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Abstract. A special type of Jacobi matrices, discrete Schrödinger operators, is found to
play an important role in quantum physics. In this paper, we show that given the spectrum
of a discrete Schrödinger operator and the spectrum of the operator obtained by deleting
the first row and the first column of it can determine the discrete Schrödinger operator
uniquely, even though one eigenvalue of the latter is missing. Moreover, we find the forms
of the discrete Schrödinger operators when their smallest and largest eigenvalues attain the
extrema under certain constraints by use of the notion of generalized directional derivative
and the method of Lagrange multiplier.
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1. Introduction

Sturm-Liouville eigenvalue problem arises throughout many regions of applied

mathematics. For example, they describe the vibrations of a string or the energy

eigenfunctions of a quantum mechanical oscillator, in which case the eigenvalues

correspond to the resonant frequencies of vibration or energy levels. Schrödinger

equation is a type of Sturm-Liouville eigenvalue problem, coming from the idea

that the discrete energy levels observed in atomic systems could be obtained as the

eigenvalues of a differential operator.

One of well-known studies of Schrödinger operator is the Anderson model which

was proposed by Anderson in [2] to explain the absence of diffusion of quantum waves

in disordered lattices. He observed that the presence of impurities in the environment,

coming from either the composition of the atoms or the space distribution of the

nuclei in the atomic structure, was, under certain conditions, enough to suppress the

propagation of electrons, turning the material into an insulator.
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There is an enormous literature on inverse spectral problem of Schrödinger opera-

tor ([1], [6], [13], [14] and references therein), but considerably less of its discrete

analog ([3], [5], [15]). The special type of Jacobi matrix, whose off-diagonal terms

all equal to 1, originates from the discretization of the Sturm-Liouville equation,

Gesztesy and Simon called them the discrete Schrödinger operators in their paper [7].

The purpose of this paper is to solve some elementary eigenvalue problems for discrete

Schrödinger operators.

In Section 2, we work on solving the eigenvalue problems of Jacobi matrices.

In 1946, Borg proved that if q(x) is even in [0, π], namely q(x) = q(π − x), then the

spectrum of the equation
{
y′′(x) + [λ− q(x)]y(x) = 0, 0 6 x 6 π,

y′(0) = 0, y′(π) = 0,

or {
y′′(x) + [λ− q(x)]y(x) = 0, 0 6 x 6 π,

y(0) = 0, y(π) = 0,

determines q(x) uniquely (see [4]). This result motivated Hochstadt to study whether

the eigenvalues determine persymmetric Jacobi matrices uniquely (see [10]), which

can be regarded as the “even” case of Jacobi matrices. Because the uniqueness has

been proven (see [10]), the existence of a persymmetric Jacobi matrix with the given

eigenvalues is the next topic we wish to address. Using the recurrence relation of

characteristic polynomials of Jacobi matrices, we prove the existence of an irreducible

persymmetric Jacobi matrix with the given eigenvalues. When combined with the

uniqueness theorem for persymmetric Jacobi matrices (see [10]), the theory of the

eigenvalue problems of the irreducible persymmetric Jacobi matrices becomes more

complete.

Sections 3 and 4 focus on the discrete Schrödinger operators. Section 3 is based

on a result reported by Levinson in his paper [12] and proved by Hochstadt in [11].

Let σND(q) denote the spectrum of the eigenvalue problem
{
y′′(x) + [λ− q(x)]y(x) = 0, 0 6 x 6 1,

y′(0) = 0, y(1) = 0,

and let σN (q) denote the spectrum of the eigenvalue problem
{
z′′(x) + [µ− q(x)]z(x) = 0, 0 6 x 6 1,

z′(0) = 0, z′(1) = 0.

If (i) σND(q) = σND(q̃), (ii) σN (q)\{µ1(q)} = σN (q̃)\{µ1(q̃)}, where µ1(q) (or µ1(q̃))

is the first eigenvalue in σN (q) (or σN (q̃)), then Levinson concluded that q ≡ q̃.
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Because the discrete Schrödinger operators can be regarded as the discrete version

of the Sturm-Liouville equation, a similar argument should be valid for them. We

prove Levinson’s theorem for the discrete Schrödinger operators (Theorem 3.3) and

find a generalization of it (Corollary 3.4) in this section.

In Section 4, by using the notion of generalized directional derivative developed

by Trubowitz [16] and the Lagrange multiplier method under certain constraints,

we identify the forms of the discrete Schrödinger operators when their smallest and

largest eigenvalues attain the extrema. The main result we obtained in this section

is as follows.

Theorem 1.1. For n × n discrete Schrödinger operators with a square sum of

diagonal elements equal to one, the largest (smallest) eigenvalue attains the minimum

(maximum) when the discrete Schrödinger operator is persymmetric.

