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Abstract. In this paper, using a new correction to the Crouzeix-Raviart finite element
eigenvalue approximations, we obtain asymptotic lower bounds of eigenvalues for the Steklov
eigenvalue problem with variable coefficients on d-dimensional domains (d = 2, 3). In ad-
dition, we prove that the corrected eigenvalues converge to the exact ones from below.
The new result removes the conditions of eigenfunction being singular and eigenvalue be-
ing large enough, which are usually required in the existing arguments about asymptotic
lower bounds. Further, we prove that the corrected eigenvalues still maintain the same
convergence order as uncorrected eigenvalues. Finally, numerical experiments validate our
theoretical results.
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1. Introduction

It is an important topic to obtain upper and lower bounds for eigenvalues. As we

all know, thanks to the minimum-maximum principle, it is easy to obtain guaranteed

upper bounds of eigenvalues by conforming finite element methods. Naturally, at-

tention has been paid to finding lower bounds of eigenvalues by nonconforming finite

elements, such as the rotated bilinear (Qrot
1 ) finite element [21], [23], [15], [19], the

extension of Qrot
1 finite element [21], [18], [19], [16], the enriched Crouzeix-Raviart

(ECR) finite element [15], [16], [19], [22], [25], the Wilson finite element [21], [36],

This work is supported by the Young Scientific and Technical Talents Development of
Education Department of Guizhou Province (KY [2018]153), the National Natural Sci-
ence Foundation of China (Grant No. 11561014 and No. 11761022).

c© Institute of Mathematics, Czech Academy of Sciences 2020.

DOI: 10.21136/AM.2020.0108-19 1

http://dx.doi.org/10.21136/AM.2020.0108-19


the Morley element [7], [16], [32], etc. Especially, a lot of work has been done on

asymptotic lower bounds for eigenvalues based on the Crouzeix-Raviart (CR) finite

element approximations (see, e.g., [2], [23], [34], [16], [30], [19], [31] and the citations

therein). Asymptotic lower bounds require that the mesh size is small enough. Re-

cently, finding guaranteed lower bounds has become an attractive topic, which has no

requirement for the mesh size. There are also some researches on finding guaranteed

lower bounds for eigenvalues based on the CR finite element (see, e.g., [8], [24], [17],

[29], [35]).

In this paper, we discuss asymptotic lower bounds for eigenvalues of the Steklov

eigenvalue problem with variable coefficients

(1.1)







−div(α∇u) + βu = 0 in Ω,

α
∂u

∂ν
= λu on ∂Ω,

where Ω ⊂ R
d (d = 2, 3) is a bounded polygonal or polyhedral domain and ∂u/∂ν

is the outward normal derivative on ∂Ω. Symbols ∇ and div denote the gradient

and the divergence operators, respectively, β = β(x) ∈ L∞(Ω) has a positive lower

bound, α = α(x) ∈ W 1,∞(Ω), and α0 6 α(x) for a constant α0 > 0.

Among the above references for the Steklov eigenvalue problem with constant co-

efficients, [19], [31], [22] and [35] discuss asymptotic and guaranteed lower eigenvalue

bounds, respectively. The paper [19] states that the CR finite element produces

asymptotic lower bounds for eigenvalues in the case of a singular eigenfunction. And

[19], [31] also prove that property of asymptotic lower bounds in the case of a non-

singular eigenfunction but under an additional condition that the eigenvalue is large

enough. The paper [35] obtains guaranteed lower bounds for eigenvalue by correct-

ing the CR finite element eigenvalue approximations, but convergence order of the

corrected eigenvalues cannot achieve that of the uncorrected eigenvalues.

Based on the above work, we further discuss asymptotic lower bounds of eigen-

values for the Steklov eigenvalue problem with variable coefficients. We introduce

a new correction formula (3.5) to the CR finite element eigenvalue approximations λh

and obtain the corrected eigenvalues λc
h. Our work has the following features:

(1) For shape-regular meshes including quasi-uniform meshes and adaptive meshes

with local refinement, when mesh diameter h is sufficiently small and ‖u − uh‖ >

Ch1+ε0 (for some ε0 > 0), we prove the conclusion

λ > λc
h

in Theorem 3.1, which shows that the corrected eigenvalues are asymptotic lower

bounds of the exact ones. The new result removes the conditions of eigenfunction
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being singular and eigenvalue being large enough (see Section 3 for details), which

are usually required in the existing arguments about asymptotic lower bounds.

