
66 (2021) APPLICATIONS OF MATHEMATICS No. 5, 701–724

A GENERAL HOMOGENIZATION RESULT OF SPECTRAL

PROBLEM FOR LINEARIZED ELASTICITY

IN PERFORATED DOMAINS

Mohamed Mourad Lhannafi Ait Yahia, Hamid Haddadou, Algiers

Received January 10, 2020. Published online May 7, 2021.

Abstract. The goal of this paper is to establish a general homogenization result for lin-
earized elasticity of an eigenvalue problem defined over perforated domains, beyond the
periodic setting, within the framework of the H

0-convergence theory. Our main homog-
enization result states that the knowledge of the fourth-order tensor A0, the H0-limit of
A
ε, is sufficient to determine the homogenized eigenvalue problem and preserve the struc-
ture of the spectrum. This theorem is proved essentially by using Tartar’s method of test
functions, and some general arguments of spectral analysis used in the literature on the
homogenization of eigenvalue problems. Moreover, we give a result on a particular case of a
simple eigenvalue of the homogenized problem. We conclude our work by some comments
and perspectives.
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1. Introduction

Homogenization of spectral problems has been of great importance in various

branches of engineering sciences like material science, porous media, structural opti-

mization and so on. It was extensively explored in the literature, especially for the

periodic setting, because of its numerous industrial applications.

Periodic homogenization of the second-order elliptic eigenvalue problem with ho-

mogeneous Dirichlet conditions on a fixed domain goes back to Kesaven [14]. The

case of a periodically perforated domain was first studied by Vanninathan [23] deal-

ing with some eigenvalue problems for the Laplace operator with different boundary

conditions on holes. Briane et al. [2] have generalized this result to the case of ad-
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missible holes with Neumann condition. During the last twenty years, considerable

progress has been achieved in homogenization techniques, namely the multi-scale

convergence method and periodic unfolding method, which were initially developed

for the classical periodic setting, and then generalized to variant cases. This allowed

the appearance of numerous results for the elliptic scalar case dealing with the ho-

mogenization of spectral problems (with different boundary conditions, such as Robin

conditions etc.) defined on periodic, quasi-periodic or locally periodic structures, let

us cite for example [1], [3], [6], [20].

For the case of linearized elasticity, several works exist in literature. In fixed

domains, homogenization of spectral problems has been developed using theG-strong

convergence method in general context. In perforated domains, spectral problems

have been considered in the classical periodic setting. For more details see [13], [17],

[18]. To the best of our knowledge, all works which have studied homogenization of

the spectral problem for linearized elasticity with Neumann condition on holes have

been considered only for the classical periodic perforated domains and for rapidly

oscillating periodic coefficients.

The purpose of our work is to establish a homogenization result of the eigenvalue

problem for linearized elasticity defined over perforated domains, beyond periodic

setting, within the framework of the H0-convergence. More precisely, we are in-

terested in the homogenization of spectral problems for linearized elasticity in per-

forated domains, not necessary periodic, with Neumann conditions on holes. The

classical periodic hypothesis on holes is replaced by a more general one, namely the

e-admissibility hypothesis. This hypothesis assumes the existence of some extension

operator Pε from the perforated domain to the entire domain. In addition, the ten-

sor Aε associated to our spectral problem is only assumed to be H0-convergent to

some fourth-order tensors A0.

The paper is organized as follows: In Section 2, we provide the principal definitions

and results of the H0
e -convergence given in [8] to be used in the proof of our main

results. In Section 3 we set our spectral problem given by

(Pε)





−div(Aεe(uε)) = λεuε in Ωε,

(Aεe(uε))ϑ = 0 on ∂Sε,

uε = 0 on ∂Ω,

where Ω is a bounded open domain of Rn, Ωε = Ω \ Sε is the perforated domain,

with Sε a sequence of compact subsets of Ω e-admissible in the sense of [8], and Aε

is a sequence of fourth-order tensors of Me(α, β,Ω). We assume that for the whole

sequence (ε) the pair (Aε, Sε) H
0
e -converges to A

0 ∈ Me(α/C
2, β2/α,Ω) and the

sequence χε, of the characteristic function of Ωε, converges weakly ⋆ in L
∞(Ω) to
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a function χ0 such that χ0 > δ > 0 almost everywhere in Ω, with δ a positive

constant.

Section 4 is devoted to establishing two preliminary results. First, we give neces-

sary bounds on the eigenvalues (Proposition 4.1) by using the minimax principles [4],

[14], [17], [23]. Second, we describe (Lemma 4.1) the behavior of the sequences λεs
and the associated normalized eigenfunctions uεs, for a subsequence of (ε), using the

standard diagonal process.

In Section 5, we give our main results. The first one (Theorem 5.1) brings out the

relationship between the limits found in Lemma 4.1 and the problem

(P0)

{
−div(A0e(u)) = λχ0u in Ω,

u = 0 on ∂Ω.

More precisely, it states that every limit point of the sequence (λεs, u
ε
s)ε, for each

integer s > 1, is necessarily a pair of an eigenvalue and an associated normalized

eigenfunction of (P0). The proof is based essentially on Tartar’s method of test func-

tions [21] and on the different properties of the H0
e -convergence. In the second result

(Theorem 5.2), the process of homogenization is finally completed. It establishes

that (P0) represents the homogenized eigenvalue problem by showing that every

eigenvalue λs of (P0) is a limit of the sequence of eigenvalues λ
ε
s of (Pε), for each

integer s > 1, and (up to subsequence)

{
Pεu

ε
s ⇀ us in H1

0 (Ω) weakly,

ũεs ⇀ χ0us in L2(Ω) weakly,

where uεs, us are normalized eigenfunctions associated to λ
ε
s and λs, respectively;

and ·̃ denotes the extension by 0 outside Ωε. The third result (Theorem 5.3) deals

with a particular case of a simple eigenvalue of the homogenized problem (P0).

Section 6 closes our work, gives some comments and perspectives.

Throughout the paper we use the convention on the summation over repeated

indices and the following notations:

⊲ (ε) denotes a decreasing sequence converging to zero.

⊲ χ
O
denotes the characteristic function of a subset O of Rn.