2. The existence theorem of the persymmetric Jacobi matrices

Definition 2.1. A symmetric matrixM = [mij ]
n
i,j=1 satisfying mij = 0 for all

|i− j| > 2 is called a Jacobi matrix. Let

M =




a1 b1 0 . . . 0

b1 a2 b2
. . .

...

0
. . .

. . .
. . . 0

...
. . .

. . .
. . . bn−1

0 . . . 0 bn−1 an



.

Then we denote M by J [a1, . . . , an; b1, . . . , bn−1]. Moreover, if bj 6= 0 for all j =

1, 2, . . . , n− 1, then the Jacobi matrixM is said to be irreducible.

For 1 6 k 6 l 6 n, let Jk,l = J [ak, . . . , al; bk, . . . , bl−1], and denote the charac-

teristic polynomial of Jk,l by Pk,l(x). Then for irreducible Jacobi matrices there is

a well-known result:

Theorem 2.2. Suppose J1,n is an n × n irreducible Jacobi matrix with positive

off-diagonal elements. Then

(i) the zeros of P1,n(x) are simple,

(ii) the zeros of Pk,n(x) and Pk+1,n(x) are interlacing, 1 6 k 6 n− 1,

(iii) P1,n(x) and P2,n(x) determine J1,n uniquely.

P r o o f. See [8], Chapter 3. �
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Definition 2.3. Let J1,n be an n × n Jacobi matrix. Thus, J1,n is said to be

persymmetric if ai = an+1−i, bj = bn−j , where 1 6 i 6 n, 1 6 j 6 n− 1.

Let Sn = [sij ]n×n, where

sij =

{
1 if i+ j = n+ 1,

0 otherwise.

Denote SnJ1,nSn by J̃1,n. According to the definition of a characteristic polynomial

of Jk,l, we have P1,n(x) = P̃1,n(x) and P2,n(x) = P̃1,n−1(x). Definition 2.3 clearly

indicates that an n × n Jacobi matrix J1,n is persymmetric if and only if J1,n =

SnJ1,nSn, i.e. J1,n = J̃1,n. Hence, we have the following lemma:

Lemma 2.4. An n × n Jacobi matrix J1,n is persymmetric if and only if

P1,n−1(x) = P2,n(x).

Definition 2.5. The spectrum of a matrix T , denoted by σ(T ), is the set which

consists of the eigenvalues of T .

In [10], Hochstadt proved the following result:

Theorem 2.6. Let

J = J [a1, . . . , an; b1, . . . , bn−1]

and

J̃ = J [ã1, . . . , ãn; b̃1, . . . , b̃n−1]

be two irreducible persymmetric Jacobi matrices with positive off-diagonal elements.

Suppose the spectra of J and J̃are the same. Then J = J̃ .

Hence, given λ1 < λ2 < . . . < λn, Theorem 2.6 implies that there can only be

one irreducible persymmetric Jacobi matrix with σ(T ) = {λ1, λ2, . . . , λn}. In this
section, we solve the existence problem of persymmetric Jacobi matrices. For our

purpose, we must obtain the following result:

Theorem 2.7. Denote by λ1 < λ2 < . . . < λn the eigenvalues of an irreducible

Jacobi matrix J = J [a1, . . . , an; b1, . . . , bn−1]. Then J is persymmetric if and only if

(2.1) P1,n−1(λj) = (−1)n−jb1b2 . . . bn−1.
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P r o o f. By the definition of Pk,n(x), 1 6 k 6 n, we have for n > 3,

(2.2) Pk,n(x) = (x− ak)Pk+1,n(x) − b2kPk+2,n(x) ∀ 1 6 k 6 n− 2.

Using (2.2), it is obtained that for 1 6 k 6 n− 3,

(2.3) Pk,n(x)Pk+1,n−1(x) − Pk,n−1(x)Pk+1,n(x)

= [(x− ak)Pk+1,n(x) − b2kPk+2,n(x)]Pk+1,n−1(x)

− [(x− ak)Pk+1,n−1(x)− b2kPk+2,n−1(x)]Pk+1,n(x)

= b2k(Pk+1,n(x)Pk+2,n−1(x)− Pk+1,n−1(x)Pk+2,n(x)).

Applying (2.3) repeatedly, we get

(2.4) P1,n(x)P2,n−1(x)− P1,n−1(x)P2,n(x)

= b21b
2
2 . . . b

2
n−3(Pn−2,n(x)Pn−1,n−1(x) − Pn−2,n−1(x)Pn−1,n(x))

= − b21b
2
2 . . . b

2
n−1.

Because P1,n(λj) = 0 for all 1 6 j 6 n, (2.4) leads to

(2.5) P1,n−1(λj)P2,n(λj) = b21b
2
2 . . . b

2
n−1, 1 6 j 6 n.

Suppose J is persymmetric, then according to Lemma 2.4, we have

P1,n−1(x) = P2,n(x).