(2) The result in Theorem 3.2 implies that the corrected eigenvalues converge to

the exact ones without the loss of convergence order, i.e., convergence order of the

corrected eigenvalues is still the same as that of the uncorrected eigenvalues.

(3) For d-dimensional domains (d = 2, 3), we implement numerical experiments in

Section 4. Numerical results coincide in the theoretical analysis. We are particularly

pleased that the correction takes very little time.

In [19], [22], it has been obtained that the ECR finite element can produce asymp-

totic lower bounds of eigenvalues for the Steklov eigenvalue problem with a constant

coefficient whether the eigenfunctions are singular or not. However, up to now, it

has not been proved that the ECR element produces asymptotic lower eigenvalue

bounds for the Steklov eigenvalue problem with variable coefficients. It should be

pointed out that the correction method and theoretical analysis in this paper are

also valid for the ECR finite element (see Remark 3.3 in Section 3).

As for the basic theory of the finite element and spectral approximation, we refer

to [3], [4], [26], [6], [1], and [5]. Throughout this paper, C denotes a generic positive

constant independent of the mesh size, which may not be the same at each occurrence.

2. Preliminary

Let Hm(Ω) denote the Sobolev space with the real order m on Ω. Let ‖·‖m,Ω

and |·|m,Ω be the norm and seminorm on H
m(Ω), respectively, and H0(Ω) = L2(Ω).

Furthermore, Hm(∂Ω) denotes the Sobolev space with the real order m on ∂Ω,

‖·‖m,∂Ω is the norm on Hm(∂Ω) and H0(∂Ω) = L2(∂Ω).

The weak form of (1.1) can be written as: find (λ, u) ∈ R×H1(Ω) with ‖u‖0,∂Ω = 1

such that

(2.1) a(u, v) = λb(u, v) ∀ v ∈ H1(Ω),

where

a(u, v) =

∫

Ω

(α∇u · ∇v + βuv) dx,(2.2)

b(u, v) =

∫

∂Ω

uv ds.(2.3)

Let πh = {κ} be a regular partition of Ω with the mesh diameter h = max{hκ},
where hκ is the diameter of element κ. Let εh be the set of (d− 1)-dimensional faces

of πh. We denote by |κ| the measure of the element κ.
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We consider the CR finite element space Vh, proposed by Crouzeix and Ravi-

art [12], as

Vh = {v ∈ L2(Ω): v|κ ∈ P1(κ), v is continuous at the barycenters

of the (d− 1)-dimensional faces of κ for all κ ∈ πh}.

Put ‖v‖h =
(

∑

κ∈πh

‖v‖21,κ
)1/2

, then ‖v‖h means the norm on Vh. To construct

the CR finite element approximation of (2.1) means to find (λh, uh) ∈ R × Vh with

‖uh‖0,∂Ω = 1 such that

(2.4) ah(uh, v) = λhb(uh, v) ∀ v ∈ Vh,

where

(2.5) ah(uh, v) =
∑

κ∈πh

∫

κ

(α∇uh · ∇v + βuhv) dx.

From Theorem 4 in [27] and Remark 2.1 in [14], we have the following regularity

result.

Regularity: Assume that ϕ is the solution of the source problem associated

with (2.1) with the right-hand side f .

⊲ In the case of Ω ⊂ R
2, if f ∈ L2(∂Ω), there exist constants r and Cr > 0 such

that ϕ ∈ H1+r(Ω) and

‖ϕ‖1+r/2 6 Cr‖f‖0,∂Ω;

if f ∈ H1/2(∂Ω), then ϕ ∈ H1+r(Ω) and

‖ϕ‖1+r 6 Cr‖f‖1/2,∂Ω,

here r = 1 when the largest inner angle θ of Ω satisfies θ < π, and r < π/θ which

can be arbitrarily close to π/θ when θ > π.

⊲ In the case of Ω ⊂ R
3, if f ∈ L2(∂Ω), there exist constants r ∈ (0, 1

2 ) and Cr > 0

such that ϕ ∈ H1+r(Ω) and

‖ϕ‖1+r 6 Cr‖f‖0,∂Ω,

where Cr is the regularity constant independent of f .

