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Abstract. In this paper, we present a sensitivity result for quadratic second-order cone
programming under the weak form of second-order sufficient condition. Based on this result,
we analyze the local convergence of an SQP-type method for nonlinear second-order cone
programming. The subproblems of this method at each iteration are quadratic second-order
cone programming problems. Compared with the local convergence analysis done before, we
do not need the assumption that the Hessian matrix of the Lagrangian function is positive
definite. Besides, the iteration sequence which is proved to be superlinearly convergent does
not contain the Lagrangian multiplier.
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1. Introduction

In this paper, we denote a vector z as (z(1); z), where z(1) is the first entry of z

and z is the subvector that consists of the remaining entries. The mi-dimensional

second-order cone Ki (i = 1, 2, . . . , l) is defined as

Ki =

{
{z ∈ R | z > 0} if mi = 1,

{(z(1); z) ∈ R× R
mi−1 | z(1) > ‖z‖} if mi > 2,

where ‖·‖ denotes the Euclidean norm, m1 +m2 + . . .+ml = m.
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The following problem is a nonlinear second-order cone programming (NSOCP)

problem:

(1.1) min
x∈Rn

f(x)

s.t. h(x) = 0,

gi(x) ∈ Ki, Ki ⊂ R
mi , i = 1, 2, . . . , l,

where f : R
n → R and h : R

n → R
p, gi : R

n → R
mi are smooth functions. The

NSOCP problem is a particular case of nonlinear semidefinite programming (see [1])

and has many applications (see [10]). Theoretical properties of NSOCP have been

studied in [2], [3], [6]. Kato and Fukushima [9] proposed an SQP-type algorithm

for (1.1). At each iteration, the algorithm solves a subproblem in which the con-

straints involve linear approximations of the constraint functions in the original

problem and the objective function is a convex quadratic function, i.e.

(1.2) min
d∈Rn

∇f(xk)
⊤d+

1

2
d⊤Bkd

s.t. h(xk) +Dh(xk)d = 0,

gi(xk) +Dgi(xk)d ∈ Ki, i = 1, 2, . . . , l,

where xk is the current iteration point, ∇f(x) is the gradient of f(x), Dh(x) and

Dgi(x) are the Jacobian matrices of h(x) and gi(x), respectively. The matrix Bk

is symmetric and positive definite containing the second-order information of prob-

lem (1.1). The solution dk (if it exists) is defined as a search direction, its corre-

sponding Lagrangian multiplier is (λk+1, µk+1) ∈ R
p × R

m,

µk+1 = (µk+1,1;µk+1,2; . . . ;µk+1,i; . . . ;µk+1,l), µk+1,i ∈ R
mi .

The trial step is xk+1 = xk + αdk and the l1-penalty function is used as a merit

function to determine the step size α. Problem (1.2) has the form of the quadratic

second-order cone programming (QSOCP) below:

(1.3) min
d∈Rn

b⊤d+
1

2
d⊤Hd

s.t. Cd+ c = 0,

Aid+ ai ∈ Ki, i = 1, 2, . . . , l,

where C ∈ R
p×n, c ∈ R

p, Ai ∈ R
mi×n, ai ∈ R

mi , b ∈ R
n, H ∈ R

n×n (for a general

QSOCP, H may not be positive definite). Problem (1.3) is a generalization of the

quadratic programming (QP) in nonlinear programming (NLP).
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Kanzow et al. [8] discuss the local convergence of semismooth Newton methods

for linear and nonlinear second-order cone programs without strict complementarity.

The local convergence of the algorithm presented in [9] is analyzed byWang et al. [14],

where Bk is taken as the Hessian matrix, and the local superlinearly convergent

sequence contains the Lagrangian multiplier. However, for nonlinear programming,

it has been proved that the iteration sequence without the Lagrangian multiplier

is superlinearly convergent [8] by introducing the projection matrix and the active

set. Motivated by this fact, we aim to prove a similar result for (1.1). To this

end, we first present a sensitivity result for certain local optimal solutions of the

general, possibly nonconvex QSOCP. We then apply this result to show that the

sequence {xk} generated by the algorithm in [9] converges to its local solution x∗

with superlinear convergence rate under the nondegeneracy, strict complementarity

and the weak second-order sufficient conditions.

The paper is organized as follows. In Section 2, we introduce some notations

and preliminaries. In Section 3, we give the sensitivity result for (1.3). We apply

this result to (1.1) to analyse local convergence in Section 4 and conclude with final

remarks in Section 5.

2. Notations and preliminaries

For any vectors a, b ∈ R
m̂, let a = (a(1); ā) ∈ R×R

m̂−1, b = (b(1); b̄) ∈ R×R
m̂−1,

their Jordan product (see [1], Section 4) is given by

a ◦ b = (a⊤b; a(1)b̄+ b(1)ā).

For a closed convex and pointed cone K, its interior, boundary, and boundary ex-

cluding the origin are denoted by int(K), bd(K), and bd+(K), respectively. Denote

by O(tk) a sequence {vk} satisfying ‖vk‖ 6 βtk for some constant β independent of k,

and by o(tk) a sequence {vk} satisfying ‖vk‖ 6 βktk for some positive sequence {βk}

with lim
k→∞

βk = 0.

We introduce some useful properties which will be used later. The first and second

statement of Proposition 2.1 can be easily proved by the definition of the second-order

cone, Jordan product and Cauchy-Schwarz inequality, so the proof is omitted.

Proposition 2.1. If K is a second-order cone, then the following results hold.

(1) If a, b ∈ K and a ◦ b = 0, then one of the following three cases occurs:

(i) a = 0,

(ii) b = 0,

(iii) a, b ∈ bd+(K), and (a(1); ā) = κ(b(1);−b̄), where κ > 0 is a constant.
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(2) If a ◦ b = 0 and a ∈ bd+(K), then there exists a constant κ such that b =

κ(a(1);−ā).

(3) If a+ b ∈ int(K) and a ◦ b = 0, then a, b ∈ K.

(4) For a = (a(1); ā) ∈ bd+(K) ⊆ R
m̂, b = κ(a(1);−ā), κ > 0, if there exist c, d ∈ R

m̂

such that a ◦ c+ b ◦ d = 0, then we have that

a⊤c = 0, b⊤d = 0, c2(1) − ‖c̄‖2 = κc⊤d.

(5) If a ∈ bd+(K), b⊤a = 0, then b2(1) − ‖b̄‖2 6 0;

(6) If a ◦ b = 0 and a ∈ int(K), then b = 0.

P r o o f. (3) By a+ b ∈ int(K), we have that a(1) + b(1) > 0 and (a(1) + b(1))
2 >

‖ā+ b̄‖2. We can assume, without loss of generality, that a(1) > 0. By a ◦ b = 0, we

have that a(1)b̄+ b(1)ā = 0, a(1)b(1) + ā⊤b̄ = 0, whence it follows that

b(1)(a
2
(1) − ā⊤ā) = 0.

Next we consider two cases.