Hence, (2.5) implies

P 2
1,n−1(λj) = b21b

2
2 . . . b

2
n−1.

Note that the zeros of P1,n(x) and P1,n−1(x) are interlacing; thus,

SgnP1,n−1(λj) = (−1)n−j, 1 6 j 6 n,

which implies that

P1,n−1(λj) = (−1)n−jb1b2 . . . bn−1, 1 6 j 6 n.

By contrast, if

P1,n−1(λj) = (−1)n−jb1b2 . . . bn−1, 1 6 j 6 n,

then by using (2.5),

P2,n(λj) = (−1)n−jb1b2 . . . bn−1, 1 6 j 6 n.
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Because P1,n−1(x) and P2,n(x) are monic polynomials of degree n− 1 and coincide

at n points, we conclude that

P1,n−1(x) = P2,n(x).

By using Lemma 2.4, we complete the proof. �

From Theorem 2.6, the question that we pose is answerable if and only if there

exists a monic polynomial Pn−1(x) with degree n−1 such that Pn−1(λj) = (−1)n−jc

with an unknown nonzero constant c, where 1 6 j 6 n. For our purpose, we consider

the following system of equations:

(2.6)





λn−1
1 + an−2λ

n−2
1 + . . .+ a0 = (−1)n−1c,

λn−1
2 + an−2λ

n−2
2 + . . .+ a0 = (−1)n−2c,

...

λn−1
n + an−2λ

n−2
n + . . .+ a0 = c.

To achieve our goal, we must determine whether the system of equations (2.6) can

be solved. For solving a0, . . . , an−2, and c, we change (2.6) into

(2.7)





an−2λ
n−2
1 + . . .+ a0 + (−1)nc = −λn−1

1 ,

an−2λ
n−2
2 + . . .+ a0 + (−1)n−1c = −λn−1

2 ,

...

an−2λ
n−2
n + . . .+ a0 − c = −λn−1

n .

Thus, (2.6) is solvable if and only if the coeffcient determinant of (2.7) is not equal

to zero. For this purpose we prove:

Lemma 2.8. Let (n > 3). For λ1 < λ2 < . . . < λn, we have

det




λn−2
1 λn−3

1 . . . 1 (−1)n

λn−2
2

. . .
. . . 1 (−1)n−1

...
. . .

. . .
...

...
...

. . .
. . .

...
...

λn−2
n . . . . . . 1 −1




6= 0.
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P r o o f. Let

A =




λn−2
1 λn−3

1 . . . 1 (−1)n

λn−2
2

. . .
. . . 1 (−1)n−1

...
. . .

. . .
...

...
...

. . .
. . .

...
...

λn−2
n . . . . . . 1 −1




and use Âij to denote the matrix obtained by deleting the ith row and the jth column

of A. By multiplying the (n− 1)th column of A by (−1)n and adding it to the nth

column of A, we find that

detA = det




λn−2
1 λn−3

1 . . . 1 2(−1)n

λn−2
2

. . .
. . . 1 0

...
. . .

. . .
...

...
...

. . .
. . .

...
...

λn−2
n . . . . . . 1 (−1) + (−1)n




= 2(−1)n(det Â1n + det Â3n + . . .+ det Â2[(n+1)/2]−1,n).

Note that

det Âin = det




λn−2
1 λn−3

1 . . . λ1 1
...

. . .
. . .

...
...

λn−2
i−1

. . .
. . . λi−1

...

λn−2
i+1

. . .
. . . λi+1

...
...

. . .
. . .

...
...

λn−2
n . . . . . . λn 1




,

which is of the form of the Vandermonde determinant. Hence Âin 6= 0 and

(2.8) det Âin = (−1)(n−1)(n−2)/2
∏

16k<l6n
k,l 6=i

(λl − λk).

Because Sgn Âin = (−1)(n−1)(n−2)/2, 1 6 i 6 n, detA 6= 0. This completes the

proof. �

By using Lemma 2.8, we find there exists a monic polynomial Pn−1(x) of degree

n− 1 such that

Pn−1(λj) = (−1)n−jc,
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where

c = det




λn−2
1 . . . 1 −λn−1

1
...

. . .
...

...
...

. . .
...

...

λn−2
n . . . 1 −λn−1

n




/
det




λn−2
1 . . . 1 (−1)n

λn−2
2

. . . 1 (−1)n−1

...
. . .

...
...

...
. . .

...
...

λn−2
n . . . 1 −1




.

The numerator of c is of the form of the Vandermonde determinant with λi 6= λj for

i 6= j. Hence c 6= 0.

By summarizing the previous arguments, we obtain the following result:

Theorem 2.9. Given any n distinct real numbers, λ1, λ2, . . . , λn. There exists

an irreducible persymmetric Jacobi matrix J such that σ(J) = {λ1, λ2, . . . , λn}.

