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Abstract. We demonstrate some a priori estimates of a scheme using stabilization and
hybrid interfaces applying to partial differential equations describing miscible displacement
in porous media. This system is made of two coupled equations: an anisotropic diffusion
equation on the pressure and a convection-diffusion-dispersion equation on the concentration
of invading fluid. The anisotropic diffusion operators in both equations require special care
while discretizing by a finite volume method SUSHI. Later, we present some numerical
experiments.
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1. Introduction

In the literature, there exist several modelling approaches of the single-phase mis-

cible displacement of one fluid by another in a porous medium. In [8], [11], [21]

the authors introduced the Peaceman model, where the fluids are considered incom-

pressible. This model is constituted of an elliptic parabolic coupled system. While

if the fluids are compressible, the system becomes parabolic, see [9], [12]. We are

interested in the study of the first model. It is constituted of an anisotropic diffusion

equation on the pressure and a convection-diffusion-dispersion on the concentration

of the invading fluid; see [18] for the theoretical analysis of this system of partial

differential equations, see also [17], [3], [2].

Let us mention that the Peaceman model has been the object of several studies.

The authors in [19], [10], [11] studied the finite element schemes for both equations.

We refer to [22] and [23] for the Eulerian-Lagrangian localized adjoint method com-

bined with the mixed finite element methods. See [1] for the convergence analysis for
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a discontinuous Galerkin finite element. The pressure equation was discretized by

the finite element method and the concentration equation by the method of chara-

cteristics in [13], [14] and [20].

There are other works that treat both equations by a single method, for example

Chainais-Hillairet, Krell and Mouton in [7] and [6] study the numerical and con-

vergence analysis of a DDFV scheme for a system describing miscible fluid flows in

porous media and in [5] Chainais-Hillairet and Droniou proposed the mixed finite

volume scheme for both equations.

In this paper, we propose another method for both equations—the SUSHI (Scheme

Using Stabilisation and Hybrid Interfaces) method.

1.1. The continuous problem and objectives. Let us consider that the un-

knowns of the problem are the pressure in the mixture p, its Darcy velocity U and

the concentration of the invading fluid c. The porous medium is characterized by its

porosity φ(x) and its permeability A(x). We denote by µ(c) the viscosity of the fluid

mixture, ĉ the injected concentration, q+ and q− are the injection and the produc-

tion source terms, respectively. The model is defined on a time interval (0, T ) and

a domain Ω ⊂ R
2 by:





div(U) = q+ − q− in (0, T )× Ω,

U = −K(x, c)∇p in (0, T )× Ω,∫

Ω

p(·, x) dx = 0 on (0, T ),

(1.1)

φ(x)∂tc− div(D(x, U)∇c) + div(Uc) + q−c = ĉq+ in (0, T )× Ω,(1.2)

whereK(x, c) = A(x)/µ(c) andD are the diffusion-dispersion tensor including molec-

ular diffusion and mechanical dispersion, respectively. The initial condition is

(1.3) c(x, 0) = c0(x),

where

(1.4) c0 ∈ L∞(Ω), and satisfies 0 6 c0 6 1 almost everywhere (a.e.) in Ω,

and the boundary conditions are

(1.5)

{
[K(x, c)∇p] · n = 0 on (0, T )× ∂Ω,

[D(x, U)∇c] · n = 0 on (0, T )× ∂Ω,

where n is the unit vector, Ω is an open, bounded connected subset of R2 which

supported tube polygonal (d = 2) and ∂Ω stands for its boundary.
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The porous medium is characterized by the porosity φ(x) with

(1.6) φ ∈ L∞(Ω) and there exists φ∗ > 0 such that φ∗ 6 φ 6 φ−1
∗ a.e. in Ω,

and

(1.7)





K : Ω× R → M2(R) is a Caratheodory matrix-valued function

satisfying : ∃αK > 0 such that K(x, s)ξ · ξ > αK |ξ|2

for a.e. x ∈ Ω, all s ∈ R, and all ξ ∈ R
2,

∃ΛK > 0 such that |K(x, s)| 6 ΛK for a.e. x ∈ Ω and all s ∈ R.

Further, D is the diffusion-dispersion tensor including molecular diffusion and me-

chanical dispersion, satisfying the following

(1.8)





D : Ω× R
2 →M2(R) is a Caratheodory matrix-valued function

such that : ∃αD > 0 s.t. D(x, V )ξ · ξ > αD(1 + |V |)|ξ|2

for a.e. x ∈ Ω, all (V, ξ) ∈ R
2 × R

2, ∃ΛD > 0

such that |D(x, V )| 6 ΛD(1 + |V |) for a.e. x ∈ Ω and all V ∈ R
2,

where D is given by

(1.9) D(x, U) = φ(x)(dmI + |U |(dlE(U) + dt(I − E(U)))).

Here I is the identity matrix, dm is the molecular diffusion, dl and dt are the longi-

tudinal and transverse dispersion coefficients, respectively, and

E(U) =
(UiUj

|U |2
)
16i,j6d

.

We denote by µ(c) the viscosity of the fluid mixture as

(1.10) µ(c) = µ(0)(1 + (M1/4 − 1)c)−4 on [0, 1],

whereM = µ(0)/µ(1) is the mobility ratio (we extend µ to R by letting µ = µ(0) on

(−∞, 0) and µ = µ(1) on (1,∞)), ĉ is the injected concentration such that

(1.11) ĉ ∈ L∞((0, T )× Ω) satisfies 0 6 ĉ 6 1 a.e. in (0, T )× Ω,

q+ and q− are the injection and the production source terms, respectively,

(1.12)

{
(q+, q−) ∈ L∞(0, T ;L2(Ω)) are non negative functions such that
∫
Ω q

+(·, x) dx =
∫
Ω q

−(·, x) dx a.e. on (0, T ).
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Definition 1.1 (Weak solution). Under the hypotheses (1.3)–(1.12), a weak solu-

tion of (1.1) and (1.2) is a triple of functions (p, U, c) satisfying: p ∈ L∞(0, T ;H1(Ω)),

U ∈ L∞(0, T ;L2(Ω))2 and c ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω))

(1.13)





∫
Ω p(t, ·) = 0 for a.e. t ∈ (0, T ),

U = −K(x, c)∇p a.e. on (0, T )× Ω,

a1(p, ϕ1) =

∫ T

0

∫

Ω

q+ϕ1 +

∫ T

0

∫

Ω

q−ϕ1 for all ϕ1 ∈ C∞([0, T ]× Ω),

a2(c, ϕ2) =

∫ T

0

∫

Ω

ĉq+ϕ2 for all ϕ2 ∈ C∞
c ([0, T ]× Ω),

with

(1.14)





a1(p, ϕ1) = −
∫ T

0

∫

Ω

U · ∇ϕ1,

a2(c, ϕ2) = −
∫ T

0

∫

Ω

φ(x)c∂tϕ2 +

∫ T

0

∫

Ω

D(x, U)∇c · ∇ϕ2

−
∫ T

0

∫

Ω

cU · ∇ϕ2 +

∫ T

0

∫

Ω

q+cϕ2 −
∫

Ω

φc0(x)ϕ2(0, ·).