⊲ f̃ denotes the extension by 0 outside O of a function f defined on O.
⊲ If ζ = (ζij)16i,j6n and ξ = (ξij)16i,j6n are two square matrices, we set

ζ · ξ =
n∑

i,j=1

ζijξij and |ξ| =
( n∑

i,j=1

ξ2ij

)1/2

.
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⊲ If v = (v1, . . . , vn) is a vector-valued function and ζ = (ζij)16i,j6n is a second-order

tensor of the variable x = (x1, . . . , xn), we set





(∇v)ij =
∂vi
∂xj

,

e(v) =
1

2
(∇v + (∇v)⊤),

(div ξ)i =
∂ξij
∂xj

.

⊲ For any α, β ∈ R such that 0 < α < β, and an open set O, we denote by
Me(α, β,O) the set of fourth-order tensors A = (Aijkl)16i,j,k,l6n defined on O
such that a.e. on O, we have

(1.1) (i) Aijkl ∈ L∞(O) for any i, j, l, k = 1, . . . , n,

(ii) Aijkl = Ajikl = Aklij for any i, j, l, k = 1, . . . , n,

(iii) α|η|2 6 Aηη for any symmetric matrix η,

(iv) |Aη| 6 β|η| for any matrix η.

⊲ If A = (Aijkl)16i,j,k,l6n is a fourth-order tensor and Υ = (Υij)16i,j6n is a square

matrix, we have

AΥ = ((AΥ)ij)16i,j6n = (AijklΥkl)16i,j6n.

⊲ For any i, j = 1, 2, . . . , n, δij = 1 if i = j and 0 otherwise, represents the Kronecker

symbol.

2. Preliminary results on the H0
e -convergence

As mentioned above, the limit problem is obtained within the framework of the

H0-convergence theory for linearized elasticity. The notion of H0
e -convergence was

introduced by El Hajji and Donato [8], it extends the H0-convergence given by

Briane, Damlamian and Donato [2] to linearized elasticity. The paper [2] generalizes

the G-convergence introduced by Spagnolo [19] and the H-convergence given by

Murat and Tartar [16] to the case of a perforated domain, not necessarily periodic.

Furthermore, the H-convergence was extended to linearized elasticity by Francfort

and Murat [9], and denoted in [12] by He-convergence.

In this section we recall the definition of the H0
e -convergence as well as its main

properties used in the proof of our main results.
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Let Ω be a bounded open set of Rn, n > 2, with boundary ∂Ω. We consider the

perforated domain Ωε defined by

Ωε = Ω \ Sε,

where Sε is a sequence of compact subsets of Ω. We denote by χε the characteristic

function χ
Ωε

, by ϑ the outward normal unit vector on the boundary of Ωε.

Consider the Hilbert space

Vε = {v ∈ H1(Ωε)
n ; v|∂Ω = 0}

equipped with the H1-norm.

In what follows, we assume that Sε satisfies the definition of e-admissibility given

in [8].

Definition 2.1 ([8]). The set Sε is said to be admissible in Ω for linearized

elasticity, or e-admissible in Ω, if and only if:

⊲ Every L∞(Ω) weak ⋆ limit point of χε is positive almost everywhere in Ω.

⊲ There exists a positive real constant C and for each ε an extension operator Pε

from Vε to H
1
0 (Ω)

n such that

(2.1)





Pε ∈ L(Vε, H1
0 (Ω)

n),

(Pεv)|Ωε
= v ∀ v ∈ Vε,

‖e(Pεv)‖L2(Ω)n×n 6 C‖e(v)‖L2(Ωε)n×n ∀ v ∈ Vε.

R em a r k 2.1. Conditions (2.1) of e-admissibility give an information on the

regularity of the holes Sε and the way in which they approach the boundary ∂Ω. As

an example of e-admissible holes, we cite the case of perforated domain with holes

of size ε or δε (where 0 < δε << ε) treated in [15], [10] respectively. We can cite also

the case of a perforated domain with double periodicity [7] and the case of finitely

many periodic scales introduced in [11].

We denote by P ∗
ε the adjoint operator of Pε defined from H−1(Ω)n to V ′

ε , the dual

of Vε, given by

P ∗
ε : f ∈ H−1(Ω)n → P ∗

ε f ∈ V ′
ε

with

〈P ∗
ε f, v〉V ′

ε
,Vε

= 〈f, Pεv〉H−1(Ω)n,H1

0
(Ω)n .

R em a r k 2.2 ([8]). Korn’s inequality remains valid in Vε with a constant inde-

pendent of ε, i.e., there exists a positive constant C independent of ε such that

‖v‖H1(Ωε)n 6 C‖e(v)‖L2(Ωε)n×n ∀ v ∈ Vε∗.
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Then, the quantity

‖e(·)‖2L2(Ωε)n×n

.
=

n∑

i,j=1

∫

Ωε

|eij(·)|2 dx

defines a norm on Vε equivalent to the natural one of H
1(Ωε)

n with constants inde-

pendent of ε.

R em a r k 2.3. The definition of Vε ensures that

{
Vε ⊂ L2(Ωε)

n with compact injection,

Vε is dense in L
2(Ωε)

n.

Now, we give the definition of the H-convergence for linearized elasticity in the

case of a perforated domain and its principal properties.

Definition 2.2 ([8], [12]). Let Aε ∈Me(α, β,Ω) and Sε be a sequence of compact

subsets e-admissible in Ω. We say that the pair (Aε, Sε) H
0
e -converges to A

0 ∈
Me(α

′, β′,Ω) and we write (Aε, Sε)
H0

e⇀ A0, if for each function f of H−1(Ω)n the

solution uε of 



−div(Aεe(uε)) = P ∗
ε f in Ωε,

(Aεe(uε))ϑ = 0 on ∂Sε,

uε = 0 on ∂Ω,

satisfies the weak convergence

{
Pεu

ε⇀u weakly in H1
0 (Ω)

n,

Ãεe(uε)⇀A0e(u) weakly in L2(Ω)n×n,

where u is the unique solution of the problem

{
−div(A0e(u)) = f in Ω,

u = 0 on ∂Ω.

