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Abstract. We consider highly accurate schemes for nonlinear time fractional Schrödinger
equations (NTFSEs). While an L1 strategy is employed for approximating the Caputo
fractional derivative in the temporal direction, compact CCD finite difference approaches
are incorporated in the space. A highly effective hybrid L1-CCD method is implemented
successfully. The accuracy of this linearized scheme is order six in space, and order 2 − γ
in time, where 0 < γ < 1 is the order of the Caputo fractional derivative involved. It is
proved rigorously that the hybrid numerical method accomplished is unconditionally stable
in the Fourier sense. Numerical experiments are carried out with typical testing problems
to validate the effectiveness of the new algorithms.
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1. Introduction

In past decades, fractional differential equations have widely attracted the at-

tention of researchers from different fields due to their outstanding memory and

hereditary properties in multi-physical modeling and approximations. They may of-

fer more precise descriptions in the sciences than traditional differential equations [1],

[18], [40], [42]. Consequently, fractional differential equations have become popular in

engineering, physical, biological, geological, and financial system applications, see [2],
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[12], [24], [34]. Results in fractional derivative analysis and computations, including

the construction of analytical solutions of fractional partial differential equations,

can be found in numerous recent publications. Since closed-form analytical solutions

are available for fractional differential equations only in extremely limited cases, it

has become imminent that highly accurate and reliable numerical methods must be

developed.

Among the many fractional equations, Schrödinger equations stand out for their

fundamental roles in quantum mechanics [11]. Naber initially noticed that the

first order temporal derivative can be generalized via a γth-order Caputo fractional

derivative in a Schrödinger equation for better modeling approximations [32]. Naber

further proved that such a fractional order Schrödinger equation is a time-dependent

Hamiltonian. Solution approximations are necessary for a better understanding of

fractional order Schrödinger equations. To this end, asymptotic approximations of

NTFSE solutions were constructed with zero and nonzero trapping potentials [23].

The Adomian decomposition method as an alternative approach for obtaining ana-

lytic and approximate solutions was proposed later [33]. Wei et al. presented and

analyzed an implicit fully discrete local discontinuous Galerkin finite element method

for solving NTFSEs [40]. A novel Jacobi spectral collocation method in combination

with the operational matrix of fractional derivatives was investigated [3]. Stan-

dard and shifted Grünwald formulas were considered [42]. Further, Shivanian and

Jafarabadia invented a spectral meshless radial point interpolation technique for

NTFSEs [35]. A linearized L1-Galerkin finite element strategy for attacking multidi-

mensional NTFSEs was recommended by Li et al. recently [28]. Although spatially

fourth-order methods were investigated in multiple publications [6], [7], [10], [16],

[37], [39] for a number of time-fractional partial differential equations, the study of

higher order numerical procedures for NTFSEs has been in its infancy.

On the other hand, Chu and Fan introduced a combined compact difference (CCD)

method in 1998, see [9]. In such an approach, the first- and second-order derivatives

of the solution functions are assumed to be two different variables. Combining with

the solution function, a triple-tridiagonal system may be accomplished for the orig-

inal partial differential equation. Moreover, a CCD strategy requires only three

spatial mesh points to achieve a sixth-order accuracy, which is favorable for solving

fractional differential equations. As an application, Gao and Sun constructed a three-

point CCD scheme based on a global Hermitian polynomial with continuous first and

second-order derivatives for time-fractional advection-diffusion equations [13], [14].

The algorithm attains a sixth-order accuracy in space successfully. Moreover, a spa-

tially sixth-order alternating direction implicit (ADI) method for two-dimensional

cubic Schrödinger equations was given by Li et al. [27]. Based on it, He and Pan

acquired a three-level linearly implicit ADI-CCD scheme for solving a generalized
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Schrödinger equation with variable coefficients [21]. For more detailed information

about the CCD strategies, a reader is referred to [8], [9], [19], [20], [26], [36], [38].

To the best of our knowledge, however, CCD approximations have never been suc-

cessfully incorporated with powerful L1 formula for solving NTFSEs. This motivates

our investigation. A highly effective hybrid and linearized structure is proposed. The

resulted numerical method achieves a sixth-order accuracy in space, taking advan-

tages of the CCD, and (2 − γ)th order accuracy in time due to L1 configurations.

The unconditional stability of this novel method is proved via a Fourier analysis.

Numerical experiments will be given to illustrate and demonstrate the anticipated

accuracy and effectiveness.

The remainder of this paper is organized as follows: In Section 2, the linearized

and spatially sixth-order CCD strategy is introduced and discussed. Our stability

analysis is given in Section 3. Computational experiments are presented in Section 4.

Finally, brief remarks and conclusions are given in Section 5.