3. Levinson’s theorem for the discrete Schrödinger operators

Definition 3.1. A Jacobi matrix in which all off-diagonal terms equal 1 is called

a discrete Schrödinger operator.

The eigenvalue problem for the discrete Schrödinger operators may be considered

a discrete version of the Sturm-Liouville equation

y′′(x) + [λ− q(x)]y(x) = 0.

Let σND(q) denote the spectrum of the eigenvalue problem

{
y′′(x) + [λ− q(x)]y(x) = 0, 0 6 x 6 1,

y′(0) = 0, y(1) = 0,

and let σN (q) denote the spectrum of the eigenvalue problem

{
z′′(x) + [µ− q(x)]z(x) = 0, 0 6 x 6 1,

z′(0) = 0, z′(1) = 0.

Although it is known that σND(q) and σN (q) determine q(x) uniquely, it is difficult

to detect all eigenvalues of these spectrum in fact. How many eigenvalues of σND(q)

and σN (q) can be ignored when determining q(x) became a new interesting topic for

researchers of inverse Sturm-Liouville eigenvalues problem. In [12], Levinson men-

tioned that if (i) σND(q) = σND(q̃), (ii) σN (q) \ {ν1(q)} = σN (q̃) \ {ν1(q̃)}, where
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ν1(q) (ν1(q̃)) is the first eigenvalue in σN (q) (σN (q̃)), then q ≡ q̃. Levinson’s asser-

tion was proven by Hochstadt (see [11]). In this section, we prove some analogous

theorems for discrete Schrödinger operators. First, we prove the following lemma:

Lemma 3.2. Let J = J [a1, . . . , an; b1, . . . , bn−1] be an n × n irreducible Jacobi

matrix. Suppose λ1 (λn) is the smallest (the largest) eigenvalue of J . Then λ1 < ai

(ai < λn) for all 1 6 i 6 n.

P r o o f. By using the variational principle, we have

λ1 = min
‖~v‖=1

〈J~v, ~v 〉.

Let ~ei denote the elementary vector of Rn with the ith component equal to 1 and 0

elsewhere. Then

(3.1) λ1 6 〈J~ei, ~ei〉 = ai.

For λ ∈ σ(J), if J~e⊤i = λ~e⊤i , we obtain bi−1 = bi = 0, which contradicts the notion

that J is irreducible. Hence, ~ei cannot be the eigenvector of J , and (3.1) implies

λ1 < ai for all 1 6 i 6 n.

However,

λn = max
‖~v‖=1

〈J~v,~v〉.

By using the same argument, we can prove ai < λn for all 1 6 i 6 n. Thus, the

assertion is proven. �

Let Sk,l = J (ak, . . . , al) be an (l−k+1)×(l−k+1) discrete Schrödinger operator,

and denote the characteristic polynomial of Sk,l by Pk,l(x). We have the following

theorem:

Theorem 3.3. Let S1,n and S̃1,n be two n × n discrete Schrödinger operators.

Let λ1, λ2, . . . , λn (or λ̃1, λ̃2, . . . , λ̃n) be the eigenvalues of S1,n (or S̃1,n), and let ν1,

ν2, . . . , νn−1 (or ν̃1, ν̃2, . . . , ν̃n−1) be the eigenvalues of S2,n (or S̃2,n). Suppose the

conditions

(i) σ(S1,n) \ {λ1} = σ(S̃1,n) \ {λ̃1},
(ii) σ(S2,n) = σ(S̃2,n),

are satisfied. Then S1,n = S̃1,n.
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P r o o f. We can express P1,n(x) and P̃1,n(x) as

(3.2) P1,n(x) = (x− a1)P2,n(x) − P3,n(x),

and

(3.3) P̃1,n(x) = (x− ã1)P̃2,n(x) − P̃3,n(x).

By (ii),

P2,n(x) = P̃2,n(x),

therefore (3.2) and (3.3) imply

(3.4) (x− ã1)P1,n(x)− (x− a1)P̃1,n(x) = (x− a1)P̃3,n(x)− (x− ã1)P3,n(x).

Furthermore, because P3,n(x) and P̃3,n(x) are monic, the degree of the polynomial

(x− a1)P̃3,n(x) − (x− ã1)P3,n(x)

is at most n− 2. However, because condition (i) and (3.4) imply

(λi − a1)P̃3,n(λi)− (λi − ã1)P3,n(λi) = 0, 2 6 i 6 n,

the polynomial (x−a1)P̃3,n(x)−(x−ã1)P3,n(x) must be the zero polynomial. Hence,

(3.4) becomes

(3.5) (x− ã1)P1,n(x)− (x− a1)P̃1,n(x) = 0.

Because λi = λ̃i for 2 6 i 6 n, we can write

(3.6) P1,n(x) = (x− λ1)

n∏

i=2

(x− λi)

and

(3.7) P̃1,n(x) = (x− λ̃1)

n∏

i=2

(x− λi).

