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Abstract. We design shifted LR transformations based on the integrable discrete hun-
gry Toda equation to compute eigenvalues of totally nonnegative matrices of the banded
Hessenberg form. The shifted LR transformation can be regarded as an extension of the
extension employed in the well-known dqds algorithm for the symmetric tridiagonal eigen-
value problem. In this paper, we propose a new and effective shift strategy for the sequence
of shifted LR transformations by considering the concept of the Newton shift. We show
that the shifted LR transformations with the resulting shift strategy converge with order
2− ε for arbitrary ε > 0.
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1. Introduction

Rutishauser [13] presented the quotient-difference (qd) algorithm, which has a re-

cursion formula incorporating the quotient and the difference, for computing eigen-

values of symmetric tridiagonal matrices. Fernando and Parlett [2] showed that the

qd algorithm can be applied to compute singular values of bidiagonal matrices. The

differential form of the qd (dqd) algorithm is a subtraction-free version, and the dqd

with shift (dqds) algorithm was formulated by introducing a shift of origin to the
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dqd algorithm to accelerate convergence [2], [10], [13]. The well-known linear algebra

package LAPACK [8] adopts the dqds algorithm as a solver for singular values.

The original qd algorithm repeatedly employs the following recursion formula:

(1.1)






q
(n+1)
k = q

(n)
k − e

(n+1)
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k , k = 1, 2, . . . ,m,

e
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(n)
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q
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e
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e
(n)
0 ≡ 0, e

(n)
m ≡ 0, n = 0, 1, . . . ,

where q
(n)
k and e

(n)
k are variables that define a symmetric tridiagonal matrix and the

superscript n refers to the iteration number. The qd recursion formula (1.1) generates

a similarity transformation, known as the LR transformation, from a symmetric

tridiagonal matrix defined by q
(n)
k and e

(n)
k to one defined by q

(n+1)
k and e

(n+1)
k .

It corresponds to computing the LR decomposition of the tridiagonal matrix and

multiplying the L and R factors in the reverse order. Note that the qd recursion

formula for the LR transformation is simply the integrable discrete Toda equation,

which is a representative discrete integrable system. In the case of the discrete

Toda equation, the superscript n and subscript k are the discrete time and spatial

variables, respectively.

One extension of the discrete Toda equation (1.1) is the discrete hungry Toda

(dhToda) equation:

(1.2)
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Here, M is a positive integer. The dhToda equation (1.2) was derived in the study

of box and ball systems (BBS), see [15], and differs from the discrete Toda equa-

tion (1.1) in that it has an additional parameterM . The dhToda equation (1.2) with

M = 1 coincides with the discrete Toda equation (1.1). In a previous work, we de-

signed an algorithm for computing eigenvalues of totally nonnegative (TN) matrices

of the banded Hessenberg form, where a TN matrix is a matrix with all minors non-

negative [3]. Since this algorithm is based on the dhToda equation (1.2), it is called

the dhToda algorithm. The positive integer M corresponds to the bandwidth of the

target TN matrix in the dhToda algorithm. Algorithms for computing eigenvalues

of TN matrices have been also designed using the discrete hungry Lotka-Volterra

system [3] and the discrete Bogoyavlensky lattice [14].

678



Symmetric positive-definite tridiagonal matrices belong to a class of TN matrices,

and so the dhToda algorithm can be regarded as a generalization of the qd algorithm.

As in the case of the qd algorithm, it is easy to derive the differential form of the

dhToda algorithm [3]. However, the discussion in this paper makes no distinction

between the original form and the differential form of the dhToda algorithm, because

they are mathematically equivalent. Like the qd algorithm, the dhToda algorithm

can be interpreted as a recursion formula for generating the LR transformation of the

TN banded Hessenberg matrix. To accelerate convergence, we developed the shifted

dhToda equation by introducing a shift of origin into this LR transformation [5].

Further, we showed that the shifted dhToda algorithm acts without breakdown if the

shift at each step is chosen to be smaller than the minimum eigenvalue of the target

TN matrix [5]. We proved that the shifted dhToda algorithm is numerically stable in

floating point arithmetic [4]. However, no concrete shift strategy has been presented

in the literature yet. The main purpose of this paper is to propose an effective

shift strategy for the sequence of shifted LR transformations for the TN banded

Hessenberg matrix, and then to analyze its advantages with respect to convergence

rate.

The remainder of this paper is organized as follows. In Section 2, we briefly review

the shifted LR transformation for TN matrices of the banded Hessenberg form, which

is derived from the study of the dhToda equation (1.2). In Section 3, we propose

a shift strategy based on the Newton shift. In Section 4, we clarify the properties

of the minimum eigenvalue of the TN matrix, and in Section 5 we focus on the

bottom-right entry of the TN matrix and its neighboring entries. In Section 6, we

investigate the convergence rate of the sequence of shifted LR transformations under

the proposed shift strategy. We also numerically verify the convergence acceleration

through some examples. Finally, we provide concluding remarks in Section 7.