2. L1 formulation and linear CCD method

We consider the following NTFSE (see [30], [40]):

(2.1) i
∂γΨ

∂tγ
+ α

∂2Ψ

∂x2
+ P |Ψ|2Ψ+ V (x)Ψ = f(x, t), (x, t) ∈ Ω× (0, T ],

together with the initial condition

(2.2) Ψ(x, 0) = Ψ0(x), x ∈ Ω,

and a periodic boundary condition

(2.3) Ψ(x+ L, t) = Ψ(x, t), (x, t) ∈ Ω× [0, T ],

where i is the imaginary unit, α, P are real constants, Ω is a closed interval, L is the

period, V (x) is the real-valued trapping potential function. Both f(x, t) and Ψ0(x)

are assumed to be given sufficiently smooth complex functions, and Ψ(x, t) be the

unknown complex solution. The temporal fractional derivative ∂γΨ/∂tγ is defined

in the Caputo sense [31]:

(2.4)
∂γΨ(x, t)

∂tγ
=











1

Γ(1 − γ)

∫ t

0

∂Ψ(x, s)

∂s
(t− s)−γ ds if 0 < γ < 1,

∂Ψ(x, t)

∂t
if γ = 1,

where Γ(·) is the Gamma function.
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2.1. L1 formula. For the sake of simplicity, we may rewrite (2.1) as the following

(2.5)
∂γΨ

∂tγ
− iα

∂2Ψ

∂x2
− iP |Ψ|2Ψ− iV (x)Ψ = −if(x, t).

In order to get the numerical solution of this periodic initial-boundary value prob-

lem, we may restrict it to a bounded domain [0, L]× [0, T ]. We consider a temporal

discretization. Herewith we divide [0, T ] to N subintervals, with the temporal step

τ = T/N. Denote tn = nτ , n = 0, 1, . . . , N. Let Ψn be an approximation of Ψ(tn).

Further, for the fractional derivative in (2.5), we need the following [16]:

(2.6) Dγ
t Ψ(tn) =

τ−γ

Γ(2− γ)

[

λ0Ψ(tn)−
n−1
∑

m=1

(λn−m−1 − λn−m)Ψ(tm)− λn−1Ψ(t0)

]

,

where λl = (l + 1)1−γ − l1−γ , l > 0. The above is frequently referred to as the L1

formula. It ensures an order of accuracy (2− γ) (see [27]).

We also need the following lemma.

Lemma 2.1 ([16], [37]). Suppose that Ψ(t) ∈ C2[0, tn] and 0 < γ < 1. If

R(Ψ(tn)) :=
1

Γ(1− γ)

∫ tn

0

Ψ′(s)

(tn − s)γ
ds−Dγ

t Ψ(tn),

then

|R(Ψ(tn))| 6
1

Γ(2− γ)

[1− γ

12
+

22−γ

2− γ
− (1 + 2−γ)

]

max
06t6tn

|Ψ′′(t)|τ2−γ .

Utilizing (2.6) and the lemma, we acquire the following temporal discretization

of (2.5) at t = tn:

(2.7) Dγ
t Ψ

n − iα
(∂2Ψ

∂x2

)n

− iP |Ψn|2Ψn − iVΨn = −ifn +O(τ2−γ).

2.2. Linearized CCD method. Consider the spatial discretization of (2.7).

A linearization strategy is used for the nonlinear term. To this end, we uniformly

divide [0, L] to M subintervals, where M > 0 is an integer. Denote xj = jh,

j = 0, 1, . . . ,M, where h = L/M. We further denote Ψn
j , (Ψx)

n
j and (Ψxx)

n
j for Ψ,

∂Ψ/∂x and ∂2Ψ/∂x2 at grid point (xj , tn), respectively. Drop the truncated error

in (2.7). We have

(2.8) Dγ
t Ψ

n
j − iα(Ψxx)

n
j − iP |Ψn

j |2Ψn
j − iVjΨ

n
j = −ifn

j .
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Now we consider the CCD approximation in the space. To this end, similar to [36],

we proceed ahead with

7

16
[(Ψx)j+1 + (Ψx)j−1] + (Ψx)j −

h

16
[(Ψxx)j+1 − (Ψxx)j−1](2.9)

=
15

16h
(Ψj+1 −Ψj−1) +O(h6),

9

8h
[(Ψx)j+1 − (Ψx)j−1]−

1

8
[(Ψxx)j+1 + (Ψxx)j−1] + (Ψxx)j(2.10)

=
3

h2
(Ψj+1 − 2Ψj +Ψj−1) +O(h6)

for j = 1, 2, . . . ,M under periodic boundary constraints

Ψ0 = ΨM , Ψ1 = ΨM+1, (Ψx)0 = (Ψx)M , (Ψx)1 = (Ψx)M+1,

(Ψxx)0 = (Ψxx)M , (Ψxx)1 = (Ψxx)M+1.