R em a r k 2.4. In view of [8], Definition 2.2 can be rewritten as follows: For

every function g ∈ L2(Ω) and any sequence (ε) such that

χε ⇀ χ0 weakly ⋆ in L
∞(Ω),

the solution vε of the problem





−div(Aεe(vε)) = g in Ωε,

(Aεe(vε))ϑ = 0 on ∂Sε,

vε = 0 on ∂Ω,
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satisfies {
Pεv

ε⇀v0 weakly in H1
0 (Ω)

n,

Ãεe(vε)⇀A0e(v0) weakly in L2(Ω)n×n,

where v0 is the unique solution of the problem

{
−div(A0e(v0)) = χ0g in Ω,

v0 = 0 on ∂Ω.

R em a r k 2.5 ([8]). The notion of H0
e -convergence is independent of the choice

of the extension operator Pε. Furthermore, if v
ε ∈ Vε such that Pεv

ε ⇀ v weakly in

H1
0 (Ω)

n, then for all φ ∈ D(Ω), Pε(φ|Ωε

vε)⇀ φv weakly in H1
0 (Ω)

n.

The notion of H0
e -convergence makes sense in view of the following result:

Theorem 2.1 (Compactness Theorem [8], [11]). Let Aε ∈ Me(α, β,Ω) and Sε

be e-admissible in Ω. Then there exists a subsequence of (ε) (still denoted by (ε))

and a tensor A0 ∈Me(α/C
2, β2/α,Ω) such that the sequence (Aε, Sε) H

0
e -converges

to A0.

3. Setting of the problem

In the rest of the paper, we consider a bounded open domain Ω of Rn, the perfo-

rated domain Ωε = Ω \ Sε with e-admissible holes Sε and a sequence A
ε of fourth-

order tensors of Me(α, β,Ω).

For the whole sequence (ε), the following assumptions are made on Aε and χε:

(H1) The pair (Aε, Sε) H
0
e -converges to A

0 ∈Me(α/C
2, β2/α,Ω).

(H2) The sequence χε converges weakly ⋆ in L
∞(Ω) to a function χ0 satisfying the

condition that

there exists a positive constant δ such that χ0 > δ > 0 a.e. in Ω.

Assumptions (H1) and (H2) are reasonable hypotheses. Assumption (H1) draws its

validity from the compactness theorem (Theorem 2.1), while assumption (H2) is

verified in more general situations, see [22].

Now, we are ready to present our problem. Consider the eigenvalue problem of

finding a real value λε and a vector-valued function uε such that

(3.1)





−div(Aεe(uε)) = λεuε in Ωε,

(Aεe(uε))ϑ = 0 on ∂Sε,

uε = 0 on ∂Ω.
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Its weak formulation reads:

Find λε ∈ R (eigenvalues) and uε ∈ Vε − {0} (eigenfunctions) such that

aε(u
ε, v) = λε(uε, v)ε for any v ∈ Vε,

where the bilinear form aε is

∀u, v ∈ Vε; aε(u, v) =

∫

Ωε

Aεe(u) · e(v) dx,

and (u, v)ε =
∫
Ωε

uv dx denotes the inner product of L2(Ωε)
n.

It is easy to see from (1.1) and Remark 2.2 that the bilinear form aε is symmetric

and coercive. According to a well-known result in spectral theory, Remark 2.3 ensures

the existence of a sequence of eigenvalues {λεs}∞s=1 and a sequence of normalized

eigenfunctions {uεs}∞s=1 satisfying problem (3.1), such that

(3.2)





0 < λε1 6 λε2 6 λε3 6 . . . 6 λεs → ∞,

λεs is of finite multiplicity for each s,

and {uεs}∞s=1 ⊂ Vε forms an orthogonal basis in L
2(Ωε)

n

equipped with its natural norm.

We characterize each eigenvalue λεs with the help of the Rayleigh quotient

∀ v ∈ Vε : v 6= 0; Rε(v) =
aε(v, v)

(v, v)ε
.

Then, the minimax principle states that

(3.3) λεs = min
Ws

ε
⊂Vε

dimWs

ε
=s

max
v∈Ws

ε

Rε(v) = max
v∈Eε(s)

Rε(v) = max
v∈Vε

v⊥Eε(s−1)

Rε(v),

where Eε(s) is the subspace of Vε spanned by {uε1, uε2, . . . , uεs}.

4. Estimates on eigenvalues and convergence

In this section, we give two primordial preliminary results to the homogenization

process. For this, let us denote by L2(Ω, χ0)
n the space L2(Ω)n equipped with the

inner product

(u, v)0 =

∫

Ω

χ0uv dx for any u, v in L2(Ω)n,
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where the corresponding norm

‖u‖0 =
(∫

Ω

χ0u
2 dx

)1/2

for any u in L2(Ω)n,

is equivalent to the natural one.

In order to present the first result, which provides necessary bounds on the eigen-

values λεs, we introduce the following intermediate eigenvalue problem for the Lamé

tensor L,

(4.1)

{
−div(Le(τ)) = −div(e(τ)) = χ0µτ in Ω,

τ = 0 on ∂Ω,

where L is the fourth-order tensor defined by Lijkl =
1
2 (δikδjl+δilδjk) for all i, j, k, l ∈

{1, 2, . . . , n}.
The weak formulation of problem (4.1) is: Find µ ∈ R (eigenvalues) and τ ∈

H1
0 (Ω)

n − {0} (eigenfunctions) such that

b0(τ, v) = µ(τ, v)0 for any v ∈ H1
0 (Ω)

n,

where the bilinear form b0 is

∀u, v ∈ H1
0 (Ω)

n; b0(u, v) =

∫

Ω

e(u) · e(v) dx.

Since L ∈ Me(1, 2,Ω), problem (4.1) has an increasing sequence of eigenvalues

{µs}∞s=1 of finite multiplicity such that µs → ∞, as s → ∞, and a sequence of nor-
malized eigenfunctions {τs}∞s=1 ⊂ H1

0 (Ω)
n forming an orthogonal basis in L2(Ω, χ0)

n.

These eigenvalues µs can be characterized by

(4.2) µs = min
Ws⊂H1

0
(Ω)n

dimWs=s

max
v∈Ws

R(v) = max
v∈E(s)

R(v) = max
v∈H1

0
(Ω)n

v⊥E(s−1)

R(v),

where E(s) is the subspace of H1
0 (Ω)

n spanned by {τ1, τ2, . . . , τs} and for any v ∈
H1

0 (Ω)
n, v 6= 0, R(v) = b0(v, v)/(v, v)0.