If b(1) = 0, then b̄ = −b(1)ā/a(1) = 0, a ∈ int(K). If b(1) 6= 0, then a2(1) − ‖ā‖2 = 0,

so a ∈ bd+(K). By Proposition 2.1(2), we have |b(1)| = ‖b̄‖. It follows from

(a(1) + b(1))
2 > ‖ā+ b̄‖2 and a(1)b(1) + ā⊤b̄ = 0

that

(a(1) + b(1))
2 −‖ā+ b̄‖2 = a2(1) +2a(1)b(1)+ b2(1)−‖ā‖2−‖b̄‖2− 2ā⊤b̄ = 4a(1)b(1) > 0,

which implies that b(1) > 0, so b ∈ bd+(K). In both cases we have that a, b ∈ K.

(4) Let c = (c(1); c̄), d = (d(1); d̄). By the definition of Jordan product, we have

that

a(1)c(1) + ā⊤c̄+ κa(1)d(1) − κā⊤d̄ = 0,(2.1)

a(1)c̄+ c(1)ā+ κa(1)d̄− κd(1)ā = 0.(2.2)

Let p = a(1)c(1) + ā⊤c̄, q = κa(1)d(1) − κā⊤d̄. By (2.2), we have that

(2.3) a(1)(c̄+ κd̄) + (c(1) − κd(1))ā = 0.

It follows from (2.3) and a(1) = ‖ā‖ that

(2.4) p− q = a(1)(c(1) − κd(1)) + ā⊤(c̄+ κd̄) = 0.
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Since (2.1) holds, p + q = 0. It follows from (2.4) that p = q = 0, i.e., a⊤c = 0,

b⊤d = 0. Note that (2.3) and (2.4) imply that a ◦ (c(1) − κd(1)) = 0, so from

Proposition 2.1(2), there exists a constant ̺ such that

(2.5) ̺a(1) = c(1) − κd(1), ̺ā = −(c̄+ κd̄).

Multiplying the two equalities of (2.5) by c(1) and c̄⊤, respectively, we have that

(2.6) ̺a(1)c(1) = (c2(1) − κc(1)d(1)), ̺c̄⊤ā = −(c̄⊤c̄+ κc̄⊤d̄).

Adding the two equations in (2.6) together, it follows from a⊤c = 0 that c2(1)−‖c̄‖2 =

κc⊤d.

(5) Since a ∈ bd+(K) and b⊤a = 0, we have that b(1) = −ā⊤b̄/a(1) and a
2
(1) = ā⊤ā.

By the Cauchy-Schwarz inequality, we have that

b2(1) − ‖b̄‖2 =
(ā⊤b̄)2

a2(1)
− ‖b̄‖2 6

(ā⊤ā)(b̄⊤b̄)

a2(1)
− ‖b̄‖2 = 0.

(6) If a ∈ int(K), then by a(1)b(1) + ā⊤b̄ = 0 and the Cauchy-Schwarz inequality,

|a(1)b(1)| = |ā⊤b̄| 6 ‖ā‖||b̄‖.

Note that a ◦ b = 0, |b(1)| = a(1)‖b̄‖/‖ā‖, which implies that a
2
(1)‖b̄‖/‖ā‖ 6 ‖ā‖‖b̄‖.

By a(1) > ‖ā‖, we have that ‖b‖ = 0, which yields that b = 0. �

3. Sensitivity result for QSOCP

Let us now consider (1.3), which is a general, possibly nonconvex, quadratic

second-order cone problem. This problem is described by the data

D := [b,H,C, c, A, a],

where A = [A1, A2, . . . , Al], a = [a1, a2, . . . , al]. Let si = Aid+ ai ∈ R
mi , µi ∈ R

mi ,

µ = (µ1;µ2; . . . ;µi; . . . ;µl) ∈ R
m, s = (s1; s2; . . . ; si; . . . ; sl) ∈ R

m, i = 1, 2, . . . , l.

The Lagrangian function of (1.3) is

L(d, λ, µ) = b⊤d+
1

2
d⊤Hd− λ⊤(Cd+ c)−

l∑

i=1

µ⊤
i (Aid+ ai).
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Denote by d∗ the local solution of (1.3), s∗i = Aid
∗ + ai ∈ R

mi , µ∗
i ∈ R

mi ,

µ∗ = (µ∗
1;µ

∗
2; . . . ;µ

∗
i ; . . . ;µ

∗
l ) ∈ R

m, s∗ = (s∗1; s
∗
2; . . . ; s

∗
i . . . ; s

∗
l ) ∈ R

m, i = 1, 2, . . . , l.

If the MFCQ constraint qualification [2] holds at d∗, i.e.,

(3.1)

{
C⊤ is of full column rank,

∃ d̂ ∈ R
n such that Cd̂ = 0, Aid̂+ ai ∈ int(Ki), i = 1, 2, . . . , l,

then there exist λ∗ ∈ R
p and µ∗ ∈ R

m such that

(3.2)





Aid
∗ + ai = s∗i ,

Cd∗ + c = 0,

b+Hd∗ − C⊤λ∗ =
l∑

i=1

A⊤
i µ

∗
i ,

µ∗
i ◦ s

∗
i = 0, µ∗

i , s
∗
i ∈ Ki

and (d∗, λ∗, µ∗, s∗) is called a stationary point of (1.3).

In the theorem below, we will present a sensitivity result for the solution of (1.3)

when the data D is changed to D +∆D, where

(3.3) ∆D := [∆b,∆H,∆C,∆c,∆A,∆a]

is a sufficiently small perturbation. To this end, we need the following assumptions.

Assumptions (A)

(A1) There exists a local minimizer d∗ of (1.3) where the MFCQ condition holds.

The Lagrangian multiplier pair (λ∗, µ∗) corresponding to x∗ is unique.

(A2) The second-order sufficient condition holds at d∗ (see Definition 3.1 in [5]).

q⊤Hq + q⊤H(d∗, µ∗)q > 0 ∀ q ∈ C(d∗) \ {0},

where

C(d∗) = {q ∈ R
n | q⊤b = 0, Cq = 0, Aiq ∈ TKi

(s∗i ), i = 1, 2, . . . , l},

TKi
(s∗i ) is the tangent cone of Ki at s

∗
i , H(d∗, µ∗) =

l∑
i=1

Hi(d∗, µ∗
i ),

Hi(d∗, µ∗
i ) =





−
(µ∗

i )(1)

(s∗i )(1)
A⊤

i RiAi, s∗i ∈ bd+(Ki),

0, otherwise,

Ri =

(
1 0⊤

0 −Imi−1

)
,
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where (µ∗
i )(1) and (s∗i )(1) denote the first entry of µ

∗
i and s∗i , respectively (see the

definition in Section 1).

(A3) The following strict complementarity condition holds:

µ∗
i + s∗i ∈ int(Ki), i = 1, 2, . . . , l.

R em a r k 3.1. H(d∗, µ∗) is similar to the “sigma term” in nonlinear semidefinite

programming [3].