One of the disadvantages of the finite volume method is that it assumes the con-

dition of orthogonality on the mesh in the sense of Eymard et al. [15]; this excludes

other types of meshes that do not satisfy this condition. For example, in porous me-

dia, most geological layers are quite deformed, and therefore the mesh used to study

these problems in general does not meet the orthogonality requirement. In this work,

we want to apply one of the finite volume methods dedicated to anisotropic diffusion.

We will examine the application of a finite volume scheme using stabilization and hy-

brid interfaces, which has been proposed by Eymard et al. [16], to the diffusion term

in the pressure equation and in the concentration convection-diffusion-dispersion

equation of the system describing miscible fluid flows in porous media (Peaceman

model). This method is characterized by:

⊲ using a single mesh that is very general, unstructured and does not take into

account the condition of orthogonality (classical finite volume see [15]);

⊲ avoiding to project the gradient on the edges of dual and primal mesh (method

DDFV) by adding a term of stability which stabilizes the gradient obtained by the

method of classical finite volume; then the number of variables of SUSHI method

is less compared to the method (DDFV).

We present and study a numerical scheme for SUSHI method applied to this model,

more precisely, we prove some a priori estimates on the pressure, the gradient of the

pressure, the Darcy velocity and also a priori estimates on the concentration and the
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gradient of the concentration. Later, some numerical tests are also carried out to

verify the validity of the proposed numerical scheme.

This article is organized as follows. In Section 2 we present meshes and the

associated notations, then we introduce the different discrete operators (gradient and

convection operators) and some proprieties. The main result of the paper is detailed

in Section 3 as follows: Sections 3.1, 3.2, and 3.3 are devoted to the discretization

of system (1.1)–(1.12), a priori estimates are proved in Section 3.4, and finally we

present some numerical experiments in Section 3.5.

2. The finite volume schemes SUSHI

The SUSHI scheme is based on Hybrid Finite Volume (HFV) and cell-centric

(SUCCES) schemes. They are based on two fundamental ideas: one, where unknowns

on the edges are introduced only where they are needed, and second, where strangers

on the edges are introduced on all edges of the mesh.

In this section, we will present different definitions, notations and conventions of

writing that we will use later. Besides we follow the idea of Eymard et al. [16] to

build flux using a stabilized discrete gradient. After we define the discretization of

the convection term, we give some proprieties and definition of the schemes.

2.1. Notation and assumptions. Now let us define some notations of the dis-

cretization of Ω.

Definition 2.1.

⊲ A discretization of Ω, denoted D, is defined by a triplet D = (M, E , P ).
⊲ M is a family of connected nonempty open subspaces included in Ω (set of control

volumes K) such that Ω =
⋃

K∈M

K. The boundary ∂K = K \ K for any K ∈ M is

the boundary of K; mK > 0 is the measure of K, xK is the barycentre of K and
d(K) is the diameter of K.

⊲ Let us define the set of interfaces of the mesh D by E ; this set is decomposed into
two subdomains Eint and Eext, which respectively represent the set of internal faces
and faces located on the edge ∂Ω of the domain.

⊲ σ is a nonempty open subset of R (σ ∈ E), xσ is the center of σ and mσ is the

measure of interface σ. The symbol σK,L stands for the common interface between

K and L.
⊲ For any σ ∈ E , Mσ = {K ∈ M, σ ∈ ∂K}. If Mσ contains one element, then

σ ∈ Eext, else σ ∈ Eint. Let EK be the set of the interfaces of K.
⊲ nK,σ is the unit vector normal to σ outward to K and dK,σ > 0 is the Euclidean

distance between xσ and xK.
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⊲ Let P be the set of points of Ω.

⊲ Let D be the set of diamond DT such that
⋃

DT ∈D

DT = Ω, and CK,σ be the cone

with vertex xK and basis σ (we note {K, σ} = CK,σ).

⊲ The size of the discretization D is defined by

(2.1) hD = sup
K∈M

(d(K)).

Definition 2.2. We consider XD, XD,0 and XD,0,B three spaces defined as fol-

lows:

XD = {v = ((vK)K∈M, (vσ)σ∈E); vK ∈ R, vσ ∈ R},(2.2)

XD,0 = {v ∈ XD; ΛK∇n
K,σv · nK,σ = 0 for all σ ∈ Eext},(2.3)

XD,0,B =

{
v ∈ XD,0; ∃βK

σ ∈ R; vσ =
∑

K∈M

βK
σ vK

}
,(2.4)

where B is defined in the next definition and Λ = K(x, c) if v = p and Λ = D(x, U)

if v = c.

Definition 2.3. Let

(2.5) uσ =
∑

K∈M

βK
σ uK,

where (βK
σ )K∈M,σ∈Eint

is a family of real numbers with βK
σ 6= 0 only for some control

volumes K close to σ, and such that

(2.6)
∑

K∈M

βK
σ = 1 and xσ =

∑

K∈M

βK
σ xK.

Let B be the set of the eliminated unknowns using (2.5), and H = Eint/B.

The projections in the spaces XD, XD,0 and XD,0,B are defined in the next defini-

tion.

Definition 2.4. C0(Ω) is the set of continuous functions which are null in ∂Ω.

For all ψ ∈ C0(Ω) we define:

(1) the projection in XD by

PD : C0(R) → XD,

ψ 7→ PDψ = ((ψ(xK))K∈M, (ψ(xσ))σ∈E );
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(2) PD,Bψ = v as an element of XD,B such that vK = ψ(xK) for all K ∈ M; vσ = vK

for all σ ∈ Eext ∩ K; vσ = ψ(xσ) for all σ ∈ H and vσ =
∑

K∈M

βK
σ ψ(xK) for all

σ ∈ B;
(3) HM(Ω) as the set of the piece-wise functions onM and the operator PM such

that for any ψ : Ω → R, PMψ is the piecewise function satisfying PM(ψ(x)) =

ψ(xK) for all K ∈ M.

The space XD is equipped with the semi-norm |·|XD
defined by

(2.7) |v|2XD
=

∑

K∈M

∑

σ∈EK

mσ

dKσ
(vσ − vK)

2 ∀ v ∈ XD.