By using (3.5), (3.6), and (3.7), we obtain

(3.8) [(x − ã1)(x− λ1)− (x− a1)(x− λ̃1)]

n∏

i=2

(x− λi) = 0.
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Because (3.8) is true for real x,

(x − ã1)(x− λ1) = (x− a1)(x − λ̃1).

Hence,

(3.9) ã1λ1 = a1λ̃1

and

(3.10) ã1 + λ1 = a1 + λ̃1.

If ã1 = 0, then by Lemma 3.2, λ̃1 < ã1 = 0. By using (3.9) and (3.10), we determine

that a1 = ã1 = 0 and λ1 = λ̃1. In this case, we have P1,n(x) = P̃1,n(x). If ã1 6= 0,

then (3.9) implies

(3.11) λ1 =
a1λ̃1

ã1
.

Combining (3.10) and (3.11), we obtain

ã1 +
a1λ̃1

ã1
= a1 + λ̃1,

which implies

(3.12) (ã1 − a1)(ã1 − λ̃1) = 0.

Because λ̃1 is the smallest eigenvalue of S̃1,n and ã1 is a diagonal element of S̃1,n,

Lemma 3.2 implies λ̃1 < ã1. Thus (3.12) leads to a1 = ã1. Then by (3.11), λ1 = λ̃1,

which implies P1,n(x) = P̃1,n(x).

From the previous argument, we have P1,n(x) = P̃1,n(x) and P2,n(x) = P̃2,n(x)

under conditions (i) and (ii). According to Theorem 2.2, S1,n = S̃1,n. �

A more interesting question, however, is what the case would be when ν1 and ν̃1
are missing.

Corollary 3.4. Suppose n > 3. Let S1,n, S̃1,n, {λi}ni=1, {λ̃i}ni=1, {νj}n−1
j=1 , and

{ν̃j}n−1
j=1 be as defined in Theorem 3.3. If

(i) σ(S1,n) = σ(S̃1,n),

(ii) σ(S2,n) \ {ν1} = σ(S̃2,n) \ {ν̃1},
then S1,n = S̃1,n.
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P r o o f. Because P1,n(x) and P̃1,n(x) are monic, the assumption (i) implies

(3.13) P1,n(x) = P̃1,n(x).

According to assumption (ii), we can write

(3.14) P2,n(x) = (x− ν1)
n−1∏

j=2

(x − νj)

and

(3.15) P̃2,n(x) = (x− ν̃1)

n−1∏

j=2

(x− νj).

It follows from (3.2), (3.3), (3.13), (3.14), and (3.15) that

(3.16) [(x− a1)(x − ν1)− (x− ã1)(x − ν̃1)]

n−1∏

j=2

(x− νj) = P̃3,n(x) − P3,n(x).

Because P3,n(x) and P̃3,n(x) are monic and have the degree n − 2, the polynomial

P̃3,n(x) − P3,n(x) has a degree that is at most n− 3. However, according to (3.16),

we know that

P̃3,n(νj)− P3,n(νj) = 0, 2 6 j 6 n− 1.

Thus,

(3.17) P3,n(x) ≡ P̃3,n(x).

With (3.17) and assumption (ii), Theorem 3.3 implies S2,n = S̃2,n; therefore

P2,n(x) ≡ P̃2,n(x). Now we have P1,n(x) ≡ P̃1,n(x) and P2,n(x) ≡ P̃2,n(x). Hence,

S1,n = S̃1,n. �

R em a r k s.

(1) Theorem 3.3 (or Corollary 3.4) is also valid when λ1 (or ν1) is replaced by λn

(or νn−1).

(2) We cannot apply the method used in Theorem 3.3 for general Jacobi matrices,

because the off-diagonal elements are unknown. However, if the two Jacobi

matrices have the same off-diagonal elements and conditions (i) and (ii) of The-

orem 3.3 (or Corollary 3.4) are satisfied, then our method can be used to prove

that these two Jacobi matrices are the same.

(3) Corollary 3.4 is not valid for n = 2. As a counterexample, if S =

[
a 1

1 b

]
and

S̃ =

[
b 1

1 a

]
, then S and S̃ have the same λ1 and λ2 but possess distinct ν1

values if a 6= b.
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4. Two extremal eigenvalue problems of discrete Schrödinger

operators

Consider the equation

(4.1) (Jn +Q)~v = λ~v,

where Jn = J (0, . . . , 0), Q = J [q1, . . . , qn; 0, . . . , 0], and qi ∈ R, 1 6 i 6 n. Let

λ1 < λ2 < . . . < λn be the eigenvalues of Jn +Q and ~wi = (ai1, ai2, . . . , ain)
⊤ be the

eigenvectors corresponding to λi, 1 6 i 6 n. It is clear that λi depends on q1, q2, . . . ,

and qn. Therefore λi can be regarded as a function of q1, q2, . . . , and qn. Identifying

an explicit formula for dQλi is useful. We may and shall assume that ai1 = 1 to

make ~wi a differentiable function of q1, q2, . . . , and qn.

