have
(

1− h2

9

)

(‖δ+x Un‖2) 6 C, ‖Un‖2 6 C.

For any h small enough, there exists the same positive constant C1 such that

9/(9− h2) < C1, and then

‖δ+x Un‖ 6
9

9− h2
C 6 C.

From Lemma 4.2 we can prove that ‖Un‖∞ 6 C. �

5. Convergence and stability

Lemma 5.1 (see [38]). Suppose that the discrete function wh satisfies the recur-

rence formula

wn − wn−1 6 Aτwn +Bτwn + Cnτ,

where A, B, C (n = 1, . . . , N) are nonnegative constants. Then

‖wn‖ 6

(

w0 + τ

N
∑

k=1

Ck

)

e2(A+B)τ

where τ is small, such that (A+B)τ 6 1
2 (N − 1)/N for N > 1.
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Lemma 5.2. Suppose u(x, t) is a smooth enough function, and ∂4u(x, t)/(∂x3∂t),

∂3u(x, t)/∂x3, ∂5u(x, t)/(∂x4∂t) and u(x, t) are bounded by C, then the truncation

error of scheme (2.13) is O(h2 + τ2), that means

R′
1 +R′

2 −R′
3 +

1
2R

′
4 +O(τ2) 6 C(h2 + τ2).

P r o o f. From (2.4) and (2.5) and noticing that ε1 = ε2 = 2h/
√
3 we have

(5.1) R1 =

∫

xx

Rt 6

∫

xx

∣

∣

∣

1

3!

∂4u(ξ, t)

∂x3∂t

∣

∣

∣
|(x− xj−1)(x − xj)(x − xj+1)| 6 Ch6.

For R2, first we have

(5.2)

∫ xj+ε4

xj

∫ xj

xj−ε3

Rt(xb, t) dxa dxb

=
1

6

∫ xj+ε4

xj

∫ xj

xj−ε3

∂4u(ξ2b, t)

∂x3∂t
(xb − xj−1)(xb − xj)(xb − xj+1) dxa dxb

6

∫ xj+ε4

xj

∫ xj

xj−ε3

∣

∣

∣

∂4u(ξ2b, t)

∂x3∂t

∣

∣

∣
|(xb − xj−1)(xb − xj)(xb − xj+1)| dxa dxb 6 Ch5,

where ξ2b ∈ (xj−1, xj+1). Similarly we can prove

−
∫ xj+ε4

xj

∫ xj

xj−ε3

Rt(xa, t) dxa dxb 6 Ch5.

Then we obtain

R2 =

∫ xj+ε4

xj

∫ xj

xj−ε3

(Rt(xb, t)−Rt(xa, t)) dxa dxb 6 Ch5.

Next, noticing that Rt(xj , t) = 0 and the mean value theorem, we have

(5.3) R3 = ε1(Rt(xj + ε2, t)−Rt(xj , t))− ε2(Rt(xj , t)−Rt(xj − ε1, t))

= ε1Rt(xj + ε2, t) + ε2Rt(xj − ε1, t)

=
ε1
3!

∂4u(ξ32, t)

∂x3∂t
(xj + ε2 − xj−1)(xj + ε2 − xi)(xj + ε2 − xj+1)

+
ε2
3!

∂4u(ξ31, t)

∂x3∂t
(xj − ε1 − xj−1)(xj − ε1 − xj)(xj − ε1 − xj+1)

=
ε2(ε− h)(ε+ h)

3!

∂4u(ξ32, t)

∂x3∂t
− ε2(ε− h)(ε+ h)

3!

∂4u(ξ31, t)

∂x3∂t

=
ε2(ε− h)(ε+ h)

3!

(∂4u(ξ32, t)

∂x3∂t
− ∂4u(ξ31, t)

∂x3∂t

)

=
ε2(ε− h)(ε+ h)(ξ32 − ξ31)

3!