Lemma 2.1. Let (λh, uh) be the jth eigenpair of (2.4) and λ be the jth eigenvalue

of (2.1). Then there exists an eigenfunction u corresponding to λ and when u ∈
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H1+t(Ω) and h is sufficiently small, it holds

‖uh − u‖h 6 Cht,(2.6)

|λh − λ| 6 Ch2t,(2.7)

‖u− uh‖0,∂Ω 6 Chs‖u− uh‖h,(2.8)

where r 6 t 6 1, s = r/2 if Ω ⊂ R
2 and s = r if Ω ⊂ R

3. The eigenfunction u is

called singular when t < 1.

P r o o f. By using standard arguments in nonconforming finite element error

estimates, (2.6) and (2.7) can be proved directly. The two estimates have also been

given by Theorem 2.2 in [13] and (2.6) in [14]. Now we prove (2.8).

In order to prove the error estimate, we need to define the solution operator

A : L2(∂Ω) → H1(Ω) associated with the source problem of (2.1) by

a(Af, v) = b(f, v) ∀ v ∈ H1(Ω)

and the operator T : L2(∂Ω) → L2(∂Ω) by

Tf = (Af)′,

where the prime denotes the restriction to ∂Ω, namely Tf = Af |∂Ω.
Analogously, we can define the discrete versions Ah and Th corresponding to A

and T , respectively. Define Ah : L2(∂Ω) → Vh by

ah(Ahf, v) = b(f, v) ∀ v ∈ Vh

and the operator Th : L2(∂Ω) → L2(∂Ω) by

Thf = (Ahf)
′.

By the Nitsche technique (see also (2.13) in [30]), we derive

‖Tu− Thu‖0,∂Ω = ‖Au−Ahu‖0,∂Ω 6 Chs‖Au−Ahu‖h.

From (2.7) and (2.8) in [34] (see also Lemma 3.1 in [19]), we have

‖u− uh‖h = λ‖Au−Ahu‖h +R,

‖u− uh‖0,∂Ω 6 C‖Tu− Thu‖0,∂Ω,

where |R| 6 C‖Tu− Thu‖0,∂Ω.
The estimate (2.8) is a direct consequence of the above three relations. �
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Define the Crouzeix-Raviart interpolation operator Ih : H1(Ω) → Vh by

(2.9)

∫

e

Ihu ds =

∫

e

u ds ∀ e ∈ εh, u ∈ H1(Ω).

Note that the interpolation operator Ih has an important orthogonality property (see

the equality (2.9) in [2]): for each element κ ∈ πh, it is

(2.10)

∫

κ

∇(u − Ihu) · ∇vh dx =

∫

∂κ

(u− Ihu)∇vh · ν ds = 0 ∀ vh ∈ Vh.

The estimation of constants in the Poincaré and trace inequalities is a concern of

academe (see, e.g., [28], [9], [7], [10], [20], [35], [24] and therein). From Theorem 4.2

in [24], we have following Lemma 2.2.

Lemma 2.2. For any element κ, the conclusion

(2.11) ‖u− Ihu‖0,κ 6 Chκ |u− Ihu|1,κ ∀u ∈ H1(κ),

is valid where

⊲ Chκ = 0.1893hκ for a triangle element κ in R
2,

⊲ Chκ = 0.3804hκ for a tetrahedron element κ in R
3.

Consider any element κ with the vertices P1, P2, . . . , Pd+1. The edge/face opposite

to the vertex Pd+1 is denoted by e. The measure of e is |e|. Let Hκ be the height of

element κ with respect to e. It is easy to see that

Hκ =
d|κ|
|e| .

Thanks to Lemma 2 of [7] and Theorem 3.3 of [35], we have following Lemma 2.3.

Lemma 2.3. For a given element κ, it is

(2.12) ‖u− Ihu‖0,e 6 Che |u− Ihu|1,κ ∀u ∈ H1(κ),

where

⊲ Che = 0.6711
hκ√
Hκ

for a triangle element κ in R
2,

⊲ Che = 1.0932
hκ√
Hκ

for a tetrahedron element κ in R
3.
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P r o o f. The proof can be found in Theorem 3.3 of [35]. For convenience of

reading in case of d = 3, we present the proof here.

For any v ∈ H1(κ) and any point x = (x1, x2, x3) in κ, we have

(2.13)

∫

κ

((x1, x2, x3)− P4) · ∇(v2) dx =

∫

∂κ

((x1, x2, x3)− P4) · nv2 ds−
∫

κ

3v2 dx

from the Green formula. We deduce

(2.14) ((x1, x2, x3)− P4) · n

=







0 for any x on the faces P1P2P4, P1P3P4, and P2P3P4,

3|κ|
|e| for any x on the face P1P2P3.