Note that |·|XD
is a norm on the spaces XD,0 and XD,0,B.

Definition 2.5. The time interval (0, T ) (T > 0) is divided into N (N is an

integer such that N > 0) small intervals with a time step δt = tn+1 − tn equal

to T/N . We introduce the following spaces:

XD,δt = {(vn)n∈{0,...,N−1}, v
n ∈ XD},(2.8)

XD,δt,0 = {(vn)n∈{0,...,N−1}, v
n ∈ XD,0},(2.9)

XD,δt,B = {(vn)n∈{0,...,N−1}, v
n ∈ XD,0,B}.(2.10)

The semi-norm on XD,δt is defined by

(2.11) |v|2XD,δt
=

N−1∑

n=0

δt|vn|2XD
.

2.2. The discrete gradient. It is always possible to deduce an expression for

∇Du(x) as a linear combination of (uσ − uK)σ∈EK
.

Let us first define

∇K : XD → HM(Ω)d,

un+1 7→ ∇Ku
n+1

such that

un+1 ∈ XD,∇Ku
n+1 =

1

|K|
∑

σ∈EK

|σ|[un+1
σ − un+1

K ]nK,σ.

However, we find that this discrete gradient is zero for any un+1
K ∈ K if un+1

σ

are zero, so it is not coercive. We thus seek a new discrete gradient coherent with

the previous and coercive in the CK,σ (cone with the vertex xK and basis σ). This

121



corresponds to the previous step gradient to which we add a correction term. We

define the discrete gradient as

(2.12) ∇K,σu
n+1 = ∇Ku

n+1 +RK,σ(u
n+1)nK,σ

with

RK,σ(u
n+1) =

√
d

dK,σ
(un+1

σ − un+1
K −∇Ku

n+1 · [xσ − xK]).

(Recall that d is the space dimension and dK,σ is the Euclidean distance between xK

and xσ .) We obtain the following stable discrete gradient

(2.13) ∇K,σu
n+1 = ∇Ku

n+1 +RK,σu
n+1 · nK,σ.

We may then define ∇D as the piece-wise constant function equal to ∇K,σ a.e. in the

cone CK,σ with vertex xK and basis σ:

(2.14) ∇Du
n+1 = ∇K,σu

n+1 for a.e. x ∈ CK,σ.

Then we have

(2.15) ∇K,σu
n+1 =

∑

σ′EK

Y σ,σ′

(un+1
σ′ − un+1

K )

with Y σ,σ′

given by

(2.16) Y σ,σ′

=





mσ

mK
nKσ +

√
d

dK,σ

(
1− mσ

mK
nKσ · [xσ − xK]

)
nKσ if σ = σ′,

mσ′

mK
nKσ′ −

√
d

dK,σmK
nK,σ′ · [xσ − xK]nK,σ otherwise.

2.3. The discrete convection term. To treat the convection term in the con-

centration equation, we define the following convection discrete operator as follows:

(2.17)

∫

Ω

div(ξ, v) ≈
∑

K∈M

∑

σ∈EK

mσ div cσ(ξD, vT )

=
∑

K∈M

∑

σ∈EK

mσ[(ξD · nσ,K)
+vK − (ξD · nσ,K)

−vL],

with vT ∈ XD and ξD ∈ R
2.

2.4. The proprieties of the schemes. Let D be a discretization of Ω in the
sense of Definition 2.1. The regularity of the mesh is defined by

(2.18) θD = max
(

max
σK,L∈Eint

(dK,σ

dL,σ

)
, max
K∈M,σ∈EK

(d(K)

dK,σ

))
.
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For a given set B ∈ Eint and for a given family βK
σ satisfying property (2.5), we

introduce a measure of the resulting regularity by

(2.19) θD,B = max

(
θD, max

K∈M,σ∈EK∩B

∑
L∈M |βL

σ ||xL − xσ |2
h2K

)
.

Definition 2.6. Let D be a discretization of Ω in the sense of Definition 2.1,
and let δt be the time step defined in Definition 2.5. For v ∈ HM(Ω) we define the

related norm

(2.20) ‖PMv‖21,2,M =
∑

K∈M

∑

σ∈EK

|σ|dK,σ

(Dσv

dσ

)2
,

and for v ∈ XD,δt, we define the related norm

(2.21) ‖PMv‖21;1,2,M =

N−1∑

n=0

δt‖PMvn‖21,2,M

with dσ = |dK,σ+dL,σ|, Dσv = |vK−vL| ifMσ = {K,L}, and dσ = dK,σ, Dσv = |vK|
ifMσ = {K}.

A result stated in [16] gives the relation

(2.22) ‖PMv‖21,2,M 6 |v|2XD
∀ v ∈ XD,0.

Then we get

(2.23) ‖PMv‖21;1,2,M 6 |v|2XD ,δt ∀ v ∈ Xδt,D,0.

A result stated in [16] gives the relation

(2.24) ‖PMv‖21,2,M 6 |v|2XD
∀ v ∈ XD,0.

Then we get

(2.25) ‖PMv‖21;1,2,M 6 |v|2XD ,δt ∀ v ∈ Xδt,D,0.

We recall in this section some proprieties of SUSHI scheme. The proof of these

proprieties can be found in [4].

Lemma 2.1. Let D be a discretization of Ω in the sense of Definition 2.1. Let

ν > 0 be such that ν 6 dK,σ/dL,σ 6 1/ν for all σ ∈ E , where Mσ = {K,L}. Then
there exists C1 depending only on d, Ω and ν such that

(2.26) ‖PMv‖L2(Ω) 6 C1‖PMv‖1,2,M ∀ v ∈ XD

where ‖PMv‖1,2,M is defined by (2.20).
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Lemma 2.2. Let D be a discretization of Ω in the sense of Definition 2.1, and

and let δt be the time step defined in Definition 2.5. Let ν > 0 be such that

ν 6 dK,σ/dL,σ 6 1/ν for all σ ∈ E , where Mσ = {K,L}. Then there exists C1 > 0

depending only on δt and C1 such that

(2.27) ‖PMv‖L2(0,T ;L2(Ω)) 6 C2‖PMv‖1;1,2,M ∀ v ∈ XD,δt

where ‖PMv‖1;1,2,M is defined by (2.21).