Therefore, the CCD system, consisting of (2.7), and (2.9), (2.10) possesses 3M equa-

tions with 3M unknowns to solve.

However, we still face another difficulty in solving the NTFSE. It is noticed that

if the real constant P 6= 0, then (2.8) is nonlinear.

In fact, this challenge has attracted a tremendous amount of recent attentions

from the community [4], [5], [27], [29]. There are two popular tools to use in the

situation: an iterative method or a linearization. Bear in mind that our non-local

time-fractional operator requires historical memories. An iterative method may im-

ply the need for large storage and CPU/GPU time, especially when the number of

time advancements is relatively large. Thus, a linearization should be more economi-

cal for handling the fractional nonlinearity. Among existing linearization procedures,

we prefer a suitable extrapolation procedure [4], [41]. For this purpose, we hybridize

our CCD approach together with a selected extrapolation for solving NTFSEs in-

cluding (2.1). Denote

(2.11) |Ψn| ≈ |2Ψn−1 −Ψn−2| := |Ψe|.

Then, a linearization of (2.8) leads to

(2.12) Dγ
t Ψ

n
j − iα(Ψxx)

n
j − iP |Ψe

j |2Ψn
j − iVjΨ

n
j = −ifn

j .

Since the extrapolation is of second-order accuracy in time, i.e., |Ψn| = |Ψe|+O(τ2),

the temporal accuracy of (2.12) must be O(τ2−γ). Further, (2.9)–(2.10) and (2.12)

introduce a three-level, or leapfrog, method. Therefore both Ψ0 and Ψ1 must be
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available before our computations. The value Ψ1 is usually generated via a straight-

forward iteration [27].

Denote

(2.13) µ = τγΓ(2− γ).

An application of the hybrid L1-CCD procedure (2.9)–(2.12) for solving (2.1)–(2.3)

consists of following two steps:

Step 1. We first obtain Ψ1
j iteratively from a known Ψ

0
j , j = 1, 2, . . . ,M. We have

− iµα(Ψxx)
∗

j + [λ0 − iµP |(Ψ1
j)s|2 − iµVj ](Ψ

1
j)

∗ = λ0Ψ
0
j − iµf1

j ,(2.14)

7

16
[(Ψx)

∗

j+1 + (Ψx)
∗

j−1] + (Ψx)
∗

j −
h

16
[(Ψxx)

∗

j+1 − (Ψxx)
∗

j−1](2.15)

=
15

16h
[(Ψ1

j+1)
∗ − (Ψ1

j−1)
∗],

9

8h
[(Ψx)

∗

j+1 − (Ψx)
∗

j−1] + (Ψxx)
∗

j −
1

8
[(Ψxx)

∗

j+1 + (Ψxx)
∗

j−1](2.16)

=
3

h2
[(Ψ1

j+1)
∗ − 2(Ψ1

j)
∗ + (Ψ1

j−1)
∗],

where (Ψ1
j)

∗, (Ψx)
∗

j and (Ψxx)
∗

j are the (s + 1)th iterative solution and derivatives,

and (Ψ1
j)s is the sth iterative solution for time level one. The initial value for the

iteration may be chosen as (Ψ1
j)0 = Ψ0

j , and the iteration is carried out until the

criterion max |(Ψ1
j)

∗ − (Ψ1
j )s| < 10−6 is satisfied or the number of the iteration steps

is larger than a controlling integer M ≫ 0, say, M = 1000.

Step 2. Once Ψ0
j and Ψ1

j are available, we proceed for the rest of numerical

solutions in the sequence {Ψn
j }Nn=2, j = 1, 2, . . . ,M, utilizing the following:

− iµα(Ψxx)
n
j + [λ0 − iµ(P |Ψe

j |2 + Vj)]Ψ
n
j(2.17)

=

n−1
∑

m=1

(λn−m−1 − λn−m)Ψm
j + λn−1Ψ

0
j − iµfn

j ,

7

16
[(Ψx)

n
j+1 + (Ψx)

n
j−1] + (Ψx)

n
j − h

16
[(Ψxx)

n
j+1 − (Ψxx)

n
j−1](2.18)

=
15

16h
(Ψn

j+1 −Ψn
j−1),

9

8h
[(Ψx)

n
j+1 − (Ψx)

n
j−1] + (Ψxx)

n
j − 1

8
[(Ψxx)

n
j+1 + (Ψxx)

n
j−1](2.19)

=
3

h2
(Ψn

j+1 − 2Ψn
j +Ψn

j−1).