Substituting (2.14) into (2.13), we obtain

(2.15)
3|κ|
|e|

∫

e

v2 ds =

∫

κ

3v2 dx+

∫

κ

((x1, x2, x3)− P4) · ∇(v2) dx

6 3

∫

κ

v2 dx+

∫

κ

|(x1, x2, x3)− P4||∇(v2)| dx

6 3

∫

κ

v2 dx+ 2hκ

∫

κ

|v||∇v| dx

6 3‖v‖20,κ + 2hκ‖v‖0,κ‖∇v‖0,κ.

Taking v = u− Ihu and applying the estimate (2.11), we deduce

‖u− Ihu‖20,e 6
|e|
3|κ| (3C

2
hκ

+ 2hκChκ)|u− Ihu|21,κ,

which implies that (2.12) is valid when Ω ⊂ R
3. �

3. The asymptotic lower bounds property of corrected eigenvalues

For the problem (1.1), thanks to the minimum-maximum principle, it is easy

to obtain guaranteed upper bounds for eigenvalues by conforming finite element

methods. From [19], we know that the CR finite element method gives asymptotic

lower bounds for eigenvalues when the corresponding eigenfunctions are singular

or the eigenvalues are large enough. In this section, we introduce a correction for

eigenvalues of the problem (1.1) and we prove that the corrected eigenvalues converge

to the exact ones from below. The conclusion holds without the conditions that
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eigenfunction is singular and eigenvalue is large enough. First we prove the following

inequality (3.1) and Lemma 3.1.

Using (2.10), we have

∫

κ

∇(u−Ihu) ·∇(u−Ihu) dx =

∫

κ

∇(u−Ihu) ·∇(u−uh) dx 6 |u−Ihu|1,κ|u−uh|1,κ,

so then

(3.1) |u− Ihu|1,κ 6 |u− uh|1,κ.

The identity in following Lemma 3.1 is an equivalent form of the identity (4.1) in [19],

which is a generalization of the identities (2.12) in [2] and (2.3) in [36].

Lemma 3.1. Let (λ, u) and (λh, uh) be eigenpairs of (2.1) and (2.4), respectively.

Then the following identity is valid:

(3.2) λ− λh = ah(u− uh, u− uh)− λhb(u− uh, u− uh)

− 2ah(Ihu− u, uh)− 2λhb(u− Ihu, uh).

P r o o f. From ‖u‖0,∂Ω = 1 = ‖uh‖0,∂Ω, we get

ah(u, u) = λ, ah(uh, uh) = λh.

Therefore,

(3.3) λ− λh = ah(u, u) + ah(uh, uh)− 2ah(uh, uh)

= ah(u, u) + ah(uh, uh)− 2ah(u, uh) + 2ah(u− uh, uh)

= ah(u − uh, u− uh) + 2ah(u− uh, uh).

From b(Ihu− uh, uh) = b(Ihu− u, uh) + b(u− uh, uh − 1
2u+ 1

2u), we obtain

λhb(Ihu− uh, uh) = λhb(Ihu− u, uh)− 1
2λhb(u− uh, u− uh),

which together with (2.4) yields

(3.4) ah(u − uh, uh) = ah(u − Ihu, uh) + ah(Ihu− uh, uh)

= ah(u − Ihu, uh) + λhb(Ihu− uh, uh)

= ah(u − Ihu, uh) + λhb(Ihu− u, uh)− 1
2λhb(u− uh, u− uh).

Substituting (3.4) into (3.3), we get (3.2). �
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Now we give the correction formula (3.5). In addition, we prove that the correction

provides asymptotic lower bounds for eigenvalues of the problem (2.1).

Denote by I0 the piecewise constant interpolation operator on Ω. Let (λ, u) be an

eigenpair of (2.1) and (λh, uh) be the corresponding CR finite element approxima-

tions. We introduce the following formula to correct the CR finite element approxi-

mations λh:

(3.5) λc
h =

λh

1 +M/λh
,

where

(3.6) M =
δ

α0

∑

κ∈πh

(‖(α− I0α)∇uh‖0,κ + Chκ‖βuh‖0,κ)2

and δ > 1 is any given constant.

By the interpolation error estimate, we know that

(3.7) ‖α− I0α‖0,∞,κ 6 Chκ‖α‖1,∞,κ.

Noting that Chκ = 0.1893hκ, we derive

(3.8) 0 6 M 6 Ch2.