C(d∗) =




q ∈R
n |Cq= 0,





Aiq ∈Ki, s∗i =0, µ∗
i =0,

〈Aiq, s∗i 〉 − 〈(Aiq)(1), (s
∗
i )(1)〉6 0, s∗i ∈ bd+(Ki), µ

∗
i = 0,

Aiq= 0, s∗i =0, µ∗
i ∈ int(Ki),

Aiq ∈R+((µ
∗
i )(1);−µ∗

i ), s∗i =0, µ∗
i ∈ bd+(Ki),

〈Aiq, µ
∗
i 〉=0, s∗i ∈ bd+(Ki), µ

∗
i ∈ bd+(Ki)





where Aiq = ((Aiq)(1);Aiq). For q ∈ C(d∗),

q⊤H(d∗, µ∗)q =
∑

s∗
i
∈bd+(Ki)

q⊤Hi(d∗, µ∗
i )q

=
∑

s∗
i
,µ∗

i
∈bd+(Ki)

−
(µ∗

i )(1)

(s∗i )(1)
(((Aiq)(1))

2 − ‖(Aiq)‖
2),

since 〈Aiq, µ
∗
i 〉 = 0 holds, it follows by Proposition 2.1(5) that q⊤H(d∗, µ∗)q > 0,

which implies that the second-order sufficient condition with H(d∗, µ∗) is weak. Be-

sides, under Assumption (A3), from Proposition 2.1(1) we can also give the simple

form of C(d∗) as follows.

C(d∗) =

{
q ∈ R

n | Cq = 0,

{
Aiq = 0, s∗i = 0, µ∗

i ∈ int(Ki);

s∗i
⊤RiAiq = 0, s∗i ∈ bd+(Ki), µ∗

i ∈ bd+(Ki).

}

The main result of this section can be stated as follows.

Theorem 3.1. Under Assumptions (A), let (d∗, λ∗, µ∗, s∗) be the stationary point

of (1.3) with the data D, then for all sufficiently small perturbations ∆D, there exists

a local stationary point (d(∆D), λ(∆D), µ(∆D), s(∆D)) of the perturbed program

(1.3) with the data D+∆D. Moreover, the point (d(∆D), λ(∆D), µ(∆D), s(∆D)) is

a differentiable function of the perturbation∆D and we have (d(∆D), λ(∆D), µ(∆D),

419



s(∆D)) = (d∗, λ∗, µ∗, s∗) for ∆D = 0. The derivative DD(d
∗, λ∗, µ∗, s∗) is character-

ized by the directional derivatives

(ḋ, λ̇, µ̇, ṡ) = DD(d
∗, λ∗, µ∗, s∗)∆D

for any ∆D. Here (ḋ, λ̇, µ̇, ṡ) is the unique solution of the system of linear equations

(3.4)





Aiḋ = −∆Aid
∗ −∆ai + ṡi, i = 1, 2, . . . , l,

Cḋ = −∆Cd∗ −∆c,

Hḋ− C⊤λ̇−
l∑

i=1

A⊤
i µ̇ = −∆Hd∗ +∆C⊤λ∗ +

l∑
i=1

∆A⊤
i µ

∗
i ,

µ∗
i ◦ ṡi + s∗i ◦ µ̇i = 0, i = 1, 2, . . . , l

for the unknowns (ḋ, λ̇, µ̇, ṡ) ∈ R
n × R

p × R
m × R

m, where

ṡ = (ṡ1; ṡ2; . . . ; ṡi; . . . ; ṡl), µ̇ = (µ̇1; µ̇2; . . . ; µ̇i; . . . ; µ̇l), ṡi ∈ R
mi , µ̇i ∈ R

mi .

Finally, the second-order sufficient condition holds at (d(∆D), λ(∆D), µ(∆D),

s(∆D)) if ∆D is sufficiently small.

R em a r k 3.2. The sensitivity result for quadratic semidefinite programming

(QSDP) is analyzed by Freund et al. [4], where the second-order sufficient condi-

tion is of the form without the sigma term. Grace et al. [7] give the generalization

under the weak second-order sufficient conditions, i.e., the sigma term is taken into

consideration. We give the proof of Theorem 3.1 by a similar proof technique. How-

ever, since our constraints contain second-order cones, the details are quite different

from [4], [7].

R em a r k 3.3. Assumptions (A1) and (A2) imply that d∗ is a strict local mini-

mizer of (1.3). The MFCQ condition and the uniqueness of the Lagrangian multiplier

can be replaced by a stronger condition, i.e., the nondegeneracy condition, which cor-

responds to the LICQ condition in nonlinear programming (see [2], Section 4).

P r o o f of Theorem 3.1. The proof is divided into four parts.

Part 1. First, we establish the following result: if the perturbed program has a lo-

cal solution that is a differentiable function of the perturbation, then the derivative

is indeed a solution of (3.4).

Suppose that there exists a solution (d∗ +∆d, s∗ +∆s) of the perturbed problem

near (d∗, s∗), where ∆s = (∆s1; ∆s2; . . . ; ∆si; . . . ; ∆sl) ∈ R
m, ∆si ∈ R

mi . Since the

MFCQ condition (3.1) is invariant under small perturbations of the problem data,
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there exist ∆µ = (∆µ1; ∆µ2; . . . ; ∆µi; . . .∆µl) ∈ R
m(∆µi ∈ R

mi) and ∆λ ∈ R
p such

that µ∗
i +∆µi ∈ Ki, s

∗
i +∆si ∈ Ki and

(3.5)





(Ai +∆Ai)(d
∗ +∆d) + (ai +∆ai) = s∗i +∆si, i = 1, 2, . . . , l,

(C +∆C)(d∗ +∆d) + (c+∆c) = 0,

(b+∆b) + (H +∆H)(d∗ +∆d)− (C⊤ +∆C⊤)(λ∗ +∆λ)

=
l∑

i=1

(A⊤
i +∆A⊤

i )(µ
∗
i +∆µi),

(µ∗
i +∆µi) ◦ (s

∗
i +∆si) = 0, i = 1, 2, . . . , l.

Neglecting the second-order term in (3.5) and using the result of (3.2), we obtain the

result in (3.4).

Part 2. Now we prove that the system of linear equations (3.4) has a unique

solution. To this end, we will show that the homogeneous version of (3.4) only has

a trivial solution, i.e., the system

Aiḋ = ṡi, i = 1, 2, . . . , l,(3.6)

Cḋ = 0,(3.7)

Hḋ− C⊤λ̇−
l∑

i=1

A⊤
i µ̇i = 0,(3.8)

µ∗
i ◦ ṡi + s∗i ◦ µ̇i = 0, i = 1, 2, . . . , l,(3.9)

only has the trivial solution (ḋ, λ̇, µ̇, ṡ) = (0, 0, 0, 0) ∈ R
n × R

p × R
m × R

m.

Multiplying (3.8) by ḋ⊤, by (3.6) and (3.7), we get

ḋ⊤Hḋ = ḋ⊤C⊤λ+

l∑

i=1

ḋ⊤A⊤
i µ̇i =

l∑

i=1

µ̇⊤
i ṡi.