The coefficient matrices in linear systems in both steps can be rearranged to be triple-

tridiagonal, except for several individual elements due to boundary conditions. The
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sparse systems can be solved readily via standard triple-forward eliminations and

triple-backward substitutions [9].

3. Linear stability analysis

In this section, we focus on the stability of the hybrid L1-CCD scheme (2.9)–(2.12).

Firstly, we assume that

(3.1) Ψn
j = ξn(m)eiωj , (Ψxx)

n
j = ξnxx(m)eiωj , fn

j = ηn(m)eiωj , Ψe
j = ξe(m)eiωj ,

where i, ξn(m), ξnxx(m) and ηn(m) are amplitudes at time level n. Note that ω =

2mπh/L is the phase angle in x-direction [3]. We further observe that

‖Ψn‖2 := h

M
∑

j=0

|Ψn
j |2 =

∞
∑

m=−∞

|ξn(m)|2,

‖fn‖2 := h

M
∑

j=0

|fn
j |2 =

∞
∑

m=−∞

|ηn(m)|2

due to the Parsevel identity [13]. For the sake of simplicity, we omit m in subsequent

discussions. We need the following two lemmas.

Lemma 3.1 ([13], [16]). Let 0 < γ < 1 and λl be defined by (2.6). We have

(1) 1 = λ0 > λ1 > λ2 > . . . > λj → 0, as j → ∞;
(2) λn−1 > (1− γ)n−γ .

Lemma 3.2 ([13], [27], [36]). The following is true for amplitudes

(3.2) ξnxx =
ξnB

h2A
,

where A = 20 cosω + 2 cos2 ω + 23 and B = 3 (8 cosω + 11 cos2 ω − 19).

Secondly, we may prove:

Theorem 3.1. The hybrid L1-CCD scheme (2.9)–(2.12) is unconditionally stable.

Moreover, we have

‖Ψn‖2 6 2‖Ψ0‖2 + 2T 2γΓ2(1− γ) max
16l6N

‖f l‖2, 1 6 n 6 N.
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P r o o f. For Step 1; that is, n = 1, according to (3.1) and Lemma 3.1, if we

substitute Ψ1
j , (Ψxx)

1
j and f1

j into (2.14), then

(1− iµP |(ξ1)s|2 − iµVj)(ξ
1)s+1 = iµα(ξ1xx)s+1 + ξ0 − iµη1.

Based on Lemma 3.2, we observe that

(3.3)
[

1− iµ
(

P |(ξ1)s|2 + Vj +
αB

h2A

)]

(ξ1)s+1 = ξ0 − iµη1.

Note that

∣

∣

∣
1− iµ

( αB

h2A
+ P |(ξ1)s|2 + Vj

)∣

∣

∣
> 1 and µ < T γΓ(1− γ)λ0 = T γΓ(1− γ)

due to (2.13) and Lemma 3.1. We arrive at

(3.4) |(ξ1)s+1| 6 |ξ0|+ µ|η1| < |ξ0|+ T γΓ(1− γ)|η1|.

Square both sides of the above to yield that

|(ξ1)s+1|2 6 2|ξ0|2 + 2T 2γΓ2(1− γ)|η1|2

because of the Cauchy-Schwarz inequality. Omit the iteration index s+1 for further

simplicity in notations. Using induction we obtain immediately that

‖Ψ1‖2 6 2‖Ψ0‖2 + 2T 2γΓ2(1− γ)‖f1‖2.

In Step 2, we substitute Ψn
j , Ψ

e
j , (Ψxx)

n
j and fn

j into (2.17), respectively. These

lead to

ξn −
n−1
∑

m=1

(λn−m−1 − λn−m)ξm − λn−1ξ
0 = iµαξnxx + iµP |ξe|2ξn + iµVjξ

n − iµηn.

Now, recall (3.2) in Lemma 3.2. It is observed that

(3.5)
[

1− iµ
( αB

h2A
+ P |ξe|2 + Vj

)]

ξn =

n−1
∑

m=1

(λn−m−1 − λn−m)ξm + λn−1ξ
0 − iµηn.

Since

∣

∣

∣
1− iµ

( αB

h2A
+ P |ξe|2 + Vj

)∣

∣

∣
> 1 and µ < T γΓ(1 − γ)λn−1,
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we acquire immediately that

(3.6) |ξn| 6
n−1
∑

m=1

(λn−m−1 − λn−m)|ξm|+ λn−1[|ξ0|+ T γΓ(1− γ)|ηn|]

from (3.5). By the same token, via induction we obtain

(3.7) |ξn| 6 |ξ0|+ T γΓ(1− γ) max
16k6N

|ηk|

from (3.6).