P r o o f. The proof is a result of Lemma 2.1. �

Definition 2.7. Let D be a discretization of Ω in the sense of Definition 2.1,
and let δt be the time step defined in Definition 2.5. We define the L2-norm of the

discrete gradient by

‖∇Dv(x)‖2L2(Ω)d =
∑

K∈M

∑

σ∈EK

|σ|dK,σ

d
|∇K,σv|2 ∀ v ∈ XD,

and

‖∇Dw(x, t)‖2L2(0,T ;L2(Ω)d) =

N∑

n=1

δt
∑

K∈M

∑

σ∈EK

|σ|dK,σ

d
|∇K,σw

n|2 ∀w ∈ XD,δt,

where ∇K,σ and ∇D are defined by (2.13) and (2.14)

Lemma 2.3. Let D be a discretization of Ω in the sense of Definition 2.1, let δt

be the time step defined in Definition 2.5 and suppose that there exists a positive θ

such that θD 6 θ for all D.
(1) Then there exist positive constants C3 and C4 depending only on θ and d such

that

(2.28) C3|v|2XD
6 ‖∇Dv‖2L2(Ω)d 6 C4|v|2XD

∀ v ∈ XD.

(2) Moreover, we have

(2.29) C5|w|2XD,δt
6 ‖∇Dw‖2L2(0,T ;L2(Ω)d) 6 C6|w|2XD,δt

∀ v ∈ XDδt.

Definition 2.8. Let D be a discretization of Ω in the sense of Definition 2.1 and
let δt be the time step defined in Definition 2.5. Let uD,δt ∈ XD,δt be a solution of

the problem. We say that PMuD,δt(x, t) is an approximate solution of the problem.
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3. The main results

3.1. Discrete weak formulation. In this section we present the discrete weak

formulation for problem (1.1)–(1.2). We consider, for all n = 0, . . . , N − 1 and all

K ∈ M, the unknowns cn+1 ∈ XD,δt, U
n ∈ XD,δt and p

n ∈ XD,δt, which stand for

approximate values of c, U and p on [n;n+ 1].

3.1.1. Equation of the pressure. We begin with the discretization of equation

(3.1) −div(K(x, c)∇p) = q+ − q−.

We integer over K for any K ∈ M and in the interval (tn, tn+1) ⊂ (0, T ) which yields

∫

K

∫ tn+1

tn
−div(K(x, c)∇p) =

∫

K

∫ tn+1

tn
(q+ − q−),

which gives

δt

∫

K

−div(K(x, cn)∇pn+1) = δt

∫

K

(q+,n+1 − q−,n+1),

then ∑

σ∈EK

∫

σ

K(x, cn)∇pn+1 · nK,σ = mK(q
+,n+1
K − q−,n+1

K ),

finally

(3.2)
∑

σ∈EK

F1
K,σ(p

n+1) = mKq
+,n+1
K −Kq−,n+1

K .

For the border elements we obtain the equations by discretizing the second part of

system (1.5), which gives that the flow is zero on the boundary as follows:

(3.3) K(x, cnK)∇K,σp
n+1 · nK,σ = 0 ∀σ ∈ Eext with σ ∈ K.

We use the fact that the numerical flow is locally conserve at the interface of the two

elements, we then have

(3.4) F1
K,σ(p

n+1) + F1
L,σ(p

n+1) = 0 ∀σ ∈ Eint such thatMσ = {K,L}.

And now we have card(Eint) + card(Eext) + card(M) unknowns and equations.

125



To discretize the null average condition on the pressure
∫
Ω
p(·, x) dx = 0, we

consider Ω =
⋃

K∈M

K. Then we have
∑

K∈M

mKpK = 0.

Multiplying equation (3.2) by vn+1
K for all K ∈ M and all n = 0, . . . , N − 1, then

summing over K and over n = 0, . . . , N − 1, we get

(3.5)
N−1∑

n=0

∑

K∈M

∑

σ∈EK

F1
K(p

n+1)vn+1
K =

N−1∑

n=0

∑

K∈M

vn+1
K mK(q

+,n+1
K − q−,n+1

K ),

which gives

(3.6) 〈p, v〉F 1 =
N−1∑

n=0

∑

K∈M

vn+1
K mK(q

+,n+1
K − q−,n+1

K )

with

(3.7) 〈p, v〉F 1 =

N−1∑

n=0

∑

K∈M

∑

σ∈EK

F1
K(p

n+1)[vn+1
K − vn+1

σ ].

We define also

(3.8) [pn+1, vn+1]F 1 =
∑

K∈M

∑

σ∈EK

F1
K(p

n+1)[vn+1
K − vn+1

σ ].

3.1.2. Via equation. For the second equation we have

(3.9) U = −K(x, c)∇p, in (0, T )× Ω.

We integer over DT and over the time interval (t
n, tn+1) ⊂ (0, T ) and we obtain

(3.10)

∫ tn+1

tn

∫

DT

U dxdt =

∫ tn+1

tn

∫

DT

−K(x, c)∇p dxdt,

after simplifications we obtain the formula

Un+1
DT

= (−K(xσ, c
n)∇pn+1)DT

.

For any diamond DT ∈ D we have

DT =

{
{K, σ} ∪ {L, σ} if σ ∈ Eint,
{K, σ} if σ ∈ Eext.

126



Then

Un+1
DT

=

{
Un+1
K,σ + Un+1

L,σ if σ ∈ Eint,
Un+1
K,σ if σ ∈ Eext,

and

∇DT pn+1 =

{
∇K,σp

n+1 +∇L,σp
n+1 if σ ∈ Eint,

∇K,σp
n+1 if σ ∈ Eext.

Finally, we get

(3.11)





Un+1
K,σ · nK,σ + Un+1

L,σ · nL,σ

= −K(xσ, c
n
K)∇K,σp

n+1 −K(xσ, c
n
L)∇L,σp

n+1 if σ ∈ Eint,
Un+1
K,σ · nK,σ = −K(xσ, c

n
K)∇K,σp

n+1 if σ ∈ Eext

where ∇K,σp
n+1,∇L,σp

n+1 are noted in (2.15).

We rewrite (3.11) as

(3.12)

{
Un+1
K,σ · nK,σ + Un+1

L,σ · nL,σ = F1
K,σ(p

n+1) + F1
L,σ(p

n+1) if σ ∈ Eint,
Un+1
K,σ · nK,σ = F1

K,σ(p
n+1) otherwise.

3.1.3. Concentration equation. Now, we discretize the third equation

(3.13) φ(x)∂tc− div(D(x, U)∇c) + div(cU) + q−c = q+ĉ.

We integrate over the volume control K ∈ M and over the time interval (tn, tn+1) ⊂
[0, T ] and we obtain

∫ tn+1

tn

∫

K

φ(x)∂tc−
∫ tn+1

tn

∫

K

div(D(x, U)∇c)

+

∫ tn+1

tn

∫

K

div(cU) +

∫ tn+1

tn

∫

K

q−c =

∫ tn+1

tn

∫

K

q+ĉ.

