
66 (2021) APPLICATIONS OF MATHEMATICS No. 5, 657–672

EXISTENCE RESULTS AND ITERATIVE METHOD
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Abstract. We consider the boundary value problem

u
′′′(t) = f(t, u(t), u′(t), u′′(t)), 0 < t < 1,

u(0) = u
′(0) = 0, u(1) =

∫ 1
0

g(s)u(s) ds,

where f : [0, 1] × R
3

→ R
+, g : [0, 1] → R

+ are continuous functions. The case when
f = f(u(t)) was studied in 2018 by Guendouz et al. Using the fixed-point theory on cones
they established the existence of positive solutions. Here, by the method developed by
ourselves very recently, we establish the existence, uniqueness and positivity of the solution
under easily verified conditions and propose an iterative method for finding the solution.
Some examples demonstrate the validity of the obtained theoretical results and the efficiency
of the iterative method.

Keywords: fully third order nonlinear differential equation; integral boundary condition;
positive solution; iterative method
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1. Introduction

Recently, boundary value problems for nonlinear differential equations with in-

tegral boundary conditions have attracted attention from many researchers. They

constitute a very interesting and important class of problems, because they arise

in many applied fields, such as heat conduction, chemical engineering, underground
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water flow, thermoelasticity, and plasma physics. It is worth mentioning some works

concerning the problems with integral boundary conditions for second order equa-

tions such as [2], [4], [3], [11], [16], and some works for fourth order equations such

as [1], [15], [17], [18], [20]. There are also many papers devoted to the third order

equations with integral boundary conditions.

Below we will be concerned only with third order equations. The first work we

would mention is of Boucherif et al. [5] in 2009. It is about the problem

u′′′(t) = f(t, u(t), u′(t), u′′(t)), 0 < t < 1,(1.1)

u(0) = 0,

u′(0)− au′′(0) =

∫ 1

0

h1(u(s), u
′(s)) ds,

u′(1) + bu′′(1) =

∫ 1

0

h2(u(s), u
′(s)) ds,

where a, b are positive real numbers, and f , h1, h2 are continuous functions. Based

on a priori bounds and a fixed-point theorem for a sum of two operators, one a com-

pact operator and the other a contraction, the authors established the existence of

solutions to the problem under complicated conditions on the functions f , h1, h2.

Independently from the above work, in 2010 Sun and Li [19] considered the problem

u′′′(t) + f(t, u(t), u′(t)) = 0, 0 < t < 1,(1.2)

u(0) = u′(0) = 0, u′(1) =

∫ 1

0

g(t)u′(t) dt.

By using the Krasnoselskii fixed-point theorem, some sufficient conditions are ob-

tained for the existence and nonexistence of monotone positive solutions to the above

problem.

Next, in 2012 Guo, Liu and Liang [13] studied the boundary value problem with

second derivative

u′′′(t) + f(t, u(t), u′′(t)) = 0, 0 < t < 1,(1.3)

u(0) = u′′(0) = 0, u(1) =

∫ 1

0

g(t)u(t) dt.

The authors obtained sufficient conditions for the existence of positive solutions by

using the fixed-point index theory in a cone and spectral radius of a linear operator.

No examples of the functions f and g satisfying the conditions of existence are shown.
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In another paper, in 2013 Guo and Yang [14] considered a problem with other

boundary conditions, namely, the problem

u′′′(t) = f(t, u(t), u′(t)), 0 < t < 1,(1.4)

u(0) = u′′(0) = 0, u(1) =

∫ 1

0

g(t)u(t) dt.

Based on the Krasnoselskii fixed-point theorem on a cone, the authors established the

existence of positive solutions of the problem under very complicated and artificial

growth conditions posed on the nonlinearity f(t, x, y).

Very recently, in [12] Guendouz et al. studied the problem

u′′′(t) + f(u(t)) = 0, 0 < t < 1,(1.5)

u(0) = u′(0) = 0, u(1) =

∫ 1

0

g(t)u(t) dt.