∂5u(ξ3, t)

∂x4∂t
6 Ch5,

where ξ31, ξ32, ξ3 ∈ (xj−1, xj+1).
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For R4, first we know that |R(xa, t)| 6 Ch3, |R(xb, t)| 6 Ch3,

|u(xb, t)| 6
1

h2
|u(xj−1, t)(xb − xj)(xb − xj+1)|(5.4)

+
1

h2
|u(xj , t)(xb − xj−1)(xb − xj+1)|

+
1

h2
|u(xj+1, t)(xb − xj−1)(xb − xj)|

6 C(|u(xj−1, t)|+ |u(xj , t)|+ |u(xj+1, t)|) 6 C

and similarly |u(xa, t)| 6 C. Then we obtain

(5.5) R4 =

∫ xj+ε4

xj

∫ xj

xj−ε3

(2u(xb, t)R(xb, t) + (R(xb, t))
2) dxa dxb

−
∫ xj+ε4

xj

∫ xj

xj−ε3

(2u(xa, t)R(xa, t) + (R(xa, t))
2) dxa dxb 6 Ch5.

Noticing the integrating factor ε3 = 8
√
3h3/9, then |R′

i| = |Ri/ε
3| 6 h2, i = 1, 2, 3, 4.

This completes the proof. �

R em a r k 5.3. Lemma 5.2 gives the truncation error of the numerical scheme. In

fact, the error comes from using interpolation polynomials to approximate instead of

unknown functions to integrate. The truncation error of the interpolation polynomial

determines the truncation error of the numerical scheme.

Theorem 5.4. Suppose that u0 ∈ H2
0 [xl, xr], u(x, t) is the exact solution of equa-

tions (1.1)–(1.3) and Un is the solution of scheme (2.13). Then

‖un − Un‖ 6 O(τ2 + h2),

‖un − Un‖∞ 6 O(τ2 + h2).

P r o o f. Let un
j = u(xj , tn), u

n = (un
1 , u

n
2 , . . . , u

n
J−1)

⊤, enj = un
j − Un

j , e
n =

(en1 , e
n
2 , . . . , e

n
J−1)

⊤. From (2.9) and (2.13), the truncation error is

(5.6) Rn =
(h2

9
− 1

)

δ2x
en+1 − en−1

2τ
+ δte

n + δxē
n + ϕ(ūn)− ϕ(U

n
),

where ϕ(ūn) = 1
3 (ū

nδxū
n + δx(ū

n)2).
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Computing the inner product of each term of (5.6) with en−1 + en+1 = 2ēn,

similarly to the proof of Theorem 3.2 we have

(Rn, en−1 + en+1) 6 ‖Rn‖2 + C(‖en+1‖2 + ‖en−1‖2),(5.7)
(

δ2x
en+1 − en−1

2τ
, en−1 + en+1

)

= − 1

2τ
(‖δ+x en+1‖2 − ‖δ+x en−1‖2),(5.8)

(δte
n, en−1 + en+1) =

1

2τ
(‖en+1‖2 − ‖en−1‖2),(5.9)

(ϕ(ūn)− ϕ(U
n
), ēn)(5.10)

=
1

3
h

J−1
∑

j=1

(ūn
j δxū

n
j + δx(ū

n
j )

2 − Un
j δxU

n
j − δx(U

n
j )

2)ēnj

=
1

3
h

J−1
∑

j=1

(ūn
j δxū

n
j − ūn

j δxU
n
j + ūn

j δxU
n
j − Un

j δxU
n
j )ē

n
j

− 1

3
h

J−1
∑

j=1

(ūn
j
2 − ūn

j U
n
j + ūn

jU
n
j − (Un

j )
2)δxē

n
j

=
1

3
h

J−1
∑

j=1

(ūn
j δxē

n
j + ēnj δxU

n
j )ē

n
j − 1

3
h

J−1
∑

j=1

(ūn
j ē

n
j + ēnj U

n
j )δxē

n
j

6
1

3
Ch

J−1
∑

j=1

(|δxēnj |+ |ēnj |)|ēnj |+
1

3
Ch

J−1
∑

j=1

|ēnj ||δxē|

6 C(‖δxēn‖2 + ‖ēn‖2) 6 C(‖δxen−1‖2 + ‖δxen+1‖2 + ‖en−1‖2 + ‖en+1‖2)
6 C(‖δ+x en−1‖2 + ‖δ+x en+1‖2 + ‖en−1‖2 + ‖en+1‖2).

From (5.7)–(5.10), we get

(5.11)
(

1− h2

9

)