That gives

∫

K

φ(x)(cn+1 − cn)− δt

∫

K

div(D(x, Un+1)∇cn+1)

+ δt

∫

K

div(cn+1Un+1) + δt

∫

K

q−,n+1cn+1 = δt

∫

K

q+,n+1ĉn+1.

Then
∫

K

φ(x)(cn+1 − cn) + δt
∑

σ∈EK

∫

σ

D(x, Un+1)∇cn+1

+ δt

∫

K

div(cn+1Un+1) + δt

∫

K

q−,n+1cn+1 = δt

∫

K

q+,n+1ĉn+1.
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Finally,

(3.14) mKφK(c
n+1
K − cnK) + δt

∑

σ∈EK

F2
K,σ(c

n+1) + δt
∑

σ∈EK

mσ div cσ(c
n+1
D , Un+1

D )

+ δtmKq
−,n+1
K cn+1

K = δtmKq
+,n+1
K ĉn+1

K .

We have card(M) equations and card(E) + card(M) unknowns. For a reasonable

system we need card(E) more equations; for that we use that the flow is null on the
boundary:

(3.15) D(xK, U
n+1
K )∇K,σc

n+1 · nK,σ = 0 ∀σ ∈ Eext ∩ K.

And since the numerical flow is locally conserved, we have

(3.16) F2
K,σ(c

n+1) + F2
L,σ(c

n+1) = 0 ∀σ ∈ Eint such thatMσ = {K,L}.

We have now card(Eint) + card(Eext) + card(M) unknowns and equations.

We multiply (3.14) by wn+1
K for all wK ∈ M and all n = 0, . . . , N − 1. Then

summing over K and over n = 0, . . . , N − 1, we get

N−1∑

n=0

∑

K∈M

wn+1
K φK(c

n+1
K − cnK) + δt

N−1∑

n=0

∑

K∈M

∑

σ∈EK

F2
K,σ(c

n+1)wn+1
K

+ δt

N−1∑

n=0

∑

K∈M

wn+1
K

∑

σ∈EK

mσ div cσ(c
n+1
D , Un+1

D )

+ δt
N−1∑

n=0

∑

K∈M

wn+1
K q−,n+1

K cn+1
K = δt

N−1∑

n=0

∑

K∈M

wn+1
K q+,n+1

K ĉn+1
K .

That gives

N−1∑

n=0

∑

K∈M

wn+1
K φK(c

n+1
K − cnK) + δt

N−1∑

n=0

∑

σ∈Eint

[F2
K,σ(c

n+1)wn+1
K + F2

L,σ(c
n+1)wn+1

L ]

+ δt

N−1∑

n=0

∑

K∈M

wn+1
K

∑

σ∈EK

mσ div cσ(c
n+1
D , Un+1

D )

+ δt

N−1∑

n=0

∑

K∈M

wn+1
K q−,n+1

K cn+1
K = δt

N−1∑

n=0

∑

K∈M

wn+1
K q+,n+1

K ĉn+1
K .
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Bearing in mind (3.16) and (3.15), we get

N−1∑

n=0

∑

K∈M

wn+1
K φK(c

n+1
K − cnK)

+ δt
N−1∑

n=0

∑

σ∈Eint

[F2
K,σ(c

n+1)wn+1
K −F2

K,σ(c
n+1)wn+1

L ]

+ δt
N−1∑

n=0

∑

K∈M

wn+1
K

∑

σ∈EK

mσ div cσ(c
n+1
D , Un+1

D )

+ δt

N−1∑

n=0

∑

K∈M

wn+1
K q−,n+1

K cn+1
K = δt

N−1∑

n=0

∑

K∈M

wn+1
K q+,n+1

K ĉn+1
K .

Then we have

N−1∑

n=0

∑

K∈M

wn+1
K φK(c

n+1
K − cnK)

+δt
N−1∑

n=0

∑

σ∈Eint

[F2
K,σ(c

n+1)(wn+1
K − wn+1

σ ) + F2
K,σ(c

n+1)(wn+1
σ − wn+1

L )]

+δt

N−1∑

n=0

∑

K∈M

wn+1
K

∑

σ∈EK

mσ div cσ(c
n+1
D , Un+1

D )

+δt

N−1∑

n=0

∑

K∈M

wn+1
K q−,n+1

K cn+1
K = δt

N−1∑

n=0

∑

K∈M

wn+1
K q+,n+1

K ĉn+1
K ,

N−1∑

n=0

∑

K∈M

wKφK(c
n+1
K )− δt

N−1∑

n=0

∑

K∈M

∑

σ∈EK

F2
K,σ(c

n+1)[wn+1
K − wn+1

σ ]

+δt

N−1∑

n=0

∑

K∈M

wn+1
K

∑

σ∈EK

mσ div cσ(c
n+1
D , Un+1

D )

+δt

N−1∑

n=0

∑

K∈M

wn+1
K q−,n+1

K cn+1
K = δt

N−1∑

n=0

∑

K∈M

wn+1
K [q+,n+1

K ĉn+1
K + φK(c

n
K)],

thus, we give as a form of bilinear approximation the following formula

(3.17) 〈c, w〉F2 =

N−1∑

n=0

[cn+1, wn+1]F2 ,
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where

(3.18) [cn+1, wn+1]F2 =
∑

K∈M

wn+1
K φK
δt

(cn+1
K )

+
∑

K∈M

∑

σ∈EK

F2
K,σ(c

n+1)[wn+1
K − wn+1

σ ]

+
∑

K∈M

wn+1
K

∑

σ∈EK

mσ div cσ(c
n+1
D , Un+1

D ) +
∑

K∈M

wn+1
K q−,n+1

K cn+1
K .

3.2. The discrete flux. The discrete flux F1
K,σ and F2

K,σ are expressed in terms

of the discrete unknowns. For this purpose we apply the SUSHI scheme proposed

in [16]. The idea is based upon the identification of the numerical flux through the

mesh dependent bilinear form, using the expressions of the discrete gradient

(3.19)
∑

K∈M

∑

σ∈EK

F1
K,σ(p

n+1)(uK − uσ)

≈
∫

Ω

∇Dp
n+1K(x, cn)∇Du ∀ pn+1, u ∈ X0,D,

and

(3.20)
∑

K∈M

∑

σ∈EK

F2
K,σ(c

n+1)(vK − vσ)

≈
∫

Ω

∇Dc
n+1D(x, Un+1)∇Dv ∀ cn+1, v ∈ X0,D.