By applying Krasnoselskii’s fixed-point theorem on cones they established the exis-

tence results of positive solutions of the problem. This technique was used also by

Benaicha and Haddouchi in [1] for an integral boundary problem for a fourth order

nonlinear equation.

It should be emphasized that in all of the above-mentioned works the authors

could only (even could not) show examples of the nonlinear terms satisfying required

sufficient conditions, but no exact solutions are shown. Moreover, the known results

are of purely theoretical characteristics concerning the existence of solutions but are

not methods for finding solutions.

Motivated by the above facts, in this paper, we consider the boundary value

problem

u′′′(t) = f(t, u(t), u′(t), u′′(t)), 0 < t < 1,(1.6)

u(0) = u′(0) = 0, u(1) =

∫ 1

0

g(s)u(s) ds,(1.7)

where f : [0, 1]× R
3 → R

+, g : [0, 1] → R
+.

This problem is a natural generalization of the problem (1.5), when f(u(t)) is

replaced by the fully nonlinear term f(t, u(t), u′(t), u′′(t)). By the method of reducing

BVPs to the operator equation for right-hand sides developed in [9], [8], [10], [7],

we establish the existence, uniqueness and positivity of a solution and propose an

iterative method for finding the solution. Some examples demonstrate the validity of

the obtained theoretical results and the efficiency of the iterative method. Especially,

one example of exact solution of the problem is constructed so that the functions f

and g satisfy the required conditions.
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2. Existence results

To investigate the problem (1.6)–(1.7) we associate it with an operator equation

as follows.

First, we denote the space of pairs w = (ϕ, α)⊤, where ϕ ∈ C[0, 1], α ∈ R, by B,

i.e., set B = C[0, 1]× R, and equip it with the norm

(2.1) ‖w‖B = max(‖ϕ‖, k|α|),

where ‖ϕ‖ = max
06t61

|ϕ(t)|, k is a number, k > 1. The constant k will have a signif-

icance in the conditions for the existence and uniqueness of the solution. Later, in

examples the selection of it will depend on particular cases.

Further, define the operator A : B → B by the formula

(2.2) Aw =

(

f(t, u(t), u′(t), u′′(t)
∫ 1

0
g(s)u(s) ds

)

,

where u(t) is the solution of the problem

u′′′(t) = ϕ(t), 0 < t < 1,(2.3)

u(0) = u′(0) = 0, u(1) = α.(2.4)

It is easy to verify the following lemma.

Lemma 2.1. If w = (ϕ, α)⊤ is a fixed point of the operator A in the space B,

i.e., is a solution of the operator equation

(2.5) Aw = w

in B, then the function u(t) defined from the problem (2.3)–(2.4) is a solution of the

original problem (1.6)–(1.7).

Conversely, if u(t) is a solution of (1.6)–(1.7), then the pair (ϕ, α)⊤, where

ϕ(t) = f(t, u(t), u′(t), u′′(t)),(2.6)

α =

∫ 1

0

g(s)u(s) ds,(2.7)

is a solution of the operator equation (2.5).
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Thus, by this lemma, the problem (1.6)–(1.7) is reduced to the fixed-point problem

for A.

Remark that the above operator A, which is defined on pairs of functions ϕ(t),

t ∈ [0, 1] and boundary values α of u(t) at t = 1, is similar to the mixed boundary-

domain operator introduced in [6] for studying biharmonic type equations.

Now we study the properties of A. For this purpose, notice that the problem

(2.3)–(2.4) has a unique solution representable in the form

(2.8) u(t) =

∫ 1

0

G0(t, s)ϕ(s) ds+ αt2, 0 < t < 1,

where

G0(t, s) =

{

− 1

2
s(1− t)(2t− ts− s), 0 6 s 6 t 6 1,

− 1

2
(1− s)2t2, 0 6 t 6 s 6 1,

is the Green function of the operator u′′′(t) associated with the homogeneous bound-

ary conditions u(0) = u′(0) = u(1) = 0.