In practical computation, we cannot guarantee that λh are lower bounds of λ if we

are not sure that the eigenfunctions are singular or the eigenvalues are large enough.

Now we prove that the corrected eigenvalues λc
h are asymptotic lower bounds of the

exact ones, which holds without the conditions of singularity and large eigenvalues.

Theorem 3.1. Let λc
h be a corrected eigenvalue obtained by (3.5). Assume that

the conditions of Lemma 2.1 and ‖u−uh‖h > Ch1+ε0(ε0 = min{ 1
4 ,

1
2r}) hold. Then,

if h is sufficiently small, we have

(3.9) λ > λc
h.

P r o o f. We now estimate each of the four terms on the right-hand side of (3.2).

Since α > α0, the first term

(3.10) ah(u− uh, u− uh) >
∑

κ∈πh

(

α0|u− uh|21,κ +

∫

κ

β(u − uh)
2 dx

)

.
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From (2.8), the second term

(3.11) λhb(u− uh, u− uh) = λh‖u− uh‖20,∂Ω 6 Ch2s‖u− uh‖2h.

Now we estimate the third term. From (2.10), we have

(3.12) ah(Ihu− u, uh) =
∑

κ∈πh

∫

κ

((α − I0α)∇(Ihu− u) · ∇uh

+ I0α∇(Ihu− u) · ∇uh + β(Ihu− u)uh) dx

=
∑

κ∈πh

∫

κ

((α − I0α)∇(Ihu− u) · ∇uh + β(Ihu− u)uh) dx.

Applying Schwarz’s inequality and (2.11) to the above equality and combining it

with (3.1), we deduce that

ah(Ihu− u, uh) 6
∑

κ∈πh

(|u− Ihu|1,κ‖(α− I0α)∇uh‖0,κ + ‖u− Ihu‖0,κ‖βuh‖0,κ)

6
∑

κ∈πh

|u− Ihu|1,κ(‖(α− I0α)∇uh‖0,κ + Chκ‖βuh‖0,κ)

6
∑

κ∈πh

|u− uh|1,κ(‖(α− I0α)∇uh‖0,κ + Chκ‖βuh‖0,κ),

which together with Young’s inequality yields

(3.13) 2ah(Ihu− u, uh) 6
α0

δ

∑

κ∈πh

|u− uh|21,κ

+
δ

α0

∑

κ∈πh

(‖(α− I0α)∇uh‖0,κ + Chκ‖βuh‖0,κ)2.

It remains to estimate the last term. For the later proof, we introduce the piecewise

constant interpolation operator Ib0 on ∂Ω. Using (2.9), Schwarz’s inequality, (2.12),

‖u− Ib0u‖0,e 6 Chmin{1,1/2+r}‖u‖H1/2+r(e), the trace inequality and (3.1), we get

b(u− Ihu, u) =
∑

e∈εh∩∂Ω

∫

e

((u − Ihu)(u− Ib0u) + (u− Ihu)I
b
0u) ds

6
∑

e∈εh∩∂Ω

‖u− Ihu‖0,e‖u− Ib0u‖0,e

6 Chmin{1,1/2+r}

(

∑

κ∈πh,
e∈∂κ∩∂Ω

C2
he
|u− Ihu|21,κ

)1/2

6 Ch1+2ε0

(

∑

κ∈πh

|u− uh|21,κ
)1/2

,
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where ε0 = min{ 1
4 ,

1
2r}. Combining it with ‖u− uh‖h > Ch1+ε0 , we derive that

(3.14) b(u− Ihu, u) 6 Chε0‖u− uh‖2h.

From Schwarz’s inequality, (2.12), (2.8) and (3.1), we conclude that

(3.15) b(u− Ihu, uh − u) 6
∑

e∈εh∩∂Ω

‖u− Ihu‖0,e‖uh − u‖0,e

6 Ch1/2

(

∑

κ∈πh

|u− Ihu|21,κ
)1/2

hs‖uh − u‖h

6 Ch1/2+s‖uh − u‖2h.

Combining (3.14) and (3.15), we deduce

(3.16) 2λhb(u− Ihu, uh) 6 Chε0‖uh − u‖2h.

Substituting (3.10), (3.11), (3.13), (3.16) into (3.2), we obtain

λ− λh >

(

1− 1

δ

)

α0

∑

κ∈πh

|u − uh|21,κ(3.17)

+
∑

κ∈πh

∫

κ

β(u − uh)
2 dx− Ch2s‖u− uh‖2h

− δ

α0

∑

κ∈πh

(‖(α− I0α)∇uh‖0,κ + Chκ‖βuh‖0,κ)2 − Chε0‖uh − u‖2h.