Squaring both sides of (3.7), we may find that

|ξn|2 6 2|ξ0|2 + 2T 2γΓ2(1− γ) max
16k6N

|ηk|2

again due to the Cauchy-Schwarz inequality. Hence,

‖Ψn‖2 6 2‖Ψ0‖2 + 2T 2γΓ2(1− γ) max
16k6N

‖fk‖2.

The above completes our proof. �

Based on Theorem 3.1, we may further prove the following boundedness, or con-

servative, property in connection with scheme (2.9)–(2.12).

Corollary 3.1. Let un
j , v

n
j and wn

j be solutions of the following system:

Dγ
t u

n
j = iαwn

j + iP |ue
j |2un

j + iVju
n
j + fn

j ,(3.8)

7

16
(vnj+1 + vnj−1) + vnj − h

16
(wn

j+1 − wn
j−1) =

15

16h
(un

j+1 − un
j−1) + gnj ,(3.9)

9

8h
(vnj+1 − vnj−1)−

1

8
(wn

j+1 + wn
j−1) + wn

j =
3

h2
(un

j+1 − 2un
j + un

j−1) + g̃nj ,(3.10)

u0
j = u0(xj)(3.11)

for 1 6 j 6 M , 1 6 n 6 N. Then

‖un‖2 6 2‖u0‖2 + 6T 2γΓ2(1− γ) max
16l6N

(

‖f l‖2 + 36α2

h2
‖gl‖2 + 4α2‖g̃l‖2

)

.
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P r o o f. First, we may rewrite the solutions into vector form:

un = [un
1 , u

n
2 , . . . , u

n
M ]⊤, vn = [vn1 , v

n
2 , . . . , v

n
M ]⊤, wn = [wn

1 , w
n
2 , . . . , w

n
M ]⊤, 06 n6N.

Further, we have

un(x) =















un
j , xj −

h

2
6 x < xj +

h

2
, 1 6 j 6 M − 1,

un
M , x ∈

[

xM − h

2
, xM

]

∪
[

x0, x0 +
h

2

]

;

wn(x) =















wn
j , xj −

h

2
6 x < xj +

h

2
, 1 6 j 6 M − 1,

wn
M , x ∈

[

xM − h

2
, xM

]

∪
[

x0, x0 +
h

2

]

;

vn(x) =















vnj , xj −
h

2
6 x < xj +

h

2
, 1 6 j 6 M − 1,

vnM , x ∈
[

xM − h

2
, xM

]

∪
[

x0, x0 +
h

2

]

.

Similarly, ue(x), fn(x), gn(x), g̃n(x) can be analogously defined.

Next, we expand un(x), ue(x), vn(x), wn(x), fn(x), gn(x), and g̃n(x) into Fourier

series on the interval [0, L], that is,

un(x) =
1√
L

∞
∑

m=−∞

an(m)ei2πmx/L, vn(x) =
1√
L

∞
∑

m=−∞

bn(m)ei2πmx/L,

wn(x) =
1√
L

∞
∑

m=−∞

cn(m)ei2πmx/L, fn(x) =
1√
L

∞
∑

m=−∞

pn(m)ei2πmx/L,

gn(x) =
1√
L

∞
∑

m=−∞

qn(m)ei2πmx/L, g̃n(x) =
1√
L

∞
∑

m=−∞

rn(m)ei2πmx/L,

ue(x) =
1√
L

∞
∑

m=−∞

ae(m)ei2πmx/L,

for 0 6 n 6 N, and similarly,

an(m) =
1√
L

∫ L

0

un(x)e−i2πmx/L, bn(m) =
1√
L

∫ L

0

vn(x)e−i2πmx/L,

cn(m) =
1√
L

∫ L

0

wn(x)e−i2πmx/L, pn(m) =
1√
L

∫ L

0

fn(x)e−i2πmx/L,

qn(m) =
1√
L

∫ L

0

gn(x)e−i2πmx/L, rn(m) =
1√
L

∫ L

0

g̃n(x)e−i2πmx/L,

ae(m) =
1√
L

∫ L

0

ue(x)e−i2πmx/L,
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for 0 6 n 6 N. Thus, by the definition of the L2-norm and the Parseval equality, we

have

‖un(x)‖2 =

∫ L

0

|un(x)|2 dx =

∞
∑

m=−∞

|an(m)|2.

Subsequently,

‖un‖2 = h
M
∑

j=1

(un
j )

2 =

∫ x0+h/2

x0

[un(x)]2 dx+
M−1
∑

j=1

∫ xj+h/2

xj−h/2

[un(x)]2 dx

+

∫ xM

xM−h/2

[un(x)]2 dx = ‖un(x)‖2.

From the above discussions we may derive that

‖un‖2 =

∞
∑

m=−∞

|an(m)|2.