Since s∗i ◦µ
∗
i = 0, if s∗i ∈ int(Ki), then it follows from Proposition 2.1(6) that µ

∗
i = 0.

By (3.9), we have that µ̇i◦s
∗
i = 0, whence it follows by Proposition 2.1(6) that µ̇i = 0;

If s∗i = 0, by Assumption (A3), we have that µ∗
i ∈ int(Ki). By Proposition 2.1(6)

and (3.9), we have that ṡi = 0. From the discussion above, we have that

(3.10) ḋ⊤Hḋ =
∑

s∗
i
∈bd+(Ki)

µ̇⊤
i ṡi.

By Assumption (A3), we know that if s∗i ∈ bd+(Ki), then µ∗
i ∈ bd+(Ki). Let

ṡi = ((ṡi)(1); ṡi), κi = (µ∗
i )(1)/(s

∗
i )(1). It follows from Proposition 2.1(1), (4) and (3.9)

that

(3.11) (1/κi)µ̇
⊤
i ṡi = (ṡi)(1) − ‖ṡi‖

2.
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Using the definition of H(d∗, µ∗) and (3.6), (3.11), we have that

(3.12) ḋ⊤H(d∗, µ∗)ḋ = ḋ⊤
∑

s∗
i
∈bd+(Ki)

Hi(x∗, µ∗
i )ḋ

=
∑

s∗
i
∈bd+(Ki)

−κi(Aiḋ)
⊤Ri(Aiḋ)

(3.6)
= −κi

∑

s∗
i
∈bd+(Ki)

(ṡi)(1) − ‖ṡi‖
2)

(3.11)
= −

∑

s∗
i
∈bd+(Ki)

µ̇⊤
i ṡi,

which gives, using (3.10), that

(3.13) ḋ⊤(H +H(d∗, µ∗))ḋ = 0.

Next we will show that ḋ ∈ C(d∗) which is defined in Remark 3.1. It is clear that

Cḋ = 0 holds because of (3.7). If s∗i = 0, then, by (3.6), we have Aiḋ = 0; If s∗i ∈

bd+(Ki), then, by (3.9), Proposition 2.1(1) and (4), we have that µ
∗
i
⊤ṡi = 0 and µ∗

i =

κiRis
∗
i (where κi = (µ∗

i )(1)/(s
∗
i )(1)), whence it follows by (3.6) that s

∗
i
⊤RiAiḋ = 0.

Thus we have that ḋ ∈ C(d∗). It follows from (3.13) and Assumption (A2) that ḋ = 0,

which implies immediately that ṡ = 0 because of (3.6).

At last, we will show that µ̇ = 0. Note that if s∗i ∈ int(Ki), then, by the proof

above, we have already shown that µ̇i = 0. Therefore, we only consider s∗i = 0 and

s∗i ∈ bd+(Ki). If there exists s
∗
i = 0 such that µ̇i 6= 0, then from Assumption (A3),

µ∗
i ∈ int(Ki). We can define µ

τ
i = µ∗

i + τµ̇i, where τ > 0 is chosen to be a sufficiently

small constant such that µτ
i ∈ Ki. If there exists s

∗
i ∈ bd+(Ki) such that µ̇i 6= 0,

since ṡi = 0, by (3.9), we have µ̇i ◦ s
∗
i = 0. It follows from Proposition 2.1(2) that

µ̇i = κµ∗
i , where κ 6= 0 is a constant. Similarly, we can define µτ

i = µ∗
i + τµ̇i such

that µτ
i ∈ Ki when τ is sufficiently small. From the discussions above, we also have

that µτ
i ◦ s∗i = 0 holds for i = 1, 2, . . . , l. Thus, let µτ = (µτ

1 ;µ
τ
2 ; . . . ;µ

τ
l ) and

λτ = λ∗ + τλ̇, µτ = µ∗ + τµ̇.

By (3.8), (3.9) and ḋ = 0, it is easy to verify that all the relations in (3.2) still hold

for (d∗, λτ , µτ , s∗). So (d∗, λτ , µτ , s∗) is a stationary point for (1.3) and (λτ , µτ ) is

the corresponding Lagrangian multiplier, which contradicts Assumption (A1) that

the Lagrangian multiplier is unique. Thus, we have that λ̇ = 0 and µ̇ = 0.

Part 3. We will show that the following nonlinear system (3.14) has a solution

which depends smoothly on the perturbation ∆D. Using the result in Part 2, we can
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now apply the implicit function theorem to the system

(3.14)





Aid+ ai = si, i = 1, 2, . . . , l,

Cd+ c = 0,

b+Hd− C⊤λ =
l∑

i=1

A⊤
i µi,

µi ◦ si = 0, i = 1, 2, . . . , l.

Since the linearization of (3.14) at the point (d∗, λ∗, µ∗, s∗) is nonsingular, sys-

tem (3.14) has a differentiable and locally unique solution (d(∆D), λ(∆D), µ(∆D),

s(∆D)). By Assumption (A3), we have that µ∗
i + s∗i ∈ int(Ki) (i = 1, 2, . . . , l).

By the continuity of µ(∆D), s(∆D), we have that lim
∆D→0

(µ(∆D), s(∆D)) = (µ∗, s∗).

Therefore,

µi(∆D) + si(∆D) ∈ int(Ki), i = 1, 2, . . . , l,

which implies by µi(∆D) ◦ si(∆D) = 0 and Proposition 2.1(3) that µi(∆D),

si(∆D) ∈ Ki (i = 1, 2, . . . , l). This implies that the local solutions of system (3.14)

are actually stationary points when the perturbation ∆D is sufficiently small.

Part 4. Finally, we will prove that the second-order sufficient condition is satisfied

at the perturbed solution (d(∆D), λ(∆D), µ(∆D), s(∆D)). Assume, by contradic-

tion, that the statement is not true. Let {∆Dk} be a sequence of perturbations with

∆Dk tending to zero and qk ∈ C(d(∆Dk)) \ {0}. Then there exists a subset K such

that lim
k→∞,k∈K

qk = q̂, ‖q̂‖ = 1 and

(3.15) q⊤k ((H +∆Hk) +H(d(∆Dk), µ(∆Dk))qk 6 0.

Let k → ∞, k ∈ K, by the continuity and Assumption (A3), we have that

lim
k→∞,k∈K

C(d(∆Dk)) ⊆ C(d∗), lim
k→∞,k∈K

H(d(∆Dk), µ(∆Dk)) = H(d∗, µ∗).

By (3.15), there exists q̂ ∈ C(d∗) such that

q̂(H +H(d∗, µ∗))q̂ 6 0,

which is a contradiction to Assumption (A2). �
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4. Local convergence of an SQP-type method for NSOCP

In this section, we apply the sensitivity result of QSOCP to the local convergence

of the SQP-type method for NSOCP in [9]. Denote by hi(x) the ith component of

h(x), by ∇hi(x) the gradient of hi(x) and by ∇2hi(x) the Hessian matrix of hi(x).