From the definition of M , we have

(3.18)
(

1 +
1

λh
M
)

λ− λh >

(

1− 1

δ

)

α0

∑

κ∈πh

|u− uh|21,κ +
∑

κ∈πh

∫

κ

β(u − uh)
2 dx

− Ch2s‖u− uh‖2h − Chε0‖uh − u‖2h − λh − λ

λh
M.

It is obvious that, when h is sufficiently small, the third and the fourth terms on

the right-hand side of (3.18) are infinitesimals of higher order compared with the

sum of the first two terms. From (3.8), (2.7) and ‖u− uh‖h > Ch1+ε0 , we get

∣

∣

∣

λh − λ

λh
M
∣

∣

∣
6 Ch2+2t

6 Chth2+t
6 Cht‖u− uh‖2h,

which is a quantity of high order. Hence, the sign of the right-hand side of (3.18) is

determined by the sum of the first two terms, i.e.

(

1 +
1

λh
M
)

λ− λh > 0.

From (3.5), we know that (3.9) is valid. The proof is completed. �
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R em a r k 3.1. A condition on the lower bound for ‖u − uh‖h is necessary in
Theorem 3.1, otherwise the proof does not work. The condition ‖u − uh‖h > Chr

has been used in Theorem 2.3 of [2]. It is valid on quasi-uniform meshes but not on

adaptive meshes with local refinement. Therefore, in order to make the conclusion

of Theorem 3.1 hold on shape-regular meshes including quasi-uniform meshes and

adaptive meshes with local refinement, we use the condition ‖u − uh‖h > Ch1+ε0

(ε0 = min{ 1
4 ,

1
2r}) rather than ‖u − uh‖h > Chr. There are some papers on the

adaptive algorithm that have discussed the rationality of this type of hypothesis

(see, e.g., (2.33) and Remark 2.1 in [33]).

The following theorem shows that λc
h converge to λ and maintain the same con-

vergence order as λh.

Theorem 3.2. Let (λ, u) and (λh, uh) be eigenpairs of (2.1) and (2.4), respec-

tively. If λc
h is a corrected eigenvalue obtained by (3.5), then we have

(3.19) λ− λc
h = λ− λh +

λhM

λh +M
,

where |M | 6 Ch2.

P r o o f. From (3.6), we have

λ− λc
h = λ− λh + λh − λh

1 +M/λh
= λ− λh +

λhM

λh +M
.

The proof is completed. �

R em a r k 3.2. From (3.17) and the definition of M , we can also get another

correction formula

λN
h = λh −M.

Here λN
h is still an asymptotic lower bound for the eigenvalue. In addition, it can be

obtained directly that

λ− λN
h = λ− λh +M,

which indicates that λN
h converge to λ and maintain the same convergence order

as λh. However, from the inequality

(λ− λc
h)− (λ− λN

h ) =
λhM

λh +M
−M = − M2

λh +M
6 0,

we know that the error of λN
h is larger than λc

h when the mesh size is small enough.
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R em a r k 3.3 (The correction to the ECR finite element eigenvalue approxima-

tions). Let (λh, uh) be an approximate eigenpair of (2.1) obtained by the ECR

element and β ∈ W 1,∞(Ω). Assume that the condition ‖u − uh‖h > Ch1+ε0 holds.

Following closely the arguments used to prove Theorem 3.1, if h is sufficiently small,

we can also obtain a similar correction

λc
h =

λh

1 + δλ−1
h α−1

0

∑

κ∈πh
‖(α− Ioα)∇uh‖20,κ

such that

λ > λc
h

and λc
h maintain the same convergence order as λh.

Actually, throughout the proof, we just need to replace the second term in (3.12)

with the term

∑

κ∈πh

∫

κ

β(u− Ihu)uh dx =
∑

κ∈πh

∫

κ

(u− Ihu)(βuh − I0(βuh)) dx

6 C
∑

κ∈πh

h2
κ|u− Ihu|1,κ‖βuh‖1,κ,

which is a quantity of high order. Then we can obtain the desired.

4. Numerical experiments

In this section, to validate the theoretical results of this paper, we apply the

correction (3.5) to (1.1) on the domainΩ. The discrete eigenvalue problems are solved

in MATLAB 2018b on an Lenovo IdeaPad PC with 1.8 GHz CPU and 8 GB RAM.