The following proposition gives an estimate of eigenvalues λεs by eigenvalues µs

of the spectral problem (4.1), which are independent of ε. The proof is essentially

based on the comparison of the eigenvalues λεs and µs using the minimax principles.

Proposition 4.1. For each s > 1 there exists a real constant c > 0 independent

of ε such that for all ε > 0

(4.3)
αδ

C2
µs 6 λεs 6 cβµs,

where α, β, C and δ are given in assumptions (H1) and (H2).
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P r o o f. The proof is based on a general argument of spectral analysis, see [4],

[14], [17], [23] involving problem (4.1). Let us prove first the left-hand side of (4.3),

for this let τ1, τ2, . . . , τs be the first s normalized eigenfunctions of problem (4.1) and

consider the set

Bε
s = {τ1|Ωε

, τ2|Ωε
, . . . , τs|Ωε

} ⊂ Vε.

We claim that Bε
s is an independent family. Indeed, on the contrary we would have

sequences of reals cε1, c
ε
2, . . . , c

ε
s not all equal to zero such that

s∑

i=1

cεi τi|Ωε
= 0 in Ωε,

so, for any j ∈ {1, 2, . . . , s}
( s∑

i=1

cεi τi|Ωε
, τj |Ωε

)

ε

=

s∑

i=1

cεi (τi|Ωε
, τj |Ωε

)ε =

s∑

i=1

cεi

∫

Ωε

τi|Ωε
τj |Ωε

dx

=
s∑

i=1

cεi

∫

Ω

χετi · τj dx = 0.

Without loss of generality, we can assume that for a subsequence of (ε) (still denoted

by (ε)) there exists an integer j0 ∈ {1, 2, . . . , s} such that cεj0 = 1 and |cεi | 6 1 for all

i = 1, 2, . . . , s, and real constants c1, c2, . . . , cs such that c
ε
i → ci as ε→ 0 with cj0 =1.

Then, by passing to the limit, as ε→ 0, in the last equation with j = j0 we get

s∑

i=1

ci(τi, τj0)0 = 0.

Thus cj0 = 0, which contradicts our assumption, hence the desired claim is valid.

Now, let us choose in the first equality of (3.3) the subspace of Vε, denoted by B
ε
s ,

spanned by the family Bε
s and by taking into account (1.1), we get

λεs 6 max
v∈Bε

s

aε(v, v)

(v, v)ε
6 β max

v∈Bε

s

‖e(v)‖2L2(Ωε)n×n

(v, v)ε
.

From the fact that the subspace Bε
s represents the restriction to Ωε of the elements

of E(s) defined in (4.2),

λεs 6 β max
v∈E(s)

b0(v, v)

(v, v)ε
,

so

λεs 6 β max
v∈E(s)

(v, v)0
(v, v)ε

max
v∈E(s)

b0(v, v)

(v, v)0
.
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The characterization (4.2) of eigenvalues µs leads to

(4.4) λεs 6 βµs max
v∈E(s)

(v, v)0
(v, v)ε

.

The right-hand side of inequality (4.4) is bounded above by a constant independent

of ε. Otherwise, we would have for a subsequence εm → 0 of ε a sequence of

normalized vectors (vm)m in E(s), such that

(4.5)
1

m

∫

Ω

χ0v
2
m dx >

∫

Ωm

v2m dx

with Ωm = Ωεm .

Since E(s) is of finite dimension, we have (up to a subsequence)

vm → v0 strongly in L2(Ω)n with ‖v0‖0 = 1,

by passing to the limits, for this subsequence, in (4.5) we get that ‖v0‖0 = 0. This

contradiction implies that there exists a constant c independent of ε such that

λεs 6 cβµs.

Now, to prove the left-hand side of (4.3) let uε1, u
ε
2, . . . , u

ε
s be the first s normalized

eigenfunctions of problem (3.1) and consider the family

Dε
s = {Pεu

ε
1, Pεu

ε
2, . . . , Pεu

ε
s} ⊂ H1

0 (Ω)
n,

it is easy to see from properties (2.1) that Dε
s is an independent family.

Let us choose in (4.2) the subspace of H1
0 (Ω)

n, denoted by Dε
s, spanned by the

familyDε
s, and from the fact thatD

ε
s represents the extension of all functions of Eε(s)

by Pε, we have

µs 6 max
v∈Dε

s

b0(v, v)

(v, v)0
= max

v∈Eε(s)

b0(Pεv, Pεv)

(Pεv, Pεv)0
,

from properties (2.1) and (1.1) we get

µs 6 C2 max
v∈Eε(s)

‖e(v)‖2L2(Ωε)n×n

(Pεv, Pεv)0
6
C2

α
max

v∈Eε(s)

aε(v, v)

(Pεv, Pεv)0
,

so

µs 6
C2

α
max

v∈Eε(s)

(v, v)ε
(Pεv, Pεv)0

max
v∈Eε(s)

aε(v, v)

(v, v)ε
.
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The characterization of the eigenvalue λεs given by (3.3) yields

µs 6
C2

α
λεs max

v∈Eε(s)

(v, v)ε
(Pεv, Pεv)0

.

Finally, assumption (H2) leads to

µs 6
C2

αδ
λεs.

This completes the proof. �

As a natural consequence of Proposition 4.1, we establish the following result,

which describes the behavior of the sequences λεs and the associated normalized

eigenfunctions uεs, for a subsequence of (ε), using essentially the standard diagonal

process:

Lemma 4.1. There exists a subsequence of (ε) (still denoted by (ε)) such that for

any integer s > 1 there exists a real λ̄s > 0, a vector-valued function ūs ∈ H1
0 (Ω)

n

and a symmetric matrix ξ̄s ∈ L2(Ω)n×n satisfying

(4.6)





λεs → λ̄s,

Pεu
ε
s ⇀ ūs weakly in H1

0 (Ω)
n,

ξ̃εs ⇀ ξ̄s weakly in L2(Ω)n×n,

where ξεs is the symmetric matrix defined by ξ
ε
s = Aεe(uεs).