(‖δ+x en+1‖2 − ‖δ+x en−1‖2) + (‖en+1‖2 − ‖en−1‖2)

6 2τ‖Rn‖2 + Cτ(‖δ+x en−1‖2 + ‖δ+x en+1‖2 + ‖en−1‖2 + ‖en+1‖2).
For any h small enough, there exists the same positive constantK (independent of h)

such that 1 6 9/(9− h2) < K. That means that K(1− h2/9) > 1 holds. Then for

the RHS of inequality (5.11), we have

(5.12) 2τ‖Rn‖2 + Cτ(‖δ+x en−1‖2 + ‖δ+x en+1‖2 + ‖en−1‖2 + ‖en+1‖2)
6 2τ‖Rn‖2 + CτK(‖en−1‖2 + ‖en+1‖2)

+ CτK
(

1− h2

9

)

(‖δ+x en−1‖2 + ‖δ+x en+1‖2)

6 Cτ‖Rn‖2 + CτK(‖en−1‖2 + 2‖en‖2 + ‖en+1‖2)

+ CτK
(

1− h2

9

)

(‖δ+x en−1‖2 + 2‖δ+x en‖2 + ‖δ+x en+1‖2).

757



Thus, inequality (5.11) can be written as

(5.13)
(

1− h2

9

)

(‖δ+x en+1‖2 − ‖δ+x en−1‖2) + (‖en+1‖2 − ‖en−1‖2)

6 Cτ‖Rn‖2 + CτK(‖en−1‖2 + 2‖en‖2 + ‖en+1‖2)

+ CτK
(

1− h2

9

)

(‖δ+x en−1‖2 + 2‖δ+x en‖2 + ‖δ+x en+1‖2).

Let

Φn =
(

1− h2

9

)

(‖δ+x en‖2+‖δ+x en−1
j ‖2)+(‖en‖2+‖en−1‖2).

Then inequality (5.13) turns to be

(5.14) Φn+1 − Φn 6 Cτ‖Rn‖2 + Cτ(Φn+1 +Φn).

From (2.14)–(2.15), we get Φ1 6 O(τ2 + h2)2. Then from Lemma 5.1 we have

Φn 6

(

Φ1 + Cτ

n−1
∑

k=1

‖Rk‖2
)

e2Cτ .

It is easy to prove Φn 6 O(τ2 + h2)2 by mathematical induction. Then similarly to

the proof of Theorem 4.4, we obtain

‖en‖ 6 O(τ2 + h2), ‖δ+x en‖ 6 O(τ2 + h2).

From Lemma 4.2 we get

‖en‖∞ 6 O(τ2 + h2).

�

Theorem 5.5. Suppose u0 ∈ H1
0 [xl, xr] and u(x, t) is the solution of (1.1)–(1.3),

the solution of scheme (2.13) is unconditionally stable.

P r o o f. The proof of this theorem can follow the proof of Theorem 5.4 and is

omitted here to save space. �
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6. Numerical experiments

In this section, we give some numerical experiments to support the convergence

order and conservation law of the scheme proposed in this paper.

6.1. Propagation of a single solitary wave.

6.1.1. Problem 1. This problem is used to test the order of accuracy and the

energy conservation property of our scheme.

Consider initial-boundary value problem (1.1)–(1.3) with the exact solution

u(x, t) = sech2
(x

4
− t

3

)

.