The identification of the numerical fluxes using relation (3.19) and (3.20) leads to

the expression

F1
K,σ(p

n) =
∑

σ′∈EK

Kσ,σ′

K (pn+1
K − pn+1

σ ),(3.21)

F2
K,σ(c

n+1) =
∑

σ′∈EK

Dσ,σ′

K (cn+1
K − cn+1

σ ).(3.22)

Thus

∫

K

∇Dp
n+1K(x, cn)∇Du =

∑

σ∈EK

∑

σ′∈EK

Kσ,σ′

K (pn+1
K − pn+1

σ′ )(uσ′ − uK),(3.23)

∫

K

∇Dc
n+1D(x, Un+1)∇Dv =

∑

σ∈EK

∑

σ′∈EK

Dσ,σ′

K (cn+1
K − cn+1

σ′ )(vσ′ − vK),(3.24)
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with σ, σ′ ∈ EK and

Kσ,σ′

K =
∑

σ′′∈EK

Y σ′′,σΓσ′′

K Y σ′′,σ′

with Γσ′′

K =

∫

K,Cσ′′

K(x, cn) dx,

Dσ,σ′

K =
∑

σ′′∈EK

Y σ′′,σΘσ′′

K Y σ′′,σ′

with Θσ′′

K =

∫

K,Cσ′′

D(x, Un+1) dx.

The local matrices Kσ,σ′

K and Dσ,σ′

K are symmetric and positive.

3.3. Final scheme. Using (2.13), we have

∇K,σp
n+1 = ∇Kp

n+1 +RK,σp
n+1 · nK,σ,

∇K,σc
n+1 = ∇Kc

n+1 +RK,σc
n+1 · nK,σ,

and

div cσ(UD, vT ) = (UD · nσ,K)
+vK − (UD · nσ,K)

−vL.

The discretization of problems (1.1) and (1.2) is defined as follows:

(3.25)





Find for all K ∈ M and for all n, pn+1 and cn+1

∑

σ∈EK

∑

σ′∈EK

Kσ,σ′

K [pn+1
σ − pn+1

K ][vσ′ − vK] = mKvK(q
+,n+1
K − q−,n+1

K ),

Un+1
D = K(xσ, c

n
K))∇Dp

n+1,
∑

K∈M

mKpK = 0,

with K(xσ, c
n
K))∇Dp

n+1 · nK,σ = 0 if σ ∈ Eext ∩ K,
mKvKφK(c

n+1
K )− δt

∑

σ∈EK

∑

σ′∈EK

Dσ,σ′

K [cn+1
σ − cn+1

K ][vσ′ − vK]

+δtvK
∑

σ∈EK

mσ div cσ(c
n+1
D , Un+1

D ) + δtmKvKq
−,n+1
K cn+1

K

= δtmKvK[q
+,n+1
K ĉn+1

K + φKc
n
K],

c(x, 0) =
1

mK

∫

K∈M

c0(x) dx,

with D(UD, c
n
K))∇Dc

n+1 · nK,σ = 0 if σ ∈ Eext ∩ K,

where

(3.26)





Kσ,σ′

K =
∑

σ′′∈EK

Y σ′′,σ · ΓK,σ′′Y σ′′,σ′

,

Dσ,σ′

K =
∑

σ′′∈EK

Y σ′′,σ ·ΘK,σ′′Y σ′′,σ′

,
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and

(3.27)





Y σ,σ′

is given by (2.16),

ΓK,σ′′ =

∫

CK,σ′′

K(x, cnK)) dx,

ΘK,σ′′ =

∫

CK,σ′′

D(x, Un+1) dx

and CK,σ′′ is the cone with vertex xK and basis σ
′′.

3.4. A priori estimates. In this part we will show some a priori estimates

following the same process of a priori estimates demonstrated in [6].

Lemma 3.1. Let Ω be an open bounded connected polygonal domain of R2 and

let D be a SUSHI mesh of Ω in the sense of Definition 2.1. Assume (1.4), (1.6)–(1.7)
and (1.12) hold and that the scheme (3.25) has a solution (pD,δt, UD,δt, cD,δt). Then

there exists C7 > 0 depending only on Ω, α, C1, C2, C5 and ΛK, such that we have

for all n ∈ {0, . . . , N − 1}:

(3.28) ‖PMpD,δt‖21;1,2,M + ‖∇pD,δt‖2L2(0,T ;L2(Ω))

+ ‖UD,δt‖2L2(0,T ;L2(Ω)) 6 C7‖q+ − q−‖L∞(0,T ;L2(Ω)).

P r o o f. In order to obtain the estimate for PMpD,δt in (3.28), we use pD,δt as

a test element:

〈−div(K(x, c)∇pD,δt), pD,δt〉F 1 =
〈
q+ − q−, pD,δt

〉
F 1 .

That gives

〈K(x, c)∇pD,δt,∇pD,δt〉F 1 =
〈
q+ − q−, pD,δt

〉
F 1 .

Then, using hypothesis (1.7) and the Cauchy-Schwartz inequality, we have

(3.29) α‖∇pD,δt‖2L2(0,T ;L2(Ω)) 6 ‖q+ − q−‖L∞(0,T ;L2(Ω))‖pD,δt‖L2(0,T ;L2(Ω)).

Applying now the discrete Poincaré Inequality (2.29), we get

C5α|pD,δt|2XD,δt
6 ‖q+ − q−‖L∞(0,T ;L2(Ω))‖pD,δt‖L2(0,T ;L2(Ω)).

The formula (2.25) gives

C5α‖PMpD,δt‖21;1,2,M 6 ‖q+ − q−‖L∞(0,T ;L2(Ω)‖pD,δt‖L2(0,T ;L2(Ω)).
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Using (2.27), we have

(3.30) ‖PMpD,δt‖1;1,2,M 6
C2

C5α
‖q+ − q−‖L∞(0,T ;L2(Ω)).

Now, formulas (3.29) and (2.27) give

α‖∇pD,δt‖2L2(0,T ;L2(Ω)) 6 ‖q+ − q−‖L∞(0,T ;L2(Ω))C2‖pD,δt‖1;1,2,M.

Thanks to formula (2.25)

α‖∇pD,δt‖2L2(0,T ;L2(Ω)) 6 ‖q+ − q−‖L∞(0,T ;L2(Ω))C2|pD,δt|XD
,

(2.28) gives

‖∇pD,δt‖2L2(0,T ;L2(Ω)) 6
C2

α
√
C3

‖q+ − q−‖L∞(0,T ;L2(Ω))‖∇pD,δt‖L2(0,T ;L2(Ω)).

Then

(3.31) ‖∇pD,δt‖L2(0,T ;L2(Ω)) 6
C2

α
√
C3

‖q+ − q−‖L∞(0,T ;L2(Ω)).