Differentiating both sides of (2.8) gives

u′(t) =

∫ 1

0

G1(t, s)ϕ(s) ds+ 2αt,(2.9)

u′′(t) =

∫ 1

0

G2(t, s)ϕ(s) ds+ 2α,(2.10)

where

G1(t, s) =

{

−s(st− 2t+ 1), 0 6 s 6 t 6 1,

−(1− s)2t, 0 6 t 6 s 6 1,

G2(t, s) =

{

−s(s− 2), 0 6 s 6 t 6 1,

−(1− s)2, 0 6 t 6 s 6 1.

It is easily seen that G0(t, s) 6 0 in Q = [0, 1]2, and

(2.11) M0 = max
06t61

∫ 1

0

|G0(t, s)| ds =
2

81
,

M1 = max
06t61

∫ 1

0

|G1(t, s)| ds =
1

18
,

M2 = max
06t61

∫ 1

0

|G2(t, s)| ds =
2

3
.

Therefore, from (2.8), (2.9), (2.10) and (2.11) we obtain

(2.12) ‖u‖ 6 M0‖ϕ‖+ |α|, ‖u′‖ 6 M1‖ϕ‖+ 2|α|, ‖u′′‖ 6 M2‖ϕ‖+ 2|α|.
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Now for any number M > 0 define the domain

(2.13) DM =
{

(t, x, y, z) | 0 6 t 6 1, |x| 6
(

M0 +
1

k

)

M,

|y| 6
(

M1 +
2

k

)

M, |z| 6
(

M2 +
2

k

)

M
}

.

Next, denote

(2.14) C0 =

∫ 1

0

g(s) ds, C2 =

∫ 1

0

s2g(s) ds.

Lemma 2.2. Suppose that the function f(t, x, y, z) is continuous and bounded

by M in DM , i.e.,

(2.15) |f(t, x, y, z)| 6 M in DM

and

(2.16) q1 := kC0M0 + C2 6 1.

Then the operator A defined by (2.2) maps the closed ball B[0,M ] in B onto itself.

P r o o f. Take any w = (ϕ, α)⊤ ∈ B[0,M ]. Then ‖ϕ‖ 6 M and k|α| 6 M . Let

u(t) be the solution of the problem (2.3)–(2.4). Then from the estimates (2.12) for

the solution u(t) and its derivatives we obtain

‖u‖ 6

(

M0 +
1

k

)

M, ‖u′‖ 6

(

M1 +
2

k

)

M, ‖u′′‖ 6

(

M2 +
2

k

)

M.

Therefore, (t, u(t), u′(t), u′′(t)) ∈ DM . Hence, by the assumption (2.15) we have

|f(t, u(t), u′(t), u′′(t))| 6 M.

Now estimate I := k|
∫ 1

0
g(s)u(s) ds|. In view of representation (2.8) we obtain

(2.17) I 6 k

∫ 1

0

g(s)

∣

∣

∣

∣

∫ 1

0

G0(s, y)ϕ(y) dy

∣

∣

∣

∣

ds+ k|α|

∫ 1

0

g(s)s2 ds

6 kC0M0M + C2M = (kC0M0 + C2)M 6 M.

The inequalities on the above line occur due to (2.11), (2.14) and the assump-

tion (2.16).

Therefore, by the definition of the norm in the space B we have

‖Aw‖B 6 M,

which means that the operator A maps the closed ball B[0,M ] in B onto itself. The

lemma is proved. �
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Lemma 2.3. The operator A is a compact operator in B[0,M ].

P r o o f. The compactness of A follows from the compactness of the integral

operators (2.8), (2.9), (2.10), the continuity of the function f(t, x, y, z) and the com-

pactness of the integral operator
∫ 1

0
g(s)u(s) ds. �

Theorem 2.4 (Existence of solution). Suppose the conditions of Lemma 2.2 are

satisfied. Then the problem (1.6)–(1.7) has a solution.