Furthermore,

0 < λ̄1 6 λ̄2 6 λ̄3 6 . . . 6 λ̄s 6 . . .→ ∞,(4.7)

(ūs, ūp)0 = δsp.(4.8)

P r o o f. For any integer s > 1, by taking uεs as a test function in the weak formu-

lation of problem (3.1), since the normalized eigenfunctions satisfy ‖uεs‖L2(Ωε)n = 1,

we have ∫

Ωε

Aεe(uεs)e(u
ε
s) dx = λεs.

Due to properties (1.1) of the set Me(α, β,Ω), Proposition 4.1 and properties (2.1)

of the extension operator Pε, it easy to see

(4.9) ‖e(Pεu
ε
s)‖2L2(Ω)n×n < cC2

(β
α

)
µs.
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Moreover, by considering the symmetric matrix ξε = Aεe(uε), properties (1.1) and

inequality (4.9) lead to

(4.10) ‖ξ̃εs‖2L2(Ω)n×n < cC2
(β3

α

)
µs.

Consequently, inequalities (4.3), (4.9), (4.10) combined with the standard diagonal

process allow us to deduce that a subsequence of (ε), still denoted by (ε), can be

found such that for any integer s > 1 there exists a real λ̄s, a vector-valued function

ūs ∈ H1
0 (Ω)

n and a symmetric matrix ξ̄s ∈ L2(Ω)n×n satisfying (4.6).

Furthermore, by passing to the limit for this subsequence in (4.3) and (3.2), we get

0 < λ̄1 6 λ̄2 6 λ̄3 6 . . . 6 λ̄s 6 . . . ,

and due to τs → ∞, by passing to the limit in (4.3) twice, firstly as ε→ 0, secondly

as s→ ∞, we deduce that λ̄s → ∞ as s→ ∞.
On the other hand, for any two positive integers s, p > 1 we have

δsp = (uεs, u
ε
p)ε =

∫

Ωε

uεsu
ε
p dx =

∫

Ω

ũεsũ
ε
p dx =

∫

Ω

χε(Pεu
ε
s)(Pεu

ε
p) dx,

then, according to (4.6) and (H2), we get

lim
ε→0

∫

Ω

χε(Pεu
ε
s)(Pεu

ε
p) dx =

∫

Ω

χ0ūsūp dx = (ūs, ūp)0 = δsp.

�

5. Main homogenization theorems

The aim of this section is to show that the homogenized spectral problem associ-

ated to problem (3.1) is given by

(5.1)

{
−div(A0e(u)) = λχ0u in Ω,

u = 0 on ∂Ω.

This problem is similar to problem (4.1) with the fourth-order tensor A0 instead

of L. Since A0 ∈Me(α/C
2, β2/α,Ω), problem (5.1) admits a sequence of eigenvalues

{λs}∞s=1 and a sequence of normalized eigenfunctions {us}∞s=1 ⊂ H1
0 (Ω)

n, such that





0 < λ1 6 λ2 6 . . .→ ∞,

λs is of finite multiplicity for each s,

{us}∞s=1 forms an orthogonal basis for L
2(Ω, χ0)

n.
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To do this, we start by stating and proving an important result to bring out the

relationship between the limits found in Lemma 4.1 and problem (5.1).

Theorem 5.1. For any integer s > 1, let λεs be an eigenvalue and u
ε
s an associated

normalized eigenfunction of problem (3.1). Then, under assumptions (H1) and (H2),

the limits λ̄s and ūs given in Lemma 4.1 represent, respectively, an eigenvalue and

an associated normalized eigenfunction of problem (5.1).

P r o o f. Let us consider any w ∈ H1
0 (Ω)

n. By choosing w|Ωε

as a test function in

the weak formulation of problem (3.1), we get for any integer s > 1

∫

Ωε

ξεs · e(w|Ωε

) dx =

∫

Ωε

Aεe(uεs) · e(w|Ωε

) dx = λεs

∫

Ωε

uεsw|Ωε

dx,

then ∫

Ω

ξ̃εs · e(w) dx = λεs

∫

Ω

χε(Pεu
ε
s)w dx.

Hence, (H2) and (4.6) imply

∫

Ω

ξ̄s · e(w) dx = λ̄s

∫

Ω

χ0ūsw dx for any w ∈ H1
0 (Ω)

n,

so

−div ξ̄s = λ̄sχ0ūs a.e. in Ω.

Therefore, the proof will be complete if we show that

ξ̄s = A0e(ūs).

Consider for any function ϕ ∈ H1
0 (Ω) and any symmetric matrix Λ ∈ Rn×n the

unique solution θεΛ ∈ Vε of the problem

(5.2)





−div(Aεe(θεΛ)) = P ∗
ε (−div(A0e(Λxϕ))) in Ωε,

(Aεe(θεΛ)) · ϑ = 0 on ∂Sε,

θεΛ = 0 on ∂Ω.

Taking into account that (Aε, Sε)
H0

e⇀ A0, we deduce the existence of a function

θΛ ∈ H1
0 (Ω)

n such that

{
Pεθ

ε
Λ⇀θΛ weakly in H

1
0 (Ω)

n,

Ãεe(θεΛ)⇀A0e(θΛ) weakly in L
2(Ω)n×n,
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where θΛ satisfies the problem

{
−div(A0e(θΛ − Λxϕ)) = 0 in Ω,

θΛ = 0 on ∂Ω.

Since A0 ∈Me(α/C
2, β2/α,Ω), the last problem has a unique solution, which is the

null function, then θΛ = Λxϕ.

Now, set ηε = Aεe(θεΛ) and for any ψ ∈ D(Ω) choose the function uεsψ as a test

function in problem (5.2), then we get due to the property of symmetry given in (1.1)

(5.3)

∫

Ωε

ηε · e(uεsψ) dx = 〈−div(A0e(Λxϕ)), Pε(u
ε
sψ)〉H−1(Ω)n,H1

0
(Ω)n

=

∫

Ω

A0e(Λxϕ) · e(Pε(u
ε
sψ)) dx.