Denote by Dh(x) the Jacobian matrix of h(x). Denote by gi,j(x) the jth component

of gi(x), its gradient and Hessian matrix are denoted by ∇gi,j(x) and ∇2gi,j(x),

respectively. We need the following Assumptions (B) for (1.1), which are for general

NSOCP and are different from Assumptions (A) for QSOCP.

Assumptions (B)

(B1) The functions f(x), h(x), gi(x) are twice continuously differentiable.

(B2) If {xk} is an infinite sequence generated by an SQP-type algorithm, then

lim
k→∞

xk = x∗ and x∗ is a KKT point of (1.1).

(B3) The constrained nondegeneracy condition (see [2]) is satisfied at x∗, i.e., the

vectors 



∇hk(x
∗), k = 1, 2, . . . , p,

Dgi(x
∗)⊤Rigi(x

∗), gi(x
∗) ∈ bd+(Ki),

∇gi,j(x
∗), j = 1, 2, . . . ,mi,

gi(x
∗) = 0, i = 1, 2, . . . , l

are linearly independent, where

Ri =

(
1 0⊤

0 −Imi−1

)
.

(B4) The second-order sufficient condition holds at x∗, i.e.,

d⊤∇2
xxL(x

∗, λ∗, µ∗)d+ d⊤Ĥ(x∗, µ∗)d > 0 ∀ d ∈ Ĉ(x∗) \ {0},

where Ĥ(x∗, µ∗) =
l∑

i=1

Ĥi(x∗, µ∗
i ), µ

∗
i,j is the jth component of µ∗

i , λ
∗
i is the ith

component of λ∗,

∇2
xxL(x

∗, λ∗, µ∗) = ∇2f(x∗)−

p∑

i=1

λ∗
i∇

2hi(x
∗)−

l∑

i=1

mi∑

j=1

µ∗
i,j∇

2gi,j(x
∗),

Ĉ(x∗) = {d ∈ R
n | ∇f(x∗)⊤d = 0, Dh(x∗)d = 0, Dgi(x

∗)d ∈ TKi
gi(x

∗), i = 1, 2 . . . , l},

Ĥi(x∗, µ∗
i ) =





−
(µ∗

i )(1)

(gi(x∗))(1)
Dgi(x

∗)
⊤
RiDgi(x

∗), gi(x
∗) ∈ bd+(Ki),

0, otherwise.

(B5) The strict complementarity condition holds, i.e., gi(x
∗) + µ∗

i ∈ int(Ki) for

i = 1, 2 . . . , l.
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(B6) The Hessian approximation Bk satisfies

‖Pk(Wk −Bk)dk‖ = o(‖dk‖),

where Pk(y) is the orthogonal projection of a vector y onto KerVk, Vk is a matrix

whose column vectors are





∇hk(xk, k = 1, 2, . . . , p,

Dgi(xk)
⊤Rigi(xk), gi(xk) ∈ bd+(Ki),

∇gi,j(xk), j = 1, 2, . . . ,mi,

gi(xk) = 0, i = 1, 2, . . . , l

and Wk = ∇2
xxL(xk, λk+1, µk+1).

R em a r k 4.1. The nondegeneracy condition (B3) is similar to the LICQ condi-

tion in nonlinear programming, which is stronger than the MFCQ condition stated

as (3.1). Denote by V ∗ a matrix whose columns are formed by the vectors stated in

Assumption (B3) above, then (B3) is equivalent to the condition that V ∗ is of full

column rank. For simplicity, we still use the notation (λ∗, µ∗) for the Lagrangian

multiplier corresponding with x∗. If the constrained nondegeneracy condition holds

at x∗, then the corresponding Lagrangian multiplier (λ∗, µ∗) is unique (see [2], [3]).

R em a r k 4.2. If Assumption (B5) holds, then Ĉ(x∗) has the following form:

Ĉ(x∗) =

{
d ∈ R

n | Dh(x∗)d = 0,

{
Dgi(x

∗)d = 0, gi(x
∗) = 0,

gi(x
∗)⊤RiDgi(x

∗)d = 0, gi(x
∗) ∈ bd+(Ki)

}
,

that is, V ∗⊤d = 0. Furthermore, for d ∈ Ĉ(x∗), we have that

d⊤Ĥ(x∗, µ∗)d =
∑

gi(x∗)∈bd+(Ki)

d⊤Ĥi(x∗, µ∗
i )d

=
∑

gi(x∗)∈bd+(Ki)

−
(µ∗

i )(1)

(gi(x∗))(1)
(((Dgi(x

∗)d)(1))
2 − ‖Dgi(x∗)d‖2),

which yields by Proposition 2.1(5) that d⊤Ĥ(x∗, µ∗)d > 0.

R em a r k 4.3. In [9], [14], Bk is taken as Wk, which is stronger than Assump-

tion (B6).

Lemma 4.1. Under Assumptions (B), we have that lim
k→∞

(dk, λk+1, µk+1) =

(0, λ∗, µ∗).
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P r o o f. The proof of Lemma 4.1 requires the sensitivity result from Theo-

rem 3.1. Suppose, by contradiction, that there exists a subset K such that for

k ∈ K, lim
k→∞,k∈K

dk 6= 0 and lim
k→∞,k∈K

Bk = B∗.

Consider the following subproblem:

(4.1) min
d∈Rn

∇f(x∗)⊤d+
1

2
d⊤B∗d

s.t. h(x∗) +Dh(x∗)d = 0,

gi(x
∗) +Dgi(x

∗)d ∈ Ki, i = 1, 2, . . . , l.

Denote

g(x) = (g1(x), g2(x), . . . , gl(x)), Dg(x) = (Dg1(x), Dg2(x), . . . , Dgl(x)).

Then problem (4.1) is described by the data

D = (∇f(x∗), B∗, Dh(x∗), h(x∗), Dg(x∗), g(x∗)).

Comparing (4.1) with (1.3), we can take b = ∇f(x∗), H = B∗, C = Dh(x∗),

c = h(x∗), Ai = Dgi(x
∗), ai = gi(x

∗) in order to use the result in Theorem 3.1.

First, we have to show that the Assumptions (A1)–(A3) hold for (4.1) at d = 0. By

Assumptions (B1), (B2) and (B3), x∗ is a local minimizer of (1.1) and (λ∗, µ∗) is

the unique Lagrangian multiplier. Using the KKT conditions of (1.1), it is easy to

verify that (0, λ∗, µ∗) is the solution of (4.1). Besides, by simple calculation, we know

that the nondegeneracy condition (which implies the MFCQ condition) and strict

complementarity condition for (4.1) also hold at d = 0 because of Assumptions (B3)

and (B5). By Remark 4.2, we know that for q ∈ Ĉ(x∗), q⊤Ĥ(x∗, µ∗)q > 0 holds.

Since C(0) = Ĉ(x∗), H(0, µ∗) = Ĥ(x∗, µ∗) and Bk is positive definite, we have that

(4.2) q⊤(B∗ +H(0, µ∗))q > 0

holds for all q ∈ C(0) \ {0}, which implies that the second-order sufficient condition

for (4.1) holds at d = 0.