The estimation of the third term Un is deduced by (3.31) and (1.7):

(3.32) ‖UD,δt‖L2(0,T ;L2(Ω)) 6 ΛK‖∇pD,δt‖L2(0,T ;L2(Ω))

6
C2ΛK

α
√
C3

‖q+ − q−‖L∞(0,T ;L2(Ω).

Finally, using (3.30), (3.31) and (3.32), we have the proof with

C7 =
C2

αC3

(√
C3ΛK +

√
C3 +

C3

C5

)
.

�

Lemma 3.2. Let Ω be an open bounded connected polygonal domain of R2 and

let D be a SUSHI mesh of Ω in the sense of Definition 2.1. Assume (1.4), (1.6)–(1.8),
(1.11) and (1.12) hold and that the scheme (3.25) has a solution (pD,δt, UD,δt, cD,δt).

Then there exists C8 > 0 depending only on Ω, αD, φ∗, c0, C2, C6 and q
+ such that

we have

(3.33)
φ∗
2
‖cND‖2L2(Ω) + αD‖|Un

K|1/2∇DcD,δt‖2L2(0,T ;L2(Ω))

+ (1 + αD)‖∇cD,δt‖L2(0,T ;L2(Ω)) 6 C8.
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P r o o f. Multiplying (3.14) by cn+1
K , we get

(3.34) T1 + T2 + T3 + T4 = T5

with
T1 = mKφK(c

n+1
K − cnK)c

n+1
K ,

T2 = cn+1
K

∑

σ∈Eint

F2
K,σ(c

n+1),

T3 = cn+1
K

∑

σ∈Eint

mσ((U
n+1
K,σ )+cn+1

K − (Un+1
K,σ )−cn+1

L ),

T4 = cn+1
K mKq

−,n+1
K cn+1

K ,

T5 = mKc
n+1
K q+,n+1.

The relation

(3.35) (a− b)a >
1

2
(a2 − b2)

ensures

(3.36) T1 > φKmK
1

2
((cn+1

K )2 − (cnK)
2).

Summing formula (3.36), over n = 0, . . . , N − 1 with N > 0, we get

n=N−1∑

n=0

T1 > φKmK((c
N
K )2 − (c0K)

2).

Applying the hypothesis (1.6), we have

∑

K∈M

n=N−1∑

n=0

T1 >
1

2

∑

K∈M

φKmK((c
N
K )2 − (c0K)

2),

>
φ∗
2

∑

K∈M

mK(c
N
K )2 − φ−1

∗

2

∑

K∈M

mK(c
0
K)

2,

which gives

(3.37)
∑

K∈M

N−1∑

n=0

T1 > φ∗‖cND‖L2(Ω) − φ−1
∗ ‖c0D‖L2(Ω).

Using (3.12) and noting that F1
K,σ(p

n+1) = F1
K,σ, we have

∑

K∈M

T3 =
∑

K∈M

cn+1
K

∑

σ∈Eint

((F1
K,σ)

+cn+1
K − (F1

K,σ)
−cn+1

L ).
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F1
K,σ is continuous, then we have (F1

K,σ)
+ = −(F1

K,σ)
−, so

∑

K∈M

T3 =
∑

K∈M

cn+1
K

∑

σ∈Eint

(F1
K,σ)

+cn+1
K − (F1

K,σ)
−cn+1

L )

=
∑

K∈M

∑

σ∈Eint

((F1
K,σ)

+(cn+1
K − cn+1

L )cn+1
K − (F1

K,σ)
−(cn+1

L − cn+1
K )cn+1

L ).

Since (F1
K,σ)

+ + (F1
K,σ)

− = F1
K,σ,

∑

K∈M

T3 =
∑

K∈M

∑

σ∈Eint

F1
K,σ(c

n+1
K − cn+1

L )cn+1
K .

Using (3.35), we have

(3.38)
∑

K∈M

T3 > −1

2

∑

K∈M

∑

σ∈Eint

F1
K,σ((c

n+1
K )2 − (cn+1

L )2).

Applying (3.4), we get

∑

K∈M

T3 >
1

2

∑

K∈M

(cn+1
K )2

(
−

∑

σ∈Eint

F1
K,σ

)

>
1

2

∑

K∈M

mK(c
n+1
K )2(q+,n+1

K − q−,n+1
K ).

Since

(3.39)
1

2

∑

K∈M

mK(c
n+1
K )2(q+,n+1

K − q−,n+1
K ) +

∑

K∈M

T4

=
1

2

∑

K∈M

mK(c
n+1
K )2(q+,n+1

K + q−,n+1
K ) > 0,

we deduce

(3.40)

N−1∑

n=0

∑

K∈σ

T3 + T4 > 0.

Relations (3.24) and (1.8) give

(3.41) δt
N−1∑

n=0

∑

K∈M

T2 > αD‖∇DcD,δt‖2L2(0,T ;L2(Ω))

+ αD‖|Un
K|1/2∇DcD,δt‖2L2(0,T ;L2(Ω)).
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Using Young’s inequality, we have

(3.42) δt
N−1∑

n=0

∑

K∈M

T5 6
ε

2
‖q+ĉ‖2L2(0,T ;L2(Ω)) +

1

2ε
‖cD,δt‖2L2(0,T ;L2(Ω)).

From (3.34), (3.37), (3.40), (3.41) and (3.42) we deduce

φ∗
2
‖cND‖2L2(Ω) −

φ−1
∗

2
‖c0D‖2L2(Ω) + αD‖∇DcD,δt‖2L2(0,T ;L2(Ω))

+ αD‖|Un
K|1/2∇DcD,δt‖2L2(0,T ;L2(Ω))

6
ε

2
‖q+ĉ‖2L2(0,T ;L2(Ω)) +

1

2ε
‖cD,δt‖2L2(0,T ;L2(Ω)).

Using (2.25), (2.27) and (2.29), we get

φ∗
2
‖cND‖2L2(Ω) −

φ−1
∗

2
‖c0D‖2L2(Ω) + αD‖∇DcD,δt‖2L2(0,T ;L2(Ω))

+ αD‖|Un
K|1/2∇DcD,δt‖2L2(0,T ;L2(Ω)) +

C2

2εC6
‖∇cD,δt‖L2(0,T ;L2(Ω))

6
ε

2
‖q+ĉ‖2L2(0,T ;L2(Ω)).

With ε = C2/(2C6) we have

φ∗
2
‖cND‖2L2(Ω) + αD‖|Un

K|1/2∇DcD,δt‖2L2(0,T ;L2(Ω))

+ (1 + αD)‖∇cD,δt‖L2(0,T ;L2(Ω))

6
φ−1
∗

2
‖c0D‖2L2(Ω) +

C2

4C6
‖q+ĉ‖2L2(0,T ;L2(Ω)).