The initial condition can be obtained from the exact solution.

h = τ = 0.2 h = τ = 0.1 h = τ = 0.05

T = 10

‖en‖∞ 1.1623× 10−2 4.1338× 10−3 1.0384× 10−3

c-order – 1.9728 1.9931

T = 20

‖en‖∞ 2.5601× 10−2 6.5426× 10−3 1.6445× 10−3

c-order – 1.9683 1.9922

T = 30

‖en‖∞ 3.3227× 10−2 8.5025× 10−3 2.1396× 10−3

c-order – 1.9659 1.9910

T = 40

‖en‖∞ 1.0976× 10−2 7.4724× 10−3 4.6938× 10−3

c-order – 1.9631 1.9908

Table 1. Errors and convergence orders at different final times.

Table 1 shows the errors and computational orders of the proposed method with

various values of h and τ at different final times with the range x ∈ [−40, 100]. The

numerical results of Table 1 confirm that the scheme has the second order accuracy

both in temporal and spatial components.

T |E(T )− E(0)| ‖en‖∞
5 6.5314× 10−13 6.0704× 10−4

10 2.3127× 10−12 1.7842× 10−3

15 8.3124× 10−12 1.9463× 10−3

20 8.2559× 10−12 1.9946× 10−3

Table 2. Discrete energy error and ‖en‖∞.
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Table 2 shows the energy error and L∞ error for various values of T with x ∈
[−40, 100] and h = τ = 0.05. From Table 2 we can see that the energy is exactly

preserved by our methods, because the energy error is close to the machine error at

the level of 10−13. Besides, the numerical error increases slowly with time.

T Our [31]Sch1 [31]C-N [7] [36] [4]

t = 0.2 1.2332e− 5 0.00056 0.00070 0.00190 1.575e− 5 0.00053

t = 0.4 3.0134e− 5 0.00085 0.03331 0.00283 2.625e− 5 0.00113

t = 0.6 5.7564e− 5 0.00112 0.06337 0.00403 6.728e− 5 0.00175

t = 0.8 8.6343e− 5 0.00141 0.08433 0.00481 1.925e− 4 0.00237

t = 1.0 1.1352e− 4 0.00169 0.11287 0.00563 4.789e− 4 0.00299

Table 3. Comparison of numerical errors ‖en‖2 between our method and different literatures
method with τ = 0.1, h = 0.05 and different t.

Table 3 shows a comparison of the ‖en‖2 error of our method and different litera-
ture methods with τ = 0.1, h = 0.05. Here [31]Sch1, [31]C-N and the method in [36]

are different 2nd order finite difference methods. The method in [7] is one of finite

element methods within Galerkin methods. The method in [4] is one of multisym-

plectic numerical methods. Table 3 comes from literature [31], Table 4 except of our

data. From Table 3, we can see that our scheme has the least error ‖en‖2 under the
condition of the same step size. That means that the variable limit integral method

performs better than the finite difference method and finite element method under

same order.

6.1.2. Problem 2. Consider the initial-boundary value problem of the RLW

equation (1.1)–(1.3) with the exact solution

u(x, t) = 3c sech2(p(x − vt− x0)), where p =

√

c

4(c+ 1)
, v = 1 + c.

According to [13], the RLW equation (1.1) possesses three polynomial invariants

related to mass, momentum, and energy, which are given as

I1 =

∫ xr

xl

u dx, I2 =

∫ xr

xl

(u2 + u2
x) dx, I3 =

∫ xr

xl

(u3 + 3u2) dx.

These quantities are used to measure the accuracy of the proposed method and we

consider the three conservation laws

I1 = h

J−1
∑

i=1

Un
j , I2 = h

J−1
∑

j=1

((Un
j )

2 + (δxU
n
j )

2), I3 = h

J−1
∑

j=1

((Un
j )

3 + 3(Un
j )

2).