Now let (dk, λk+1, µk+1) be the solution of the perturbed problem

(4.3) min
d∈Rn

∇f(xk)
⊤d+

1

2
d⊤Bkd

s.t. h(xk) +Dh(xk)d = 0,

gi(xk) +Dgi(xk) ∈ Ki, i = 1, 2, . . . , l,
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where µk+1 = (µk+1,1; . . . ;µk+1,i; . . . ;µk+1,l), µk+1,i ∈ Ki. The perturbation is∆Dk,

i.e.,
(∇f(xk)−∇f(x∗), Bk −B∗, Dh(xk)−Dh(x∗),

h(xk)− h(x∗), Dg(xk)−Dg(x∗), g(xk)− g(x∗)).

By Theorem 3.1, we have that lim
k→∞,k∈K

dk = 0, which is a contradiction. Therefore,

(λk+1, µk+1) → (λ∗, µ∗) can be proved by a similar technique. �

R em a r k 4.4. For k sufficiently large, if gi(x
∗) ∈ int(Ki), by Lemma 4.1, we

have that gi(xk) +Dgi(xk)dk ∈ int(Ki) holds. Note that x
∗ is a KKT point of (1.1)

and dk is the KKT point of (4.3), it follows from the complementarity conditions

that

µ∗
i ◦ gi(x

∗) = 0, µk+1,i ◦ (gi(xk) +Dgi(xk)dk) = 0,

so it follows from Proposition 2.1(6) that µk+1,i = µ∗
i = 0. As a result, we do not

have to take such constraints into consideration. Define the index sets

I∗1 = {i | gi(x
∗) = 0}, I∗2 = {i | gi(x

∗) ∈ bd+(Ki)},

Ik1 = {i | gi(xk) +Dgi(xk)dk = 0}, Ik2 = {i | gi(xk) +Dgi(xk)dk ∈ bd+(Ki)}.

We show the relations of the index sets in the following lemma.

Lemma 4.2. Under Assumptions (B1)–(B5), for k sufficiently large, we have that

Ik1 = I∗1 , Ik2 = I∗2 .

P r o o f. The results Ik1 ⊆ I∗1 and Ik2 ⊆ I∗2 follow directly by the continuity and

lim
k→∞

dk = 0. If i ∈ I∗1 , then, by the strict complementarity condition in Assump-

tion (B5), we have µ∗
i ∈ int(Ki). It follows from the continuity and Lemma 4.1 that

µk+1,i ∈ int(Ki) for k sufficiently large. By µk+1,i ◦ (gi(xk) + Dgi(xk)dk) = 0 and

Proposition 2.1(1), we have that i ∈ Ik1 . Therefore, I
k
1 ⊇ I∗1 . The inclusion Ik2 ⊇ I∗2

can be proved by a similar technique. �

By Lemma 4.2, for k sufficiently large, we can write Ik1 = I∗1 = I1, I
k
2 = I∗2 = I2

for simplicity. Thus, when k is sufficiently large and Assumptions (B1)–(B5) hold,

(1.2) turns into the following form:

min
d∈Rn

g⊤k d+
1

2
d⊤Bkd(4.4)

s.t. hk +Dh(xk)d = 0,

gi(xk) +Dgi(xk)d = 0, i ∈ I1,

gi(xk) +Dgi(xk)d ∈ bd+(Ki), i ∈ I2.
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We state the main result of the local convergence of the SQP-type method [9]

for (1.1) in the following theorem.

Theorem 4.1. Under Assumptions (B), if xk+1 = xk + dk holds for k sufficiently

large, then ‖xk + dk − x∗‖ = o(‖xk − x∗‖).

R em a r k 4.5. Kato et al. [9] give the local convergence of the SQP-type method

for second-order cone programming when Bk = Wk, which is proved by Wang

et al. [14]. The result in Theorem 4.1, compared with the result in [9], does not

need the assumption thatWk is positive definite when k is sufficiently large. Instead,

we replace the assumption with Assumptions (B5) and (B6). Besides, Theorem 4.3

shows the convergence rate of {xk} without the Lagrangian multiplier.

We need some lemmas in order to prove Theorem 4.1.

Lemma 4.3. Under Assumptions (B1)–(B5), for k sufficiently large, we have that

‖λk+1 − λ∗‖ = O(‖dk‖) +O(‖xk − x∗‖), ‖µk+1 − µ∗‖ = O(‖dk‖) +O(‖xk − x∗‖).

P r o o f. By the KKT conditions of (1.1) and (1.2), we have that

∇f(x∗)−Dh(x∗)⊤λ∗ −
∑

i∈I1∪I2

Dgi(x
∗)⊤µ∗

i = 0,(4.5)

∇f(xk) +Bkdk −Dh(xk)
⊤λk+1 −

∑

i∈I1∪I2

Dgi(xk)
⊤µk+1,i = 0.(4.6)

For i ∈ I2, by Proposition 2.1(1), we can denote

(4.7) µ∗
i = κ∗

iRigi(x
∗), µk+1,i = κk+1,iRi(gi(xk) +Dgi(xk)dk),

where

κ∗
i =

(κi
∗)(1)

(gi(x∗))(1)
, κk+1,i =

(κk+1,i)(1)
(gi(xk) +Dgi(xk)dk)(1)

, Ri =

(
1 0⊤

0 −Imi−1

)
.

By the continuity and (4.5)–(4.7), we have that

Dh(x∗)(λk+1 − λ∗) +
∑

i∈I1

Dgi(x
∗)⊤(µk+1,i − µ∗

i )

+
∑

i∈I2

Dgi(x
∗)⊤Rigi(x

∗)(κk+1,i − κ∗
i )

= O(‖dk‖) +O(‖xk − x∗‖),
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whence it follows by Assumption (B2) that ‖λk+1 − λ∗‖ = O(‖dk‖) +O(‖xk − x∗‖)

and
‖µk+1,i − µ∗

i ‖ = O(‖dk‖) +O(‖xk − x∗‖), i ∈ I1,

‖κk+1,i − κ∗
i ‖ = O(‖dk‖) +O(‖xk − x∗‖), i ∈ I2.

For i ∈ I2, it follows from the continuity and (4.7) that

‖µk+1,i − µ∗
i ‖ = O(‖dk‖) + O(‖xk − x∗‖), i ∈ I2.

Thus the statement is true. �

We still need the following auxiliary problem to analyze local convergence.

(4.8) min
x∈Rn

f(x)

s.t. h(x) = 0,

Fi(x) = 0, i ∈ I1 ∪ I2,

where Fi(x) is defined as

Fi(x) =

{
gi(x), i ∈ I1,

1
2 (gi(x)(1))

2 − 1
2‖gi(x)‖

2, i ∈ I2.

Denote

µ̂k+1,i =





µk+1,i, i ∈ I1,

(µk+1,i)(1)

(gi(xk) +Dgi(xk)dk)(1)
, i ∈ I2,

µ̂∗
i =





µ∗
i , i ∈ I1,

(µ∗
i )(1)

(gi(x∗))(1)
, i ∈ I2.