P r o o f. By Lemma 2.2 and Lemma 2.3, the operator A is a compact opera-

tor mapping the closed ball B[0,M ] in the Banach space B onto itself. Therefore,

according to the Schauder fixed point theorem, the operator A has a fixed point in

B[0,M ]. This fixed point corresponds to a solution of the problem (1.6)–(1.7). �

In order to establish the existence of positive solutions of (1.6)–(1.7), let us intro-

duce the domain

(2.18) D+

M
=

{

(t, x, y, z) | 0 6 t 6 1, 0 6 x 6

(

M0 +
1

k

)

M,

|y| 6
(

M1 +
2

k

)

M, |z| 6
(

M2 +
2

k

)

M
}

,

and the strip

(2.19) SM = {w = (ϕ, α)⊤ | −M 6 ϕ 6 0, 0 6 kα 6 M}

in the space B.

Theorem 2.5 (Positivity of solution). Suppose the function f(t, x, y, z) is contin-

uous and

(2.20) −M 6 f(t, x, y, z) 6 0 in D+

M
,

and the condition (2.16) is satisfied. Then the problem (1.6)–(1.7) has a nonnegative

solution. Moreover, if f(t, 0, 0, 0) 6≡ 0, then this solution is positive.

P r o o f. It is easy to verify that under the conditions of the theorem, the oper-

ator A maps SM into itself. Indeed, for any w ∈ SM , w = (ϕ, α)⊤, −M 6 ϕ 6 0,

0 6 kα 6 M . Since G0(t, s) 6 0, from (2.8), (2.9), and (2.10) we have

0 6 u(t) 6
(

M0 +
1

k

)

M, |u′(t)| 6
(

M1 +
2

k

)

M, |u′′(t)| 6
(

M2 +
2

k

)

M

for 0 6 t 6 1. Therefore, for the solution u(t) of (2.3)–(2.4) we have

(t, u(t), u′(t), u′′(t)) ∈ D+

M
,
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and by the condition (2.20) we obtain

−M 6 f(t, u(t), u′(t), u′′(t)) 6 0.

As in the proof of Theorem 2.4 we also have the estimate

0 6 k

∫ 1

0

g(s)u(s) ds 6 M.

Hence, (f(t, u(t), u′(t), u′′(t)),
∫ 1

0
g(s)u(s) ds)⊤ ∈ SM , i.e. A : SM → SM .

As was shown above, A is a compact operator in S. Therefore, A has a fixed

point in SM , which generates a solution of the problem (1.6)–(1.7). This solution

is nonnegative. Moreover, if f(t, 0, 0, 0) 6≡ 0, then u(t) ≡ 0 cannot be the solution.

Therefore, the solution is positive. �

Theorem 2.6 (Existence and uniqueness). Suppose that there exist numbers

M > 0, L0, L1, L2 > 0 such that

(H1) |f(t, x, y, z)| 6 M for all (t, x, y, z) ∈ DM ,

(H2) |f(t, x2, y2, z2)− f(t, x1, y1, z1)| 6 L0|x2 −x1|+L1|y2 − y1|+L2|z2 − z1| for all

(t, xi, yi, zi) ∈ DM , i = 1, 2,

(H3) q := max{q1, q2} < 1, where q1 = kC0M0 + C2 as was defined by (2.16) and

(2.21) q2 = L0

(

M0 +
1

k

)

+ L1

(

M1 +
2

k

)

+ L2

(

M2 +
2

k

)

.

Then the problem (1.6)–(1.7) has a unique solution u ∈ C3[0, 1].

P r o o f. To prove the theorem, it suffices to show that the operator A defined

by (2.2) is a contractive mapping from the closed ball B[0,M ] in B onto itself.

Indeed, under the assumption (H1) and the condition q1 < 1 in the assumption

(H2), by Lemma 2.2 the operator A maps B[0,M ] into itself.