Since e(uεsψ) = (eij(u
ε
sψ))16i,j6n with

eij(u
ε
sψ) =

1

2

[∂(uεsψ)j
∂xi

+
∂(uεsψ)i
∂xj

]
= eij(u

ε
s)ψ +

1

2

[
(uεs)j

∂ψ

∂xi
+ (uεs)i

∂ψ

∂xj

]
,

we get

(5.4)

∫

Ωε

ηε · e(uεsψ) dx =

∫

Ωε

ηε · e(uεs)ψ dx+
1

2

∫

Ωε

ηεij

[
(uεs)j

∂ψ

∂xi
+ (uεs)i

∂ψ

∂xj

]
dx.

Notice that from the property of symmetry given in (1.1),

(5.5)

∫

Ωε

ηε · e(uεs)ψ dx =

∫

Ωε

ξεs · e(θεΛ)ψ dx,

then from (5.3), (5.4) and (5.5), we have

∫

Ωε

ξεs ·e(θεΛ)ψ dx+
1

2

∫

Ωε

ηεij

[
(uεs)j

∂ψ

∂xi
+(uεs)i

∂ψ

∂xj

]
dx =

∫

Ω

A0e(Λxϕ)·e(Pε(u
ε
sψ)) dx.

By passing to the limit, as ε→ 0, in each term of this last equation:

F i r s t t e r m. We have
∫

Ωε

ξεs · e(θεΛ)ψ dx =

∫

Ω

ξ̃εs · e(Pεθ
ε
Λ)ψ dx.

Thanks to the weak convergences of ξ̃εs to ξ̄s in L
2(Ω)n×n, Pεθ

ε
Λ to Λxϕ in H

1
0 (Ω)

n,

and due to (3.1) and the div-curl argument (see [22]), we have

∫

Ωε

ξεs · e(θεΛ)ψ dx→
∫

Ω

ξ̄s · e(Λxϕ)ψ dx.
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S e c o n d t e r m. We have
∫

Ωε

ηεij

[
(uεs)j

∂ψ

∂xi
+ (uεs)i

∂ψ

∂xj

]
dx =

∫

Ω

η̃εij

[
(Pεu

ε
s)j

∂ψ

∂xi
+ (Pεu

ε
s)i

∂ψ

∂xj

]
dx,

from the weak convergences of ηε to A0e(Λxϕ) in L2(Ω)n×n and of Pεu
ε
s to ūs in

H1
0 (Ω)

n, we get
∫

Ωε

ηεij

[
(uεs)j

∂ψ

∂xi
+ (uεs)i

∂ψ

∂xj

]
dx→

∫

Ω

(A0e(Λxϕ))ij

[
(ūs)j

∂ψ

∂xi
+ (ūs)i

∂ψ

∂xj

]
dx.

T h i r d t e r m. From the weak convergence of Pεu
ε
s to ūs in H

1
0 (Ω)

n and Re-

mark 2.5 we obtain
∫

Ω

A0e(Λxϕ) · e(Pε(u
ε
sψ)) dx→

∫

Ω

A0e(Λxϕ) · e(ūsψ) dx.

However, due to

eij(ūsψ) = eij(ūs)ψ +
1

2

[
(ūs)j

∂ψ

∂xi
+ (ūs)i

∂ψ

∂xj

]
,

we get
∫

Ω

A0e(Λxϕ) · e(Pε(u
ε
sψ)) dx→

∫

Ω

A0e(Λxϕ) · e(ūs)ψ dx

+
1

2

∫

Ω

(A0e(Λxϕ))ij

[
(ūs)j

∂ψ

∂xi
+ (ūs)i

∂ψ

∂xj

]
dx.

Then, we conclude that
∫

Ω

ξ̄s · e(Λxϕ)ψ dx =

∫

Ω

A0e(Λxϕ) · e(ūs)ψ dx for any ψ ∈ D(Ω),

and so

ξ̄s · e(Λxϕ) = A0e(Λxϕ) · e(ūs) in Ω.

Furthermore, for any compact set ω ⊂⊂ Ω by choosing the function ϕ such that

ϕ ≡ 1 in ω

ξ̄s · Λ = A0Λ · e(ūs) in ω,

from property of symmetry of the fourth-order tensor A0

ξ̄s · Λ = A0e(ūs) · Λ.

Thanks to the symmetry property of A0 and ξ̄s, we deduce that ξ̄s = A0e(ūs) and

finally

−div(A0e(ūs)) = λ̄sχ0ūs a.e. in Ω.

�
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We are now able to complete our homogenization process by establishing our

second main theorem, where we prove that problem (5.1) represents the homogenized

spectral problem. The proof is based on the result established by Theorem (5.1) and

the minimax principles of the eigenvalues [4], [13], [14].

Theorem 5.2. Let {λεs}s>1, be the eigenvalues of problem (3.1) and let {uεs}s>1

be the corresponding normalized eigenfunctions. Then under assumptions (H1)

and (H2), we have

(1) for each integer s > 1

λεs → λs as ε→ 0,

(2) there exists a subsequence of (ε) (still denoted by (ε)) such that for each integer

s > 1

⊲ Pεu
ε
s ⇀ us weakly in H

1
0 (Ω)

n,

⊲ Ãεe(uεs)⇀ A0e(us) weakly in L
2(Ω)n×n,

where λs represents an eigenvalue and us an associated normalized eigenfunction of

problem (5.1).

P r o o f. In virtue of Lemma 4.1 and Theorem 5.1, to prove the first assertion of

the theorem it suffices to prove that

λ̄s = λs ∀ s > 1,

where {λs}∞s=1 represents the spectrum of problem (5.1).

For this, first we show that the whole spectrum {λs}∞s=1 of problem (5.1) is included

in the sequence {λ̄s}∞s=1.

Let us argue by contradiction, assume that there exists a real λ ∈ R∗
+, an eigen-

value of problem (5.1), such that for every s > 1 λ 6= λ̄s, and let u be an associated

normalized eigenfunction satisfying

(5.6) (u, ūs)0 = 0 for any s > 1.

From (4.7) we have the existence of a positive integer s0, such that λ < λ̄s0 with λ̄s0
an eigenvalue of problem (5.1) of finite multiplicity k.