The Lagrangian function of (4.8) is

L̂(x, λ, µ) = f(x)−Dh(x)⊤λ−
∑

i∈I1∪I2

DFi(x)
⊤µi.

By simple calculation, we have that

(4.9) ∇xL̂(x
∗, λ∗, µ̂∗) = ∇f(x∗)−Dh(x∗)⊤λ∗ −

∑

i∈I1∪I2

DFi(x
∗)⊤µ̂∗

i

= ∇f(x∗)−Dh(x∗)⊤λ∗ −
∑

i∈I1∪I2

Dgi(x
∗)⊤µ∗

i = 0,
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where the ith component of µ̂∗ is µ̂∗
i , and

(4.10) ∇xxL̂(x
∗, λ∗, µ̂∗) = ∇2f(x∗)−

p∑

i=1

λ∗
i∇

2hi(x
∗)−

∑

i∈I1∪I2

mi∑

j=1

µ̂∗
i,j∇

2Fi,j(x
∗)

= ∇2f(x∗)−

p∑

i=1

λ∗
i∇

2hi(x
∗)−

∑

i∈I1∪I2

mi∑

j=1

µ∗
i,j∇

2gi,j(x
∗)

−
∑

i∈I2

µ̂∗
iDgi(x

∗)⊤RiDgi(x
∗)

= ∇2
xxL(x

∗, λ∗, µ∗) +
∑

i∈I2

Ĥi(x∗, µ∗
i ),

where µ∗
i,j denotes the jth component of µ

∗
i . By the definition of Pk in Assump-

tion (B6), we have that

(4.11) PkDFi(xk)
⊤ = 0, i ∈ I1 ∪ I2;

PkDh(xk)
⊤ = 0.

Lemma 4.4. Under Assumptions (B), for k sufficiently large, if xk+1 = xk + dk,

then

(4.12) Dgi(xk)
⊤µk+1,i −DFi(xk)

⊤µ̂k+1,i

= − Ĥi(xk, µk+1,i)dk +O(‖dk‖
2), i ∈ I2.

P r o o f. By (4.7) and the definition of µ̂k+1,i, for i ∈ I2, we have that

Dgi(xk)
⊤µk+1,i = Dgi(xk)

⊤Ri(gi(xk)(4.13)

+Dgi(xk)dk)
(µk+1,i)(1)

(gi(xk) +Dgi(xk)dk)(1)
,

DFi(xk)
⊤µ̂k+1,i = Dgi(xk)

⊤Rigi(xk)
(µk+1,i)(1)

(gi(xk) +Dgi(xk)dk)(1)
.(4.14)

It follows from (4.13) and (4.14) that

Dgi(xk)
⊤µk+1,i −DFi(xk)

⊤µ̂k+1,i

=
(µk+1,i)(1)

(gi(xk) +Dgi(xk)dk)(1)
Dgi(xk)

⊤RiDgi(xk)dk.
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Since

Ĥi(xk, µk+1,i) = −
(µk+1,i)(1)

(gi(xk))(1)
Dgi(xk)

⊤RiDgi(xk),

we have that

Dgi(xk)
⊤µk+1,i −DFi(xk)

⊤µ̂k+1,i

=
(µk+1,i)(1)

(gi(xk))(1)
Dgi(xk)

⊤RiDgi(xk)dk

+
( (µk+1,i)(1)

(gi(xk) +Dgi(xk)dk)(1)
−

(µk+1,i)(1)

(gi(xk))(1)

)

×Dgi(xk)
⊤RiDgi(xk)dk

= − Ĥi(xk, µk+1,i) +O(‖dk‖
2).

Thus the statement is true. �

Lemma 4.5. Under Assumptions (B1)–(B4), for k sufficiently large, the matrix

(
P (x∗)∇2

xxL̂(x
∗, λ∗, µ̂∗)

(V ∗)⊤

)

is of full column rank, where P (x∗) = I − V ∗(V ∗⊤V ∗)−1V ∗⊤, V ∗ is the matrix

defined in Remark 4.1.

P r o o f. We only need to show that the system

P (x∗)∇2
xxL̂(x

∗, λ∗, µ̂∗)d = 0,(4.15)

(V ∗)⊤d = 0(4.16)

has only the trivial solution d = 0. By the definition of P (x∗) and (4.16), we have

P (x∗)d = d. Multiplying both sides of (4.15) by d⊤, we get

(4.17) d⊤P (x∗)∇2
xxL̂(x

∗, λ∗, µ̂∗)d = d⊤∇2
xxL̂(x

∗, λ∗, µ̂∗)d = 0.

By Assumption (B4), (4.10) and (4.17), we have d = 0. Therefore, the matrix is

a full column rank matrix. �

Finally, we give the proof of Theorem 4.1.
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P r o o f of Theorem 4.3. First, we have that

Pk(Bk −∇2
xxL(x

∗, λ∗, µ∗))dk(4.18)

(4.6)
= Pk

(
−∇f(xk) +Dh(xk)

⊤λk+1 +
∑

i∈I1∪I2

Dgi(xk)µk+1,i −∇2
xxL(x

∗, λ∗, µ∗)dk

)

(4.11)
= Pk

(
−∇f(xk) +Dh(xk)

⊤λ∗ +
∑

i∈I1∪I2

DFi(xk)
⊤µ̂∗

i −∇2
xxL̂(x

∗, λ∗, µ̂∗)dk

)

+ Pk

(
Dh(xk)

⊤λk+1 +
∑

i∈I1∪I2

Dgi(xk)
⊤µk+1,i

−∇2
xxL(x

∗, λ∗, µ∗)dk +∇2
xxL̂(x

∗, λ∗, µ̂∗)dk

)

(4.9),(4.11)
= − Pk(∇xL̂(xk, λ

∗, µ̂∗)−∇xL̂(x
∗, λ∗, µ̂∗) +∇2

xxL(x
∗, λ∗, µ∗)dk)

+ Pk

( ∑

i∈I1∪I2

Dgi(xk)
⊤µk+1,i −

∑

i∈I

DFi(xk)
⊤µ̂k+1,i

)

+ Pk(−∇2
xxL(x

∗, λ∗, µ∗)dk +∇2
xxL̂(x

∗, λ∗, µ̂∗)dk)

(4.10)
= − Pk∇

2
xxL̂(x

∗, λ∗, µ̂∗)(xk + dk − x∗) + o(‖xk − x∗‖)

+ Pk

( ∑

i∈I1∪I2

Dgi(xk)
⊤µk+1,i −

∑

i∈I

DFi(xk)
⊤µ̂k+1,i

)

+ Pk

∑

i∈I2

Hi(x∗, µ∗
i )dk

(4.12)
= − Pk∇

2
xxL̂(x

∗, λ∗, µ̂∗)(xk + dk − x∗) + o(‖xk − x∗‖)

+ Pk

(
−
∑

i∈I2

Ĥi(xk, µk+1,i)dk +
∑

i∈I2

Ĥi(x∗, µ∗
i )dk

)
+ o(‖dk‖).