Now, we show that A is a contraction map. Let wi = (ϕi, αi) ∈ B[0,M ]. We have

Aw2 −Aw1 =

(

f(t, u2(t), u
′
2(t), u

′′
2(t)− f(t, u1(t), u

′
1(t), u

′′
1 (t)

∫ 1

0
g(s)(u2(s)− u1(s)) ds

)

,

where ui(t) (i = 1, 2) is the solution of the problem

{

u′′′
i
(t) = ϕi(t), 0 < t < 1,

ui(0) = u′
i
(0) = 0, ui(1) = αi.
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From the proof of Lemma 2.2 it is known that (t, ui(t), u
′
i
(t), u′′

i
(t)) ∈ DM . Therefore,

by the Lipschitz condition (H2) for f we have

(2.22) D1 := |f(t, u2(t), u
′

2(t), u
′′

2(t)− f(t, u1(t), u
′

1(t), u
′′

1(t)|

6 L0|u2(t)− u1(t)|+ L1|u
′

2(t)− u′

1(t)|+ L2|u
′′

2(t)− u′′

1(t)|.

Since u2(t)−u1(t) is the solution of the problem (2.3)–(2.4) with the right-hand sides

ϕ2(t)− ϕ1(t) and α2 − α1, we have

(2.23) ‖u2 − u1‖ 6 M0‖ϕ2 − ϕ1‖+ |α2 − α1|,

‖u′

2 − u′

1‖ 6 M1‖ϕ2 − ϕ1‖+ 2|α2 − α1|,

‖u′′

2 − u′′

1‖ 6 M2‖ϕ2 − ϕ1‖+ 2|α2 − α1|.

As for the element w = (ϕ, α)⊤ ∈ B we use the norm

‖w‖B = max(‖ϕ‖, k|α|), k > 1,

from (2.22), (2.23) we obtain

(2.24) D1 6 L0

(

M0 +
1

k

)

‖w2 − w1‖B + L1

(

M1 +
2

k

)

‖w2 − w1‖B

+ L2

(

M2 +
2

k

)

‖w2 − w1‖B

6

(

L0

(

M0 +
1

k

)

+ L1

(

M1 +
2

k

)

+ L2

(

M2 +
2

k

))

‖w2 − w1‖B

= q2‖w2 − w1‖B,

where q2 is defined by (2.21).

Now consider

D2 := k

∣

∣

∣

∣

∫ 1

0

g(s)(u2(s)− u1(s)) ds

∣

∣

∣

∣

.

By analogy with the estimate (2.17) it is easy to have

(2.25) D2 6 (kC0M0 + C2)‖w2 − w1‖B = q1‖w2 − w1‖B.

From (2.24) and (2.25) we obtain

‖Aw2 −Aw1‖B 6 max{q1, q2}‖w2 − w1‖B.

In view of condition (H3) the operator A is a contraction operator in B[0,M ]. The

theorem is proved. �
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Theorem 2.7 (Existence and uniqueness of positive solution). If in Theorem 2.6

we replace DM by D+

M
and the condition (H1) by the condition (2.20) then the

problem (1.6)–(1.7) has a unique nonnegative solution u(t) ∈ C3[0, 1]. Also, if

f(t, 0, 0, 0) 6≡ 0 then this solution is positive.

3. Iterative method

Suppose all the conditions of Theorem 2.6 are met. Then the problem (1.6)–(1.7)

has a unique solution. To find it, consider the following iterative method:

(1) Given w0 = (ϕ0, α0)
⊤ ∈ B[0,M ], for example,

(3.1) ϕ0(t) = f(t, 0, 0, 0), α0 = 0.