Let Uε be the unique solution in Vε of the following problem:

(5.7)





−div(Aεe(Uε)) = −P ∗
ε [div(A

0e(u))] in Ωε,

(Aεe(Uε))ϑ = 0 on ∂Sε,

Uε = 0 on ∂Ω.
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Since (Aε, Sε)
H0

e−→ A0, there exists a vector-valued function U0 ∈ H1
0 (Ω)

n such that

(5.8)

{
PεU

ε⇀U0 weakly in H1
0 (Ω)

n,

˜Aεe(Uε)⇀A0e(U0) weakly in L2(Ω)n×n

with {
−div(A0e(U0)) = −div(A0e(u)) in Ω,

U0 = 0 on ∂Ω.

Because A0 ∈ Me(α/C
2, β2/α,Ω), the last problem admits the vector-valued func-

tion u as a unique solution, then U0 = u.

Now consider the vector

vε = Uε −
s0+k−1∑

i=1

(Uε, uεi )εu
ε
i .

Obviously, by construction we have

vε ∈ Vε, vε 6= 0, vε ⊥ Eε(s0 + k − 1),

where Eε(s0+k−1) is the finite-dimensional subspace of Vε spanned by {uε1, uε2, . . . ,
uεs0+k−1}.
The characterization (3.3) of eigenvalue λεs0+k leads to

λεs0+k = min
v∈Vε

v⊥ Eε(s0+k−1)

Rε(v) 6 Rε(v
ε) =

aε(v
ε, vε)

(vε, vε)ε
,

so

(5.9) aε(v
ε, vε) > λεs0+k(v

ε, vε)ε,

due to (3.2), by developing each member of (5.9) we obtain

(vε, vε)ε = (Uε, Uε)ε −
s0+k−1∑

j=1

(Uε, uεj)
2
ε.

Likewise, from the weak formulation of problem (5.7) and problem (3.1) we get

aε(v
ε, vε) = 〈−div(A0e(u)), PεU

ε〉H−1(Ω)n,H1

0
(Ω)n

− 2

s0+k−1∑

j=1

(Uε, uεj)ε〈−div(A0e(u)), Pεu
ε
j〉H−1(Ω)n,H1

0
(Ω)n

+

s0+k−1∑

j=1

λεj(U
ε, uεj)

2
ε.
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Moreover, since u is a normalized eigenfunction of problem (5.1) associated to the

eigenvalue λ, we obtain

〈−div(A0e(u)), PεU
ε〉H−1(Ω)n,H1

0
(Ω)n = λ

∫

Ω

χ0uPεU
ε dx,

and

〈−div(A0e(u)), Pεu
ε
j〉H−1(Ω)n,H1

0
(Ω)n = λ

∫

Ω

χ0uPεu
ε
j dx.

Under assumption (5.6) and due to (5.8), it is easy to see that





(Uε, Uε)ε −→
ε→0

1,

(Uε, uεj)ε −→
ε→0

0,

〈−div(A0e(u)), PεU
ε〉H−1(Ω)n,H1

0
(Ω)n −→

ε→0
λ,

〈−div(A0e(u)), Pεu
ε
j〉H−1(Ω)n,H1

0
(Ω)n −→

ε→0
0.

Thus, passing to the limit, as ε→ 0, in (5.9) we obtain

λ > λ̄s0+k,

which contradicts the existence of s0. Then necessarily there exists some p > 1 such

that λ = λ̄p and so the sequence {λ̄s, s = 1, 2, 3, . . .} represents the entire spectrum
of problem (5.1).

Second, we have to show that eigenvalues λs and λ̄s have the same multiplicity.

For this purpose, it suffices to prove, by using the same arguments as before, that

the family {ūs, s > 1} is a complete orthogonal basis of L2(Ω, χ0)
n.

To complete the proof of the first assertion, consider any subsequence (ε′) of (ε)

such that for each s > 1, λε
′

s converges to some ̟s ∈ R∗
+ and using the same steps

as before we conclude naturally that λs = ̟s. Then, for each s > 1 the whole

sequence λεs converges to λs.

The second assertion is a direct consequence of the previous one and Lemma 4.1.

�

R em a r k 5.1. It easy to deduce from assumption (H2) and the second assertion

of Theorem 5.2 that ũεs converges weakly to χ0us in L
2(Ω).

In the particular case of a simple eigenvalue of problem (5.1), we give the following

result concerning the weak convergence of the eigenfunction and a particular error

estimate:
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Theorem 5.3. Under assumptions (H1) and (H2), let for some p > 1, λp be

a simple eigenvalue of problem (5.1). Then the eigenvalue λεp of problem (3.1) which

satisfies λεp → λp, as ε→ 0, is a simple eigenvalue too.

Let u be any normalized eigenfunction corresponding to λp, then a normalized

eigenfunction uεp associated to λ
ε
p can be found such that the whole sequence Pεu

ε
p

converges weakly in H1
0 (Ω)

n to u.

Furthermore, for any real κ such that 0 < κ < 1, we get for a sufficiently small ε

|λεp − λp| <
(1 + κ

1− κ

)
λp

(∥∥∥χε − χ0

χ0

∥∥∥
L∞(Ω)

+
∥∥∥χε

χ0

∥∥∥
L∞(Ω)

‖Pεw
ε
p − u‖0

)
,

where wε
p is the unique solution in Vε of the problem

(5.10)





−div(Aεe(wε
p)) = −P ∗

ε [div(A
0e(u))] in Ωε,

(Aεe(wε
p))ϑ = 0 on ∂Sε,

wε
p = 0 on ∂Ω.

P r o o f. First, due to the convergence of the sequence λεp to λp, as ε goes to 0,

one can easily see from the proof of the previous theorem that the eigenvalue λεp is

of simple multiplicity too. We stress that in general the multiplicity of λεp may be

less than or equal to that of λp.

Now, let uεp be a normalized eigenfunction of problem (3.1) corresponding to the

eigenvalue λεp such that

(5.11) (uεp, u)ε > 0.

As a consequence of Theorem 5.2, for a subsequence ε′ of ε, we have

Pε′u
ε′

p ⇀ up weakly in H1
0 (Ω)

n,

where up is a normalized eigenfunction of problem (5.1) associated to the eigen-

value λp. Then, by passing to the limit in (5.11) we get

(up, u)0 > 0.