Because we know that λi maps Rn into R, dQλi must be a 1×n matrix. By taking

the derivative on both sides of (4.1) and replacing λ with λi, we have

(4.2) dQ[(Jn +Q)~wi] = dQ[λi ~wi].

Note that

(4.3) dQ[(Jn +Q)~wi] = dQ[Jn ~wi +Q~wi] = JndQ ~wi + dQ(Q~wi)

and Q~wi = [q1ai1 q2ai2 . . . qnain]
⊤; therefore we have

(4.4) dQ(Q~wi) =




∂(q1ai1)

∂q1

∂(q1ai1)

∂q2
. . .

∂(q1ai1)

∂qn
∂(q2ai2)

∂q1

. . .
. . .

...

...
. . .

. . .
...

∂(qnain)

∂q1
. . . . . .

∂(qnain)

∂qn




=




ai1 + q1
∂ai1
∂q1

q1
∂ai1
∂q2

. . . q1
∂ai1
∂qn

q2
∂ai2
∂q1

. . .
. . .

...

...
. . .

. . .
...

qn
∂ain
∂q1

. . . . . . ain + qn
∂ain
∂qn




= W +QdQ ~wi,
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where

W =




ai1 0 . . . 0

0
. . .

. . .
...

...
. . .

. . . 0

0 . . . 0 ain


 , QdQ ~wi =




q1
∂ai1
∂q1

q1
∂ai1
∂q2

. . . q1
∂ai1
∂qn

q2
∂ai2
∂q1

. . .
. . .

...

...
. . .

. . .
...

qn
∂ain
∂q1

. . . . . . qn
∂ain
∂qn




.

However,

(4.5) dQ[λi ~wi] =




∂(λiai1)

∂q1

∂(λiai1)

∂q2
. . .

∂(λiai1)

∂qn
∂(λiai2)

∂q1

. . .
. . .

...

...
. . .

. . .
...

∂(λiain)

∂q1
. . . . . .

∂(λiain)

∂qn




=




ai1
∂λi

∂q1
+ λi

∂ai1
∂q1

. . . ai1
∂λi

∂qn
+ λi

∂ai1
∂qn

...
. . .

...

ain
∂λi

∂q1
+ λi

∂ain
∂q1

. . . ain
∂λi

∂qn
+ λi

∂ain
∂qn




=




ai1
∂λi

∂q1
. . . ai1

∂λi

∂qn
...

. . .
...

ain
∂λi

∂q1
. . . ain

∂λi

∂qn



+




λi
∂ai1
∂q1

. . . λi
∂ai1
∂qn

...
. . .

...

λi
∂ain
∂q1

. . . λi
∂ain
∂qn




= ~widQλi + λidQ ~wi.

By using (4.3), (4.4) and (4.5), we see that (4.2) becomes

(4.6) W + (Jn +Q)dQ ~wi = ~widQλi + λidQ ~wi.

In (4.1), by replacing λ by λi, we obtain

(Jn +Q)~wi = λi ~wi,

which can be rewritten as

(4.7) ~w⊤
i (Jn +Q) = λi ~w

⊤
i .

(4.6) and (4.7) imply that

~w⊤
i W = ~w⊤

i ~widQλi.
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Hence,

[ a2i1 a2i2 . . . a2in ] = ‖~wi‖2dQλi.

Definition 4.1. Let ~v⊤ = (v1, v2, . . . , vn). We use the notation (~v⊤)p to denote

the vector (vp1 , v
p
2 , . . . , v

p
n).

From previous discussion, we obtain the following result:

Theorem 4.2. Suppose λi is the ith eigenvalue of Jn+Q and ~wi is the eigenvector

corresponding to λi whose first component is 1. Then

dQλi =
(~w⊤

i )
2

‖~wi‖2
.

Next, we investigate the extremum problem for λ1 and λn with the constraint

q21 + q22 + . . .+ q2n 6 1. For this purpose, the Lagrange multiplier method is used. Let

(ak1, ak2, . . . , akn)
⊤ be the normalized eigenvector corresponding to λk of Jn + Q,

ak1 > 0, k = 1, n. The eigenvector of Jn +Q corresponding to λj can be described

explicitly as follows:

Lemma 4.3. Let J = J [a1, . . . , an; b1, . . . , bn−1] be an irreducible Jacobi matrix

and denote

~vj =
(
1,

P1,1(λj)

b1
,
P1,2(λj)

b1b2
, . . . ,

P1,n−1(λj)

b1 . . . bn−1

)⊤
.

Thus, J~vj = λj~vj , 1 6 j 6 n.