By the same token, we may find that

‖vn‖2 =
∞
∑

m=−∞

|bn(m)|2, ‖wn‖2 =

∞
∑

m=−∞

|cn(m)|2, ‖fn‖2 =

∞
∑

m=−∞

|pn(m)|2,

‖gn‖2 =
∞
∑

m=−∞

|qn(m)|2, ‖g̃n‖2 =

∞
∑

m=−∞

|rn(m)|2, ‖ue‖2 =

∞
∑

m=−∞

|ae(m)|2.

Thus, we have

un
j =

1√
L
ane

i̺jh, wn
j =

1√
L
cne

i̺jh, vnj =
1√
L
bne

i̺jh,

fn
j =

1√
L
pne

i̺jh, gnj =
1√
L
qne

i̺jh, g̃nj =
1√
L
rne

i̺jh, ue
j =

1√
L
aee

i̺jh,

where ̺ = 2mπ/L.

Now, recall (3.9), (3.10). For 1 6 n 6 N we must have

[

1 +
7

8
cos(̺h)

]

bn − i
h

8
sin(̺h)cn = i

15

8h
sin(̺h)an + qn,

i
9

4h
sin(̺h)bn +

[

1− 1

4
cos(̺h)

]

cn =
6

h2
[cos(̺h)− 1]an + rn.

After some straightforward calculations, we obtain

bn = i
1

h
β1(cos(̺h), sin(̺h))an + i̺1(cos(̺h), sin(̺h))rn + σ1 cos(̺h)qn,(3.12)

cn =
1

h2
β2 cos(̺h)an + ̺2 cos(̺h)rn − iσ2(cos(̺h), sin(̺h))qn,(3.13)
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in which

β1(x, y) =
36y + 9xy

2x2 + 20x+ 23
, ̺1(x, y) =

4hy

2x2 + 20x+ 23
, σ1(x) =

−8x+ 32

2x2 + 20x+ 23
,

β2(x) =
33x2 + 24x− 57

2x2 + 20x+ 23
, ̺2(x) =

28x+ 32

2x2 + 20x+ 23
, σ2(x, y) =

72y/h

2x2 + 20x+ 23
.

It is readily observable that, when x ∈ [−1, 1],

β′

2(x) =
612x2 + 1746x+ 1692

(2x2 + 20x+ 23)2
> 0.

Hence β2(x) is monotonically increasing in [−1, 1], and subsequently,

−48

5
6 β2 cos(̺h) 6 0.

In addition, we may observe that

4

5
6 ̺2 cos(̺h) 6 2− 1

3

√

10

3
< 2,(3.14)

|σ2(cos(̺h), sin(̺h))| 6
6

h
.(3.15)

Thus, according to (3.8), the following must be true:

(3.16)
1

Γ(2− γ)τγ

[

an −
n−1
∑

l=1

(λn−l−1 − λn−l)al − λn−1a0

]

= iαcn + iP |ae|2an + iVjan + pn, 1 6 n 6 N.

A substitution of (3.13) into (3.16) leads to

[

1− iαµ

h2
β2 cos(̺h)− iµP |ae|2 − iµVj

]

an =

n−1
∑

l=1

(λn−l−1 − λn−l)al + λn−1a0

+µpn + iαµ̺2(cos(̺h))rn + αµσ2(cos(̺h), sin(̺h))qn, 1 6 n 6 N,

due to the fact that µ = τγΓ(2− γ). On the other hand, we observe that

∣

∣

∣
1− iαµ

h2
β2 cos(̺h)− iµP |ae|2 − iµVj

∣

∣

∣
> 1.

Therefore, the following must be true:

|an| 6
n−1
∑

l=1

(λn−l−1 − λn−l)|al|+ λn−1|a0|

+ µ[|pn|+ |α̺2 cos(̺h)||rn|+ |ασ2(cos(̺h), sin(̺h))||qn|], 1 6 n 6 N.
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Now, according to Lemma 3.1, we have

µ = τγΓ(2− γ) = (nτ)γΓ(1− γ)k−γ(1− γ) < T γΓ(1− γ)λn−1.

Therefore,

(3.17) |an| 6
n−1
∑

l=1

(λn−l−1 − λn−l)|al|+ λn−1Θn, 1 6 n 6 N,

where

Θn = |a0|+ T γΓ(1− γ)[|pn|+ |α̺2(cos(̺h))||rn|+ |ασ2(cos(̺h), sin(̺h))||qn|].