We conclude that up and u are two normalized eigenfunctions corresponding to a sim-

ple eigenvalue with the same orientation, so up = u. Then, the whole sequence Pεu
ε
p

converges to u, as ε→ 0.

Now, consider wε
p, the unique solution in Vε of problem (5.10). Because of the

H0
e -convergence of (A

ε, Sε) to A
0 ∈Me(α/C

2, β2/α,Ω) we obtain

{
Pεw

ε
p ⇀ u weakly in H1

0 (Ω)
n,

Ãεe(wε
p)⇀ A0e(u) weakly in L2(Ω)n×n.
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By choosing test functions uεp and w
ε
p in the weak formulation of problems (5.10)

and (3.1), respectively, we get
∫

Ωε

Aεe(uεp)e(w
ε
p) dx = λεp

∫

Ωε

uεpw
ε
p dx = λεp

∫

Ω

χε(Pεu
ε
p)(Pεw

ε
p) dx

and ∫

Ωε

Aεe(wε
p)e(u

ε
p) dx =

∫

Ω

A0e(u)e(Pεu
ε
p) dx = λp

∫

Ω

χ0u(Pεu
ε
p) dx.

Since Aεe(uεp)e(w
ε
p) = Aεe(wε

p)e(u
ε
p), we have

λεp

∫

Ω

χεPεu
ε
pPεw

ε
p dx = λp

∫

Ω

χ0uPεu
ε
p dx,

so

(λεp − λp)

∫

Ω

χεPεu
ε
pPεw

ε
p dx = λp

∫

Ω

(χ0u− χεPεw
ε
p)Pεu

ε
p dx.

From the previous limits
∫
Ω χεPεu

ε
pPεw

ε
p dx →

∫
Ω χ0u

2 dx = 1, so for ε sufficiently

small we have
∫
Ω
χεPεu

ε
pPεw

ε
p dx > 1− κ with 0 < κ < 1 and then

(5.12)
(1− κ

λp

)
|λεp − λp| <

∣∣∣∣
∫

Ω

(χε − χ0)uPεu
ε
p dx

∣∣∣∣+
∣∣∣∣
∫

Ω

χε(Pεw
ε
p − u)Pεu

ε
p dx

∣∣∣∣.

From assumption (H2), the two terms on the left-hand side of (5.12) can be rewritten

as follows:
∣∣∣∣
∫

Ω

(χε − χ0)uPεu
ε
p dx

∣∣∣∣ =
∣∣∣∣
∫

Ω

χε − χ0

χ0
(
√
χ0u)(

√
χ0Pεu

ε
p) dx

∣∣∣∣,
∣∣∣∣
∫

Ω

χε(Pεw
ε
p − u)Pεu

ε
p dx

∣∣∣∣ =
∣∣∣∣
∫

Ω

χε

χ0
(
√
χ0(Pεw

ε
p − u))(

√
χ0Pεu

ε
p) dx

∣∣∣∣.

Observe that from the definition of L2(Ω, χ0) and its norm ‖·‖0, we have for any
function v ∈ L2(Ω) ‖√χ0v‖L2(Ω) = ‖v‖0, so we get

∣∣∣∣
∫

Ω

(χε − χ0)uPεu
ε
p dx

∣∣∣∣ 6
∥∥∥χε − χ0

χ0

∥∥∥
L∞(Ω)

‖u‖0‖Pεu
ε
p‖0,

∣∣∣∣
∫

Ω

χε(Pεw
ε
p − u)Pεu

ε
p dx

∣∣∣∣ 6
∥∥∥χε

χ0

∥∥∥
L∞(Ω)

‖Pεw
ε
p − u‖0‖Pεu

ε
p‖0.

Since ‖u‖0 = 1 and Pεu
ε
p → u strongly in L2(Ω)n, for a sufficiently small ε

‖Pεu
ε
p‖0 < 1 + κ,

so we obtain

|λεp − λp| <
(1 + κ

1− κ

)
λp

(∥∥∥χε − χ0

χ0

∥∥∥
L∞(Ω)

+
∥∥∥χε

χ0

∥∥∥
L∞(Ω)

‖Pεw
ε
p − u‖0

)
.

�
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6. Comments and perspectives

Our main result states that to homogenize a spectral problem for linearized elastic-

ity in perforated domains with e-admissible holes (beyond periodic setting), it suffices

to determine the H0
e -limit of the associated fourth-order tensor. Thanks to Theo-

rem 2.1 the existence of this H0
e -limit is guaranteed at least for a subsequence of (ε).

As an application, we can consider a spectral problem for linearized elasticity in

perforated domains with two types of holes, the thick ones are periodically distributed

in Ω and the thin ones are assumed to be only e-admissible as introduced in [11].

Let Y be a reference cell with paving properties. Set Y ⋆ ≡ Y \ T ⋆, where T ⋆ is

a compact subset of Y , consider a sequence Sε of compact subsets of Y
⋆, H1(Y ⋆)-

admissible in the sense of [11]. Then, the set Tε = T ⋆
ε ∪ Sε, where





T ⋆
ε =

{⋃
ε{T ⋆ + klbl} s.t. k ∈ Zn and ε{T ⋆ + klbl} ⊂ Ω

}
,

Sε =
{⋃

ε{Sε + klbl} s.t. k ∈ Zn and ε{Sε + klbl} ⊂ Ω
}
,

represents the e-admissible holes and the homogenized spectral problem associated

to this problem can be deduced directly from the results given in [11].

As a consequence, we will obtain a homogenization result of a large class of spectral

problems for elasticity in perforated domains and obviously more information about

the limit of the sequence λεs. We cite the two following situations:

⊲ holes with finitely many periodic scales,

⊲ two types of holes will be considered, the thick ones are periodic and the thin ones

are locally periodic in Y ⋆.

These ideas are the subject of a paper in preparation.

To conclude, we note that our result would not be valid if the holes were not

admissible, which leads to a question similar to the one asked by Damlamian and

Donato [5] for the scalar case: which holes are admissible for linearized elasticity?

This is an open problem.

A c k n ow l e d g em e n t s. The authors would like to thank the referees who pro-

vided valuable suggestions that greatly improved the quality of the manuscript.
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