Our code was compiled under the iFEM package [11]. In order to investigate the

error, we use the approximate eigenvalues given by extrapolation method as the

reference value. The following notations are adopted in tables and figures.

h0: The diameter of Ω.

h: The diameter of meshes.

λj : The jth eigenvalue of (2.1).

λj,h: The jth eigenvalue of (2.4) computed by the CR finite element.

λc
j,h: The approximation obtained by correcting λj,h.

t(s): The CPU time to compute eigenvalues on the finest meshes.

4.1. Numerical results on Ω ⊂ R
2. In this subsection, we present two numerical

examples. The first is α = β = 1, the second is α = 10 sin2(x1 + x2) +
1
6 and

13



β = e(x1−1/2)(x2−1/2). We compute on the unit square (0, 1)2 (h0 =
√
2), on the

L-shaped domain (−1, 1)2 \ ([0, 1)× (−1, 0]) (h0 = 2
√
2) and on the regular hexagon

with the side length of 1 (h0 = 2); for convenience, we refer to the domains as S, L

and H, respectively.

1 1.5 2 2.5 3 3.5 4

×10
−2

10
−6

10
−5

error of λ1,h error of λc
1,h The line with slope 2

0.5 1 1.5 2

×10
−2

10
−5

10
−4

10
−3

Figure 1. The error curves of the first eigenvalues on the unit square: α = β = 1 (left)

and α = 10 sin2(x1 + x2) +
1
6 , β = e

(x1−1/2)(x2−1/2) (right). Vertical axis: The
relative error of eigenvalue. Horizontal axis: The diameter of meshes.

2 3 4 5 6 7 8

×10
−2

10
−6

10
−5

10
−4

error of λ1,h error of λc
1,h The line with slope 2

1 1.5 2 2.5 3 3.5 4

×10
−2

10
−3

10
−2

10
−1

Figure 2. The error curves of the first eigenvalues on the L-shaped domain: α = β = 1

(left) and α = 10 sin2(x1 + x2) +
1
6 , β = e

(x1−1/2)(x2−1/2) (right). Vertical axis:
The relative error of eigenvalue. Horizontal axis: The diameter of meshes.

In order to obtain asymptotic lower bounds for the problem (1.1), we use (3.5)

to correct λ1,h. The error curves are depicted in Figures 1–3. New approximate

eigenvalues λc
1,h are listed in Tables 1 and 2. From Figures 1–3 we can see that on

each domain, the error curves of λc
1,h and λ1,h are almost parallel to the line with

slope 2, which indicates that λc
1,h and λ1,h have the same and optimal convergence
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order O(h2). This result coincides with the conclusion of Theorem 3.2. In addi-

tion, we can assume that the eigenfunctions corresponding to λ1 are smooth. From

Tables 1 and 2, on the one hand, we see that λ1,h converge to λ1 from above and

the corrected eigenvalues λc
1,h converge to λ1 from below, which indicates that the

correction (3.5) can provide lower bounds for eigenvalues even though eigenfunctions

are smooth. This result coincides with the conclusion of Theorem 3.1. On the other

hand, on each domain, the CPU time to compute λc
1,h is almost the same as that of

λ1,h, which tells us that the correction takes very little time.

1 2 3 4 5 6

×10
−2

10
−6

10
−5

error of λ1,h error of λc
1,h The line with slope 2

0.5 1 1.5 2 2.5 3

×10
−2

10
−3

10
−2

Figure 3. The error curves of the first eigenvalues on the regular hexagon: α = β = 1 (left)

and α = 10 sin2(x1 + x2) +
1
6 , β = e

(x1−1/2)(x2−1/2) (right). Vertical axis: The
relative error of eigenvalue. Horizontal axis: The diameter of meshes.