�

3.5. Existence and uniqueness of (cnD;U
n
D; p

n
D).

Lemma 3.3. Let D be a SUSHI mesh of Ω (Ω is an open bounded connected
polygonal domain of R2). Let T > 0 and δt be a time step such that N = T/δt is

an integer. Assume that (1.3)–(1.12) hold. Then the scheme (3.25)–(3.27) admits

a unique solution (cnD;U
n
D; p

n
D)16n6N .

P r o o f. To demonstrate this lemma we adapt the demonstration of Theorem 3.4

in [6]. �
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3.6. Numerical results. In this section, we consider four numerical tests to val-

idate the effectiveness of our algorithm. First, we apply the SUSHI-2D scheme to

a diffusion equation under Neumann-like and Dirichlet boundary conditions in a non-

structured mesh (see Figure 1). Then we present the numerical results obtained by

application of SUSHI-2D scheme to problem (1.1)–(1.5) on three different examples,

in a nonstrictured mesh (see Figure 2).
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Figure 1. Unstructured mesh in the case where Ω = (0, 1)2 with h = 0.1 (right) and h = 0.2
(left).
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Figure 2. Unstructured mesh in the case where Ω = (0, 1000)2 with h = 236.0117 (right)
and h = 119.6810 (left).

3.6.1. Test 1 (Convergence of the pressure equation). In this numerical

test, we are interested in demonstrating the convergence of the pressure equation

with Neumann and Dirichlet boundary.

First, we consider the Neumann boundary with the following exact solution

p1(x, y) = cos(πx) cos(πy) and the permeability

K1(x, y) =

[
1 0

0 1

]
.
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Second, we study the case with Dirichlet boundary. Let p2(x, y) = x2y2(x−1)2(y−1)2

and the permeability

K(x, y) = K2(x, y) =
1

x2 + y2

[
10−3x2 + y2 (10−3 − 1)xy

(10−3 − 1)xy 10−3y2 + x2

]
.

In both cases Ω = (0, 1)2 and for the level number 5 of the mesh, the number of

unknowns equals to 12880, the number of triangles equals to 5120 and the size of

the mesh equals to 0.0294. Then we get the convergence tables (Table 1 and 2) in

norm L2, L1, and L∞.

Refinement level ‖p− pext‖L2(Ω) ‖p− pext‖L1(Ω) ‖p− pext‖L∞(Ω)

1 0.0379 0.0268 0.3814

2 0.0090 0.0068 0.1776

3 0.0023 0.0017 0.0878

4 6.1482e− 04 4.8368e− 04 0.0444

Table 1. Convergence results of the SUSHI on the pressure p, with pext = p1 and K = K1.

Refinement level ‖p− pext‖L2(Ω) ‖p− pext‖L1(Ω) ‖p− pext‖L∞(Ω)

1 0.0159 0.0017 0.3076

2 0.0050 4.7231e− 04 0.1941

3 0.0015 1.2424e− 04 0.1124

4 4.2783e− 04 3.1108e− 05 0.0623

Table 2. Convergence results of the SUSHI on the pressure p, with pext = p2 and K = K2.
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Figure 3. The pressure (left) and the gradient of the pressure (right) at t = 3600.

3.6.2. Test 2 (Peaceman model with continuous permeability). In the

numerical tests 2 and 3, the spatial domain is Ω = (0, 1000)× (0, 1000)ft2, and the

time period is [0, 3600] days. The injection and the production well are respectively
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located at the upper-right corner (1000, 1000) and the lower-left corner (0, 0) with an

injection rate q+ = 30ft2/day and a production rate q− = 30ft2/day. The viscosity

of the oil is µ(0) = 1.0 cp, the injection concentration is ĉ = 1.0.
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Figure 4. Surfaces plot of concentration at t = 36 days, t = 108 days, t = 216 days, t ≃ 1
year, t ≃ 3 years and t ≃ 10 years, with δt = 36 days and the mesh of the
domain made of 928 triangles of maximal edge length 50 ft. Units on x, y axes
in hundreds.

For the numerical test 2 (see Figures 3 and 4), the initial concentration is c0(x) = 0

and the porosity of the medium is specified as φ(x) = 0.1. We consider that the

porous medium is homogeneous and isotropic and the permeability tensor is given

by K = 80I. Let M = 1 and µ(c) = 1.0 cp. We assume that φdm = 1.0ft2/day,

φdl = 5.0ft and φdt = 0.5ft.
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Figure 5. The pressure (left) and the gradient of the pressure (right) at t = 3600 days ≈ 10
years.
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3.6.3. Test 3 (Peaceman model with discontinuous permeability). Now,

we consider that the porous medium is homogeneous and isotropic and the perme-

ability tensor is given byK = (801y<500+201y>500)I. Let c0(x) = 0 and the porosity

of the medium be specified as φ(x) = 0.1, M = 1, and µ(c) = 1.0 cp. We assume

that φdm = 1.0ft2/day, φdl = 5.0ft, and φdt = 0.5ft. The results are illustrated in

Figures 5, 6, and 7.

700 750 800 850 900 950 1000
700

750

800

850

900

950

1000

300 400 500 600 700 800 900 1000
300

400

500

600

700

800

900

1000

0 200 400 600 800 1000
0

100

200

300

400

500

600

700

800

900

1000

0 200 400 600 800 1000
0

100

200

300

400

500

600

700

800

900

1000

Figure 6. Surfaces plot of concentration at t = 36 days, t ≃ 1 year, t ≃ 3 years, and t ≃ 10
years, with δt = 36 days.
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tk+1‖L2(Ω) computed from c0 = 0.
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3.6.4. Test 4 (The coupling between the diffusion problem in p and

the Peaceman equation in c is strong). In this test case, we are interested in

the case where the relation between the equation of the pressure and that of the

concentration is strong with a discontinuity of the permeability K(x, c), i.e. µ(c) =

(1 + (M1/4 − 1)c)−4 with M = 41 and if (x, y) ∈ [200, 400]× [200, 400]∪ [600, 800]×
[200, 400] ∪ [200, 400] × [600, 800] ∪ [600, 800] × [600, 800], K(x, y) = 80 and else

K(x, y) = 20. Let c0(x) = 0 and the porosity of the medium be specified as φ(x) =

0.1, and we assume that φdm = 0ft2/day, φdl = 5.0ft, and φdt = 0.5ft. For the

results see Figures 8 and 9.
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Figure 8. The pressure (left) and the gradient of the pressure (right) at t = 3600 days ≈ 10
years.
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Figure 9. Surfaces plot of concentration at t = 36 days, t ≃ 1 year, t ≃ 3 years and t ≃ 10
years, with δt = 36 days.
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