Relative changes in invariants are defined as
⌢

Ii = |Ifinali − I initiali |/Ifinali , i = 1, 2, 3.
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In Table 4 we show the relative changes of the three invariants for Problem 2

with amplitude 0.3 and the analytical values of the invariants are I1 = 3.9799266,

I2 = 0.8104624 and I3 = 2.5790074. We choose c = 0.1, x0 = 0, h = τ = 0.1 with

the range [−40, 60] and the simulations are run to the time t = 20.

Table 5 gives the relative changes of the three invariants for Problem 2 with

the amplitude 0.09. In this second numerical experiment we choose c = 0.03 and

the analytical values of the invariants are I1 = 2.1070468, I2 = 0.1273012 and

I3 = 0.3888046.

For all simulations, the absolute maximum relative changes of I1, I2 and I3 are

found to be less than 6.6911 × 10−6, 3.6215 × 10−9, 3.2931 × 10−8 in Table 4 and

6.4639× 10−4, 2.9905× 10−6, 4.04144× 10−6 in Table 5, respectively. That means

the three invariants computed by our scheme are satisfactorily constant.

T
⌢

I1
⌢

I2
⌢

I3
4 6.6911× 10−6 1.1997× 10−10 5.8274× 10−9

8 4.5199× 10−6 8.9538× 10−10 1.6732× 10−8

12 3.2595× 10−6 1.8162× 10−9 2.4679× 10−8

16 6.6638× 10−6 2.7453× 10−9 2.9758× 10−8

20 6.24651× 10−6 3.6215× 10−9 3.2931× 10−8

Table 4. The relative changes of the three invariants I1 = 3.9799266, I2 = 0.8104624 and
I3 = 2.5790074 with the solitary wave amplitude 3c = 0.3 and different final
time T .

T
⌢

I1
⌢

I2
⌢

I3
4 6.4639× 10−4 2.9905× 10−6 4.04144× 10−6

8 4.2921× 10−4 1.6565× 10−6 2.13497× 10−6

12 2.4977× 10−4 9.5497× 10−7 1.18498× 10−6

16 1.7969× 10−6 2.3041× 10−9 1.89877× 10−8

20 3.8335× 10−4 1.2329× 10−6 2.96423× 10−6

Table 5. The relative changes of the three invariants I1 = 2.1070468, I2 = 0.1273012 and
I3 = 0.3888046 with the solitary wave amplitude 3c = 0.09 and different final
time T .

6.2. Interaction of two solitary waves. In this part, we simulate the phe-

nomenon of the two solitary wave collision.

Consider the initial-boundary value problem of RLW equation (1.1)–(1.3) with the

initial condition

u(x, 0) = u1 + u2,

where

ui = 3ci sech
2(pi(x− xi)), ci =

4p2i
1− 4p2i

, i = 1, 2.
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For this part, we have chosen p1 = 0.4 , p2 = 0.3, x1 = 15, x2 = 35 and T = 30

with the range x ∈ [0, 120]. Figure 1 plots the interactions of two solitary waves at

different time levels.
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Figure 1. Interaction of two solitary waves at times t = 5, t = 10, t = 15, t = 20, t = 25
and t = 30.

From Figure 1 we can see that the higher amplitude solitary wave passes through

the smaller wave, and the amplitude and shape of these two waves do not change

significantly before and after the collision. That means our scheme has the capacity

to simulate the two waves collision.
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7. Conclusion remarks

In this paper, we have presented and analyzed a conservative scheme for the RLW

equation. We use the integral method with variational limit to discretize space

and the finite difference method to discretize time. The energy conservation of

the scheme on discrete levels is discussed and the existence of numerical solutions is

shown. Furthermore, we proved that our scheme is stable and O(h2 + τ2) convergent.

Numerical experiments show that the scheme is of the second order both in space

and time. Besides, the error of energy is calculated and by it, we verify the energy

conservation property of our scheme. Three invariants computed are satisfactorily

constant in our scheme. Two waves test shows that our scheme has the capacity to

simulate a collision.
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