Therefore,

Pk(Bk −∇2
xxL(x

∗, λ∗, µ∗))dk

= − Pk∇
2
xxL̂(x

∗, λ∗, µ̂∗)(xk + dk − x∗) + o(‖xk − x∗‖) + o(‖dk‖),

which implies by Assumption (B6) that

(4.20) Pk∇
2
xxL̂(x

∗, λ∗, µ̂∗)(xk + dk − x∗) = o(‖xk − x∗‖) + o(‖dk‖).

By the Taylor expansion,

h(xk) = h(xk)− h(x∗) = Dh(xk)(xk − x∗) +O(‖xk − x∗‖2),
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which implies by Dh(xk)dk + h(xk) = 0 that

(4.21) Dh(x∗)(xk + dk − x∗) = o(‖xk − x∗‖).

For i ∈ I1, gi(x
∗) = 0 and gi(xk) +Dgi(xk)dk = 0. Similarly to the proof above, we

have that

(4.22) Dgi(x
∗)(xk + dk − x∗) = o(‖xk − x∗‖), i ∈ I1.

For i ∈ I2, denote by
∏
Ki

u the merit projector of u ∈ R
mi to the second-order cone Ki.

By this notation, gi(x
∗) ∈ Ki, µ

∗
i ∈ Ki and gi(x

∗) ◦ µ∗
i = 0 is equivalent to

(4.23)
∏

Ki

(gi(x
∗)− µ∗

i ) = gi(x
∗), i ∈ I2.

Similarly, we have that, for i ∈ I2,

gi(xk) +Dgi(xk)dk ∈ Ki, µk+1,i ∈ Ki, (gi(xk) +Dgi(xk)dk) ◦ µk+1,i = 0

is equivalent to

(4.24)
∏

Ki

(gi(xk) +Dgi(xk)dk − µk+1,i) = gi(xk) +Dgi(xk)dk, i ∈ I2.

As the projection operator
∏
Ki

u is strongly semismooth [12], there exists Ui ∈

∂B
∏
Ki

(gi(x
∗)− µ∗

i ) such that (∂B is the B-subdifferential [13])

∏

Ki

(gi(x
∗)− µ∗

i ) =
∏

Ki

(gi(xk) +Dgi(xk)dk − µk+1,i)

+ Ui(gi(x
∗)− µ∗

i − gi(xk)−Dgi(xk)dk + µk+1,i)

+ o(‖xk − x∗‖) + o(‖dk‖) + o(‖µk+1,i − µ∗
i ‖),

which gives, using (4.22) and (4.23), that

gi(x
∗) = gi(xk) +Dgi(xk)dk + Ui(gi(x

∗)− µ∗
i − gi(xk)−Dgi(xk)dk + µk+1,i)

+ o(‖xk − x∗‖) + o(‖dk‖) + o(‖µk+1,i − µ∗
i ‖).

It follows from the Taylor expansion that

(4.25) Dgi(x
∗)(xk + dk − x∗) = Ui(gi(x

∗)− µ∗
i − gi(xk)−Dgi(xk)dk + µk+1,i)

+ o(‖xk − x∗‖) + o(‖dk‖) + o(‖µk+1,i − µ∗
i ‖).
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Multiplying both sides of (4.24) by gi(x
∗)⊤Ri, we have that

gi(x
∗)⊤RiDgi(x

∗)(xk + dk − x∗)

= gi(x
∗)⊤RiUi(gi(x

∗)− µ∗
i − gi(xk)−Dgi(xk)dk + µk+1,i)

+ o(‖xk − x∗‖) + o(‖dk‖) + o(‖µk+1,i − µ∗
i ‖).

For gi(x
∗) ∈ bd+(Ki), it follows from Assumption (B5) that µ

∗
i ∈ bd+(Ki). Using

the formulas for the subdifferential of the projector operator
∏
Ki

u (see Lemma 2.4

in [14]), we have that gi(x
∗)⊤RiUi = 0 (the details are given in the appendix part).

This fact, along with Lemma 4.4, shows that, for i ∈ I2,

(4.26) gi(x
∗)⊤RiDgi(x

∗)(xk + dk − x∗) = o(‖xk − x∗‖) + o(‖dk‖).

By (4.20), (4.21) and (4.25), we have that

(4.27) (V ∗)⊤(xk + dk − x∗) = o(‖xk − x∗‖) + o(‖dk‖).

By (4.19), (4.26) and ‖dk‖ = ‖(xk+1 − x∗)− (xk − x∗)‖ 6 ‖xk+1 − x∗‖+ ‖xk − x∗‖,

we have that

(4.28)

(
Pk∇

2
xxL̂(x

∗, λ∗, µ̂∗)

(V ∗)⊤

)
(xk + dk − x∗) = o(‖xk+1 − x∗‖) + o(‖xk − x∗‖).

By Lemma 4.6 and the continuity, the matrix on the left-side of (4.27) is nonsingular,

which implies that (xk + dk − x∗) = o(‖xk − x∗‖). �

5. Final remarks

In this paper, we analyze the sensitivity of the quadratic second-order cone pro-

gramming under the weak second-order sufficient condition. By the sensitivity result,

we give the superlinear convergence rate of an SQP-type method for NSOCP. The re-

sult is different from other recent work, because we do not need the assumption that

the Hessian matrix is positive definite near the solution. Furthermore, we analyze

the local convergence rate of the iterates {xk} instead of the iterates {xk, λk, µk}.
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6. Appendix: the proof details in Theorem 4.1

Lemma 6.1. Let K ⊆ R
m̂ be a second-order cone, then for u = (u(1); ū) ∈

R× R
m̂−1 and |u(1)| < ‖ū‖, the subdifferential of the projector

∏
K

u is

∂B
∏

K

u =
1

2




1
ū⊤

‖ū‖

ū

‖ū‖
Im̂−1 +

u(1)

‖ū‖
Im̂−1 −

u(1)

‖ū‖

ūū⊤

‖ū‖2


 .

Furthermore, if a = (a(1); ā) ∈ bd+(K) ⊆ R× R
m̂−1, b = κ(a(1);−ā), where κ > 0 is

a constant, ξ ∈ ∂B
∏
K

(a− b), then b⊤ξ = 0.

P r o o f. The first result can be found in Pang et al. [11]. We only show b⊤ξ = 0

by calculation,

κa(1) + κ(−ā⊤)
(1 + κ)ā

(1 + κ)‖ā‖
= κ(a(1) − ‖ā‖) = 0,

κa(1)
(1 + κ)ā⊤

(1 + κ)‖ā‖
− κā⊤ − κā⊤

(1− κ)a(1)

(1 + κ)‖ā‖
+ κā⊤

(1− κ)a(1)

(1 + κ)‖ā‖
= 0.

�

Let a = gi(x
∗) ∈ bd+(Ki), b = µ∗

i = κ∗
iRigi(x

∗), ξ = Ui ∈ ∂B
∏
Ki

(gi(x
∗) − µ∗

i ).

From the above result we have gi(x
∗)⊤RiUi = 0. (This result is used in Theorem 4.3.)
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