Square both sides of (3.17). By the Cauchy-Schwartz inequality, we conclude imme-

diately that

(3.18) |an|2 6

n−1
∑

l=1

(λn−l−1 − λn−l)|al|2 + λn−1Θ
2
n, 1 6 n 6 N,

together with

Θ2
n 6 2|a0|2 +6T 2γΓ2(1− γ)[|pn|2 +α2̺22 cos(̺h)|rn|2 +α2σ2

2(cos(̺h), sin(̺h))|qn|2].

Because of (3.18), we acquire that

‖un‖2 6

n−1
∑

l=1

(λn−l−1 − λn−l)‖ul‖2 + λn−1Φ, 1 6 n 6 N,

where

Φ = 2‖u0‖2 + 6T 2γΓ2(1− γ)
[

max
16l6N

‖f l‖2 + α2̺22 cos(̺h)‖g̃l‖2

+ α2σ2
2(cos(̺h), sin(̺h))‖gl‖2

]

.

Utilizing an induction again, we find that

‖un‖2 6 Φ, 1 6 n 6 N.

Finally, by applying (3.14) and (3.15), the following inequalities must hold,

̺22 cos(̺h) 6 4,

σ2
2(cos(̺h), sin(̺h)) 6

36

h2
.

The above evidently completes our proof. �
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4. Numerical experiments

We consider two typical computational examples in this section. All experiments

are carried out utilizing Matlab 7.10 on Dell Vostro 260s workstations with 3.1GHz

Intel Core i5-2400 CPU and 4GB RAM installed.

Numerical errors are evaluated under the ℓ∞ norm, that is,

Error(h, τ) = ‖Ψ−Ψexact‖∞.

Relative rates of convergences [22], [42] are calculated in the sense that

Rateh = log2
Error(h, τ)

Error(1
2
h, τ)

, Rateτ = log2
Error(h, τ)

Error(h, 1

2
τ)

.

E x am p l e 4.1. Consider the following initial-boundary value problem with

a cubic nonlinearity (see [3], [40])

i
∂γΨ

∂tγ
+

∂2Ψ

∂x2
+ |Ψ|2Ψ = f(x, t), 0 < x < 1, 0 < t 6 1,

Ψ(x, 0) = 0, 0 6 x 6 1,

Ψ(0, t) = Ψ(1, t) = it2, 0 < t 6 1,

where

f(x, t) =
(

− 2t2−γ

Γ(3− γ)
+ (−4π

2t2 + t6)i
)

e−2πxi, 0 < x < 1, 0 < t 6 1.

The exact solution of the above problem is

Ψ(x, t) = it2e−2πxi, 0 6 x 6 1, 0 6 t 6 1.

Table 1 is devoted to the spatial accuracy of the underlying numerical method.

An order six accuracy in space can be rendered from the numerical results exhibited.

Table 2 is on the other hand for the temporal accuracy of our hybrid L1-CCD

method (2.9)–(2.12). Again, the anticipated accuracy is confirmed for various values

of γ used.

M γ = 0.1 γ = 0.3 γ = 0.5

Error(h, τ) Rateh Error(h, τ) Rateh Error(h, τ) Rateh
4 4.7367× 10−3 — 4.7359× 10−3 — 4.7349× 10−3 —

8 6.6680× 10−5 6.1505 6.6668× 10−5 6.1505 6.6655× 10−5 6.1505

16 1.0084× 10−6 6.0472 1.0082× 10−6 6.0472 1.0080× 10−6 6.0472

32 1.5631× 10−8 6.0115 1.5628× 10−8 6.0115 1.5635× 10−8 6.0106

Table 1. Errors and estimated spatial convergence rates for Example 4.1. Fractional orders
γ = 0.1, 0.3, 0.5 and the temporal step τ = 1/120 000 are used, respectively.
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τ γ = 0.1 γ = 0.6 γ = 0.75

Error(h, τ) Rateτ Error(h, τ) Rateτ Error(h, τ) Rateτ
1/50 4.3840× 10−5 — 7.5797× 10−5 — 1.4733× 10−4 —

1/100 1.0969× 10−5 1.9988 2.5734× 10−5 1.5585 5.9753× 10−5 1.3020

1/200 2.7435× 10−6 1.9994 9.1992× 10−6 1.4841 2.4744× 10−5 1.2719

1/400 6.8614× 10−7 1.9994 3.3869× 10−6 1.4416 1.0336× 10−5 1.2595

Table 2. Errors and estimated temporal rates of convergence for Example 4.1. Fractional
orders γ = 0.1, 0.6, 0.75 and h = π/100 are used, respectively.

Further, Figure 1 shows the numerical as well as the exact solutions. Real and

imaginary parts corresponding to γ = 0.3, M = 32 are plotted with τ = 1/120 000.

The figures indicate not only acceptable agreement between the solutions, but also

effectiveness of the proposed novel compact algorithm.
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Figure 1. Numerical and exact solutions together with errors for the real part (first row)
and imaginary part (second row) for Example 4.1.