(2) Knowing ϕn(t) and αn(t) (n = 0, 1, . . .), compute

un(t) =

∫ 1

0

G(t, s)ϕn(s) ds+ αnt
2,(3.2)

yn(t) =

∫ 1

0

G1(t, s)ϕn(s) ds+ 2αnt,(3.3)

zn(t) =

∫ 1

0

G2(t, s)ϕn(s) ds+ 2αn.(3.4)

(3) Update

ϕn+1(t) = f(t, un(t), yn(t), zn(t)),(3.5)

αn+1 =

∫ 1

0

g(s)un(s) ds.(3.6)

Theorem 3.1. Under the assumptions of Theorem 2.6, the above iterative

method converges, and for the approximate solution un(t) and its derivatives the

following estimates hold:

‖un − u‖ 6

(

M0 +
1

k

)

pnd,(3.7)

‖u′

n
− u′‖ 6

(

M1 +
2

k

)

pnd,(3.8)

‖u′′

n
− u′′‖ 6

(

M2 +
2

k

)

pnd,(3.9)

where pn = qn/(1− q), d = ‖w1 − w0‖B, w1 = (ϕ1, α1)
⊤.
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P r o o f. In fact, the above iterative method is the successive iterative method

for finding the fixed point of operator A. Therefore, it converges with the rate of

geometric progression and the following estimate holds:

‖wn − w‖B 6
qn

1− q
‖w1 − w0‖B = pnd,

where wn − w = (ϕn − ϕ, αn − α)⊤.

From the definition of the norm in B and the above estimate it follows that

‖ϕn − ϕ‖ 6 ‖wn − w‖B 6 pnd,

‖αn − α‖ 6
1

k
‖wn − w‖B 6

1

k
pnd.

Now, the estimates (3.7)–(3.9) are easily obtained if taking into account the repre-

sentations (2.8)–(2.10), (3.2)–(3.4), the estimates of the type (2.12) and the above

estimates. �

To numerically realize the iterative method (3.1)–(3.6) we cover the interval [0, 1]

by the uniform grid ωh = {ti = ih, h = 1/N , i = 0, 1, . . . , N} and use the trapez-

ium formula for computing definite integrals. In all examples in the next section

the numerical computations will be performed on the grid with h = 0.01 until

max{‖ϕn−ϕn−1‖, k|αn−αn−1|} 6 10−4, where k will be defined for each particular

example.

4. Examples

Consider some examples for confirming the validity of the obtained theoretical

results and the efficiency of the proposed iterative method.

E x am p l e 4.1 (Example with exact solution). Consider the problem (1.6)–(1.7)

with

f = f(t, u) = −
1

2
+

1

3

(1

6

(

t2 −
t3

2

))2

− u2, g(s) =
56

9
s4.

It is possible to verify that the positive function

u(t) =
1

6

(

t2 −
t3

2

)

, 0 6 t 6 1,

is the exact solution of the problem.

For the given g(s), simple calculations give C0 = 56

45
, C2 = 56

63
. Therefore, with

k = 2, we obtain q1 = 0.9503 < 1. For this k it is possible to choose M = 0.6 such

that −M 6 f(t, x) 6 0 for

(t, x) ∈ D+

M
=

{

(t, x) | 0 6 t 6 1, 0 6 x 6

(

M0 +
1

2

)

M = 0.5247M
}

.

667



Indeed,

0 6 −f(t, x) =
1

2
+ x2 −

1

3

(1

6

(

t2 −
t3

2

))2

6
1

2
+ x2 6

1

2
+ (0.5247M)2 6 M.

Thus, M must satisfy 0.2753M2 − M + 0.5 6 0. The direct calculation of the left

side for M = 0.6 gives the value = −0.0670. So, the choice of M is justified.

Further, for f(t, x) we have the Lipschitz coefficient with respect to x in D+

M
,

L0 = 0.3148. Consequently, q2 = L0(M0 + 1

2
) = 0.1652, and q = 0.9503. Also,

f(t, 0) 6≡ 0. Therefore, by Theorem 2.7, the problem has a unique positive solution.

It is the above exact solution.

The computation shows that the iterative method (3.1)–(3.6) converges and the

error of the 46th iteration compared with the exact solution is 1.1458e− 04.