P r o o f. Because bi 6= 0 for all 1 6 i 6 n− 1, denote

P1,r(x)

b1 . . . br
= P̂r(x),

where P1,r(x) is the characteristic polynomial of J1,r, 1 6 r 6 n, and let P1,−1(x) =

P̂−1(x) = 0, P1,0(x) = P̂0(x) = 1, b0 = bn = 1. Note that the following recurrence

relations hold:

P1,r(x) = (x− ar)P1,r−1(x)− b2r−1P1,r−2(x), 1 6 r 6 n.

Hence, it is clear that

(4.8) b2r−1P1,r−2(x) + arP1,r−1(x) + P1,r(x) = xP1,r−1(x), 1 6 r 6 n.

For r > 2, by dividing (4.8) by b1 . . . br−1 and using the notation presented, (4.8)

can be rewritten as

(4.9) br−1P̂r−2(x) + arP̂r−1(x) + brP̂r(x) = xP̂r−1(x), 2 6 r 6 n.
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Easily, we can see (4.9) is true for r = 1. Thus,

(4.10) J1,n




P̂0(x)
...

P̂n−2(x)

P̂n−1(x)


 = x




P̂0(x)
...

P̂n−2(x)

P̂n−1(x)


+




0
...

0

P̂n(x)


 .

Because

P̂n(λj) =
P1,n(λj)

b1 . . . bn−1
= 0

when λj is an eigenvalue of J1,n, the proof is complete. �

Denote by λk(q1, . . . , qn) the kth eigenvalue of J (q1, . . . , qn).

Lemma 4.4. Restricting λk(q1, . . . , qn) on the ball
n∑

i=1

q2i 6 1, the extremum of

λk(q1, . . . , qn) is attained on the boundary
n∑

i=1

q2i = 1, where k = 1, n.

P r o o f. Let (q̃1, . . . , q̃n) be an extremum point of λk(q1, . . . , qn) in
n∑

i=1

q2i 6 1.

For the maximum case, suppose that
n∑

i=1

q̃2i = c < 1; we can then find a constant

c1 > 0 such that
n∑

i=1

(q̃i+c1)
2 6 (

√
c+c1

√
n)2 6 1. However, when ~v is the normalized

eigenvector corresponding to λk(q̃1, . . . , q̃n),

〈(Jn+Q+c1In)~v,~v〉 = λk(q̃1+c1, . . . , q̃n+c1) = λk(q̃1, . . . , q̃n)+c1 > λk(q̃1, . . . , q̃n).

This contradicts the notion that λk(q̃1, . . . , q̃n) is the maximum. Hence, the maxi-

mum must be attained by
n∑

i=1

q2i = 1. Similarly, we can prove the assertion for the

minimum case. �

According to Theorem 4.2 and Lemma 4.4, it is clear that if λk attains its ex-

tremum at (q1, . . . , qn), then we have the following system of equations:

(4.11)





a2k1 = 2Lq1,

a2k2 = 2Lq2,

...

a2kn = 2Lqn,

q21 + . . .+ q2n = 1.

Lemma 4.5. Let ~q = (q1, . . . , qn) be the unit vector for which λk(q1, . . . , qn)

attains its extremum, where k = 1, n. Then qi > 0 (or < 0) for all 1 6 i 6 n when

λk(q1, . . . , qn) attains its maximum (or minimum), k = 1, n.

340



P r o o f. We only prove the assertion for λn here because the assertion for λ1

follows from the same argument. Using Theorem 2.2, we can easily see that λn (λ1)

is at the right (left) side of all zeros of P1,r(x), r = 1, . . . , n. Therefore, according

to Lemma 4.3, the components of the eigenvector corresponding to the largest and

smallest eigenvalue are nonzero. Thus, (4.11) implies that qi values are neither all

negative nor all positive when λn attains its extremum.

Suppose all qi values are negative when λn attains its maximum. Then

max
‖~v‖=1

〈(Jn +Q)~v,~v〉 − max
‖~v‖=1

〈(Jn −Q)~v,~v〉 6 max
‖~v‖=1

〈(2Q)~v,~v〉 < 0,

because 2Q is negative-definite. However, this contradicts the notion that λn attains

a maximum. Thus, the assertion for the maximum case is proven. Similarly, we can

prove the assertion for the minimum case. This completes the proof. �

First, we observe the case n = 2,

(4.12)





a2k1 = 2Lq1,

a2k2 = 2Lq2,

q21 + q22 = 1.

Note that we also have

(4.13)





q1ak1 + ak2 = λkak1,

ak1 + q2ak2 = λkak2,

a2k1 + a2k2 = 1.

Because aij 6= 0, 1 6 i, j 6 2, we know that L 6= 0. If we replace q1 and q2 with
1
2a

2
k1/L and

1
2a

2
k2/L in the first and second equation of (4.13), then

(4.14)





a3k1
2L

+ ak2 = λkak1,

ak1 +
a3k2
2L

= λkak2.