Domain S L H

h λ1,h λc
1,h λ1,h λc

1,h λ1,h λc
1,h

h0

32
0.24008533 0.24006902 0.34143156 0.34134357 0.39334226 0.39329159

h0

64
0.24008065 0.24007657 0.34141986 0.34139787 0.39332055 0.39330788

h0

128
0.24007948 0.24007846 0.34141699 0.34141149 0.39331513 0.39331196

h0

256
0.24007918 0.24007893 0.34141628 0.34141490 0.39331377 0.39331298

h0

512
0.24007911 0.24007905 0.34141610 0.34141576 0.39331344 0.39331324

t(s) 31.10 31.20 22.74 22.81 25.34 25.41

Trend ց ր ց ր ց ր
Table 1. The uncorrected eigenvalues and the corrected eigenvalues on Ω ⊂ R

2 : δ = 100
99 ,

α = β = 1.
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Domain S L H

h λ1,h λc
1,h λ1,h λc

1,h λ1,h λc
1,h

h0

32
0.24696 0.23963 0.53724 0.27358 0.56181 0.45333

h0

64
0.24645 0.24441 0.51661 0.39617 0.55267 0.51468

h0

128
0.24623 0.24571 0.50301 0.46469 0.54766 0.53740

h0

256
0.24616 0.24603 0.49700 0.48710 0.54600 0.54341

h0

512
0.24614 0.24611 0.49528 0.49280 0.54556 0.54491

t(s) 37.71 40.05 28.06 29.74 28.39 30.07

Trend ց ր ց ր ց ր
Table 2. The uncorrected eigenvalues and the corrected eigenvalues on Ω ⊂ R

2 : δ = 100
99 ,

α = 10 sin2(x1 + x2) +
1
6 , β = e

(x1−1/2)(x2−1/2).

Domain C F

h λ1,h λ2,h λ5,h h λ1,h λ2,h λ3,h

0.6124 0.162344 1.11356 1.56489 0.8660 0.268747 0.54947 0.72763

0.3062 0.162226 1.14537 1.65619 0.4330 0.268359 0.56641 0.73377

0.1531 0.162196 1.15272 1.68222 0.2165 0.268268 0.57235 0.73615

0.0765 0.162189 1.15448 1.68924 0.1083 0.268247 0.57441 0.73687

Trend ց ր ր – ց ր ր
Table 3. The CR finite element eigenvalue approximations on Ω ⊂ R

3 : δ = 10099 .

Domain C F

h λ1,h λc
1,h h λ1,h λc

1,h

0.6124 0.162344 0.156854 0.8660 0.268747 0.244062

0.3062 0.162226 0.160802 0.4330 0.268359 0.261752

0.1531 0.162196 0.161837 0.2165 0.268268 0.266587

0.0765 0.162189 0.162099 0.1083 0.268247 0.267824

t(s) 150.07 150.23 – 223.12 223.26

Trend ց ր – ց ր
Table 4. The uncorrected eigenvalues and the corrected eigenvalues on Ω ⊂ R

3 : δ = 10099 .

4.2. Numerical results on Ω ⊂ R
3. In this subsection, we select α = β = 1. We

compute in the cube (0, 1)3 and the Fichera corner domain (−1, 1)3 \ (−1, 0]3. For

convenience, we denote the domains by C and F, respectively. The quasi-uniform

mesh samples of the cube and the Fichera corner domain are depicted in Figure 4. In

the two domains, we compute the first three eigenvalues using the CR finite element
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and list the results in Table 3. In the cube, λ2 and λ5 are the eigenvalues with

multiplicity of 3. Corrected eigenvalues λc
1,h are listed in Table 4. Error curves are

depicted in Figure 5.

Figure 4. The quasi-uniform mesh samples of the cube (left) and the Fichera corner domain
(right).

2 2.5 3 3.5 4 4.5 5 5.5 6

×10
−1

10
−4

10
−3

10
−2

error of λ1,h error of λc
1,h The line with slope 2

3 4 5 6 7 8

×10
−1

10
−4

10
−3

10
−2

Figure 5. The error curves of the first eigenvalues in the cube (left) and the Fichera corner
domain (right). Vertical axis: The relative error of eigenvalue. Horizontal axis:
The diameter of meshes.

From Figure 5, we see that the error curves of λc
1,h and λ1,h are parallel to the

line with slope 2, which indicates that λc
1,h and λ1,h have the same and optimal

convergence order O(h2). Also we assume that the eigenfunctions corresponding

to λ1 are smooth. From Table 3, we see that on each domain, λ1,h converge to λ1

from above. This shows that the CR finite element eigenvalue approximations may

not be lower bounds of exact eigenvalues in the case of smooth eigenfunctions. From

Table 4, we see that the corrected eigenvalues λc
1,h converge to λ1, which indicates

that the correction (3.5) provides lower bounds for eigenvalues even though the

eigenfunctions are smooth. The numerical results on three dimensional domains

coincide with the conclusions of Theorem 3.1 and Theorem 3.2.
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