E x am p l e 4.2 (Example 4.1 in [12]). Consider the boundary value problem

u′′′(t) = −u2eu, 0 < t < 1,

u(0) = u′(0) = 0, u(1) =

∫ 1

0

s4u(s) ds.

In this example

f(t, x, y, z) = −x2ex, g(s) = s4.

So,

C0 =

∫ 1

0

g(s) ds =
1

5
, C2 =

∫ 1

0

s2g(s) ds =
1

7
.

Choose k = 2 in the definition of the norm of the space B (2.1) and in the definition

of D+

M
by (2.18). Then q1 = kC0M0 + C2 = 0.1527. For M = 0.4 it is possible to

verify that −M 6 f(t, x) 6 0 in D+

M
, |∂f/∂x| 6 0.5721 in D+

M
. Therefore,

L0 = 0.5721, q2 = L0

(

M0 +
1

k

)

= 0.3002.

Hence, by Theorem 2.7, the problem has a unique nonnegative solution. This solution

should be u(t) ≡ 0, because u(t) ≡ 0 solves the problem. The numerical experiments

by the iterative method in Section 3 confirm this conclusion.

Note that, in [12], the authors concluded that the problem has at least one positive

solution. From our result above, it is clear that their conclusion is not valid.
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E x am p l e 4.3. Consider Example 4.2 with the nonlinear term f = −(1 + u2).

Clearly, f(u)/u → −∞ as u → +0 and u → ∞. Thus, neither Theorem 3.1

nor Theorem 3.2 in [12] are applicable, so the existence of positive solution is not

guaranteed.

Now apply our method. Choose M = 2, k = 3. Then

D+

M
=

{

(t, x) | 0 6 t 6 1, 0 6 x 6

(

M0 +
1

k

)

M = 0.7160
}

.

In D+

M
we have

−M 6 f 6 0, |f ′

u
| 6 1.4321 = L0,

q1 = kC0M0 + C2 = 0.1577, q2 = L0

(

M0 +
1

3

)

= 0.5127.

Hence, by Theorem 2.7, the problem has a unique nonnegative solution. Due to

f(t, 0) 6= 0, this solution is positive. The graph of the approximate solution obtained

with the given accuracy 10−4 after 4 iterations by the iterative method is depicted

in Figure 1.
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Figure 1. The graph of the approximate solution in Example 4.3.

E x am p l e 4.4. Consider Example 4.2 with the nonlinear term

f = −
(

u2eu +
1

5
sin(u′) +

1

8
cos(u′′) + 1

)

.

In this example

f(t, x, y, z) = −
(

x2ex +
1

5
sin(y) +

1

8
cos(z) + 1

)

.
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Choose M = 1.7, k = 4. It is possible to verify that in D+

M
we have −M 6 f 6 0,

and the Lipschitz coefficients of f are

L0 = 1.8378, L1 =
1

5
, L2 =

1

8
.

Therefore,

q1 = 0.1626, q2 = 0.7618.

Hence, by Theorem 2.7, the problem has a unique positive solution. The graph of

the approximate solution obtained with the given accuracy 10−4 after 6 iterations

by the iterative method is depicted on Figure 2.
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Figure 2. The graph of the approximate solution in Example 4.4.

5. Conclusion

We have proposed a novel method to study the fully third order differential equa-

tion with integral boundary conditions. It is based on the reduction of the bound-

ary value problems to a fixed-point problem for an appropriate operator defined on

a space of mixed pairs of functions and numbers. In this way, we have established the

existence, uniqueness and positivity of solution of the problem under easily verified

conditions. Another important result is that we have proposed an effective iterative

method for finding the solution. The theoretical results have been demonstrated on

some examples, including an example with an exact solution and other examples

where the exact solutions are not known. Especially, we have shown that the conclu-

sion on the existence of positive solutions for an example considered before by other

authors is not valid.

The proposed method can be applied to problems with other integral boundary

conditions for the third and higher order differential equations. This will be the

subject of our research in the future.
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