By multiplying the first equation of (4.14) by a3k2, the second equation of (4.14) by

−a3k1 and adding them together, the result is

(4.15) a4k2 − a4k1 = λkak1ak2(a
2
k2 − a2k1).

According to (4.13), we know a2k1 + a2k2 = 1; hence, equation (4.15) becomes

(4.16) (1 − λkak1ak2)(a
2
k2 − a2k1) = 0.

By multiplying the first equation of (4.13) by ak2, the second equation of (4.13)

by ak1, and adding them together, we find

(4.17) (q1 + q2)ak1ak2 + a2k1 + a2k2 = 2λkak1ak2.
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We wish to show that in (4.16), λkak1ak2 6= 1. Suppose that on the contrary,

λkak1ak2 = 1. Because a2k1 + a2k2 = 1, equation (4.17) becomes

(q1 + q2)ak1ak2 = 1.

Because ak1, ak2 6= 0, and we assume that λkak1ak2 = 1, we find that q1 + q2 = λk.

By replacing λk in (4.13) with q1 + q2, we obtain

q1q2 = 1.

However, this is absurd because q21 + q22 = 1. Because λkak1ak2 6= 1, k = 1, 2,

equation (4.16) implies a2k1 = a2k2. By returning to (4.12), we find that q1 = q2. We

conclude with the following result:

Theorem 4.6. Let S be a 2×2 discrete Schrödinger operator in which the square

sum of the diagonal elements equals one. Thus, the eigenvalues of S attain their
extremum when S is persymmetric. Moreover, they attain the maximum when
q1 = q2 = 1/

√
2 and attain the minimum when q1 = q2 = −1/

√
2.

By using Theorem 4.6, we may guess that among all n × n discrete Schrödinger

operators for which the square sum of the diagonal elements equals one, λn (or λ1)

attains its extremum when the discrete Schrödinger operator is persymmetric.

For a general n, denote (ak1, ak2, . . . , akn)⊤ by ~uk, k = 1, n. For k = 1, n, be-

cause ~uk is the normalized eigenvector corresponding to λk of Jn +Q, we have

(4.18) 〈(Jn +Q)(Sn~un),Sn~un〉 6 〈(Jn +Q)~un, ~un〉

and

(4.19) 〈(Jn +Q)(Sn~u1),Sn~u1〉 > 〈(Jn +Q)~u1, ~u1〉,

where Sn is as defined in Section 2.

Suppose that λk attains the extremum at (q1, . . . , qn), k = 1, n. Consequently,

according to (4.11), we have qj = 1
2a

2
kj/L, k = 1, n. By applying (4.18) and (4.19),

we obtain

(4.20)
1

2L

( n∑

i=1

a2nia
2
n,n+1−i

)
6

1

2L

( n∑

j=1

a4nj

)

and

(4.21)
1

2L

( n∑

i=1

a21ia
2
1,n+1−i

)
>

1

2L

( n∑

j=1

a41j

)
.
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In order to obtain more information from (4.20) and (4.21), we need the following

lemma:

Lemma 4.7 (Hardy-Littlewood-Pólya inequality). Suppose

a1 6 a2 6 . . . 6 an, b1 6 b2 6 . . . 6 bn

and (j1, j2, . . . , jn) is a rearrangement of (1, 2, . . . , n). Then

n∑

i=1

aibi >

n∑

i=1

aibji >

n∑

i=1

aibn+1−i.

P r o o f. See [9].

�

According to Lemma 4.7, it is clear that

(4.22)
n∑

i=1

a2kia
2
k,n+1−i 6

n∑

j=1

a4kj , k = 1, n.

From Lemma 4.5, for k = 1, n, we have L > 0 (or < 0) when λk attains the maximum

(or minimum). If λn attains the minimum, then (4.20) becomes

(4.23)
n∑

i=1

a2nia
2
n,n+1−i >

n∑

j=1

a4nj .

By using (4.22) and (4.23), we obtain

(4.24)
n∑

i=1

a2nia
2
n,n+1−i =

n∑

j=1

a4nj .

This equation leads to

(4.25)
[n/2]∑

i=1

(a4ni − 2a2nia
2
n,n+1−i + a4n,n+1−i) = 0,

which can be rewritten as ani = an,n+1−i for 1 6 i 6 n. By applying the same

argument, we can obtain the result of the case when λ1 attains the maximum. In

summary of the preceding discussion, we can conclude the following:

Theorem 4.8. For n × n discrete Schrödinger operators for which the square

sum of diagonal elements equals one, the largest (the smallest) eigenvalue attains

the minimum (maximum) when the discrete Schrödinger operator is persymmetric.
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Theorem 4.8 shows that one of extremal values of the largest (the smallest) eigen-

value of the discrete Schrödinger operator occurs when the potential function is even.

However, the question of when the largest (smallest) eigenvalue attains its maximum

(minimum) remains unanswered.
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