E x am p l e 4.2. To explore further the superiorities of our hybrid high order

method, let us now consider a typical testing NTFSE with a trapping poten-

tial (see [2])

i
∂γΨ

∂tγ
+

∂2Ψ

∂x2
+ |Ψ|2Ψ+ cos2 xΨ = f(x, t), 0 < x < π, 0 < t 6 1,

Ψ(x, 0) = 0, 0 6 x 6 π,

Ψ(0, t) = Ψ(π, t) = t3, 0 < t 6 1,
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where

f(x, t) =
(

i
6t3−γ

Γ(4− γ)
− 4t3 + t9 + t3 cos2 x

)

e2xi, 0 < x < π, 0 < t 6 1.

The exact solution in this case is

Ψ(x, t) = t3e2xi, 0 6 x 6 π, 0 6 t 6 1.

In Table 3, the real and imaginary parts of the numerical solutions are again con-

sidered separately [2]. A sixth-order spatial accuracy can be observed. Again, the

estimates are satisfactory. We further present the estimated temporal accuracy in

Table 4. Figure 2 is devoted to the exact solution and its numerical approximation

acquired by our L1-CCD scheme with separated real and imaginary parts. Param-

eters γ = 0.5, M = 32 and τ = 1/120 000 are utilized. It is evident again that the

desired accuracies are achieved by our new computational method.

γ M Real part Imaginary part

Error(h, τ) Rateh Error(h, τ) Rateh
γ = 0.1 4 1.5275× 10−2 — 1.4561× 10−2 —

8 2.3992× 10−4 5.9924 2.2429× 10−4 6.0206

16 3.7621× 10−6 5.9949 3.5375× 10−6 5.9865

32 5.9062× 10−8 5.9932 5.5532× 10−8 5.9933
γ = 0.3 4 0.9524× 10−2 — 0.8912× 10−2 —

8 1.6316× 10−4 5.8671 1.5332× 10−4 5.8610

16 2.4680× 10−6 6.0478 2.3192× 10−6 6.0468

32 3.8722× 10−8 5.9940 3.6321× 10−8 5.9967
γ = 0.5 4 0.6273× 10−2 — 0.5794× 10−2 —

8 1.1696× 10−4 5.7449 1.1137× 10−4 5.7012

16 1.7688× 10−6 6.0484 1.6828× 10−6 6.0484

32 2.9218× 10−8 5.9197 2.7889× 10−8 5.9150

Table 3. Errors and rates of spatial convergence for Example 4.2. Parameters γ = 0.1, 0.3,
0.5 and τ = 1/120 000 are used.

M γ = 0.1 γ = 0.6 γ = 0.75

Error(h, τ) Rateh Error(h, τ) Rateh Error(h, τ) Rateh
1/50 4.1000× 10−3 — 2.8383× 10−3 — 5.5870× 10−3 —

1/100 1.1000× 10−3 1.8733 9.8161× 10−4 1.5318 2.2794× 10−3 1.2934

1/200 2.8684× 10−4 1.9468 3.5326× 10−4 1.4744 9.4263× 10−4 1.2739

1/400 7.2593× 10−5 1.9824 1.3017× 10−4 1.4404 3.9264× 10−4 1.2635

Table 4. Errors and temporal rates of convergence for Example 4.2. Parameters γ = 0.1,
0.6, 0.75 and h = π/100 are incorporated.
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5. Conclusion

A high-order L1-CCD hybrid numerical method for solving time fractional order

NTFSEs is developed, analyzed and discussed. Proper linearization procedures are

used to effectively improve the overall efficiency. The novel new computational strat-

egy provides an accuracy of order six in space and order 2− γ in time, respectively,

where 0 < γ < 1 is the fractional derivative order. It is proved rigorously that

the numerical scheme is unconditionally stable in the Fourier sense. An interesting

boundedness result is discussed. Two typical testing examples are given and com-

putational experiments are carried out to illustrate the accuracy and effectiveness

of the proposed hybrid method. Order six convergence is continuously observed in

simulation experiments.
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Figure 2. Numerical and exact solutions, their errors in real part (first row) and imaginary
part (second row) for Example 4.2.

Our continuing work is to extend the current hybrid L1-CCD method for solving

more general and sophisticated nonlinear fractional partial differential equations,

in particular the Helmholtz equations at high wave numbers [22]. We have just

accomplished successful initial approaches based on CCD and even-higher order L1-2

combined schemes for theoretical analysis [17]. Careful numerical analysis of the

convergence of hybrid class of CCD schemes have been in progress. Superconvergence

and blow-up adaptive methods have also been approached [15], [25], [42].
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