2. The shifted LR transformation based on the dhToda equation

This section briefly reviews our previous papers [3], [5] concerning the shifted LR

transformation for a TN matrix based on the dhToda equation (1.2).

We begin by relating the dhToda equation (1.2) to the LR transformation for

a TN matrix. We showed in [3] that the dhToda equation (1.2) has the matrix

representation

(2.1) L(n+M)R(n+1) = R(n)L(n), n = 0, 1, . . . ,
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where L(n) and R(n) are the lower and upper bidiagonal matrices involving the

dhToda variables Q
(n)
k and E

(n)
k , which are defined as:

L(n) :=




Q
(n)
1

1 Q
(n)
2

. . .
. . .

1 Q
(n)
m


 , R(n) :=




1 E
(n)
1

1
. . .
. . . E

(n)
m−1

1


 .

Here, we introduce an m-by-m lower Hessenberg matrix A(n) as the product of L(n),

L(n+1), . . ., L(n+M−1) and R(n), namely:

(2.2) A(n) := L(n)L(n+1) . . . L(n+M−1)R(n).

If Q
(n)
1 > 0, Q

(n)
2 > 0, . . . , Q

(n)
m > 0 for n = 0, 1, . . . ,M − 1 and E

(0)
1 > 0,

E
(0)
2 > 0, . . . , E

(0)
m−1 > 0, then it holds that Q

(n)
1 > 0, Q

(n)
2 > 0, . . . , Q

(n)
m > 0

and E
(n)
1 > 0, E

(n)
2 > 0, . . . , E

(n)
m−1 > 0 for any n. In other words, both L(n) and

R(n) always have positive bidiagonal entries. Since both L(n) and R(n) are TN for

any n, the lower Hessenberg matrix A(n) is also TN, see [11]. Regarding (2.1) as the

LR transformation and using it repeatedly, we can rewrite A(n+M) as:

A(n+M) = L(n+M)L(n+M+1) . . . L(n+2M−1)R(n+M)

= L(n+M)L(n+M+1) . . . R(n+M−1)L(n+M−1)

...

= R(n)L(n)L(n+1) . . . L(n+M−1).

This implies that the dhToda equation (1.2) generates an LR transformation

from A(n) to A(n+M), where

(2.3)

{
A(n) = (L(n)L(n+1) . . . L(n+M−1))R(n),

A(n+M) = R(n)(L(n)L(n+1) . . . L(n+M−1)).

Since it follows from (2.3) that R(n)A(n)(R(n))−1 = A(n+M), we see that A(n+M) is

similar to A(n).

Moreover, our previous paper [3] showed that the dhToda variables Q
(n)
k and E

(n)
k

have the following asymptotic behaviors as n → ∞:

lim
n→∞

M−1∏

p=0

Q
(n−p)
k = ck, k = 1, 2, . . . ,m,(2.4)

lim
n→∞

E
(n)
k = 0, k = 1, 2, . . . ,m− 1,(2.5)
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where c1, c2, . . . , cm are positive constants such that c1 > c2 > . . . > cm. Con-

sidering (2.4) and (2.5) in the entries of A(n), we observe that A(n) converges to

a lower triangular matrix with diagonal entries c1, c2, . . . , cm as n → ∞. There-

fore, c1, c2, . . . , cm coincide with the eigenvalues of A
(0). Our previous paper [3]

presented the dhToda algorithm for computing eigenvalues of the TN matrix A(0) =

(L(0)L(1) . . . L(M−1))R(0) based on the above properties of the dhToda equation (1.2).

To accelerate the convergence of the dhToda algorithm, we introduced (see [5])

a shift of origin into the LR transformation (2.3) as

(2.6)

{
A(n) − s(n)I = L(n)L(n+1) . . . L(n+M−1)R(n) − s(n)I = L̄(n)R(n,0),

A(n+M) = R(n,0)L̄(n) + s(n)I,

where s(n) is a shift of origin, L̄(n) is a lower triangular matrix, and R(n,0) is an

upper bidiagonal matrix whose diagonal entries are all 1. The shifted LR trans-

formation (2.6) immediately leads to A(n+M) = R(n,0)A(n)(R(n,0))−1, which implies

that A(n+M) is similar to A(n). Our previous paper [5] proved that the shifted LR

transformation (2.6) does not fail if s(n) is smaller than the minimum eigenvalue

of A(n). This shift strategy simultaneously guarantees the TN property of A(n+M)

if A(n) is TN.

In the non-shifted case, the LR transformation from A(n) to A(n+M) is performed

as a sequence of LR transformations (2.1) involving only bidiagonal matrices. We

showed that this structure is essential for computing small eigenvalues of A(0) with

high relative accuracy [4]. We reformulate the shifted LR transformation (2.6) also

as a sequence of bidiagonal LR and RR transformations [5]. Assume for the moment

that R(n,0) has been computed in some way. Then compute the bidiagonal matrices

L(n+M), L(n+M+1), . . ., L(n+2M−1), R(n,1), R(n,2), . . . , R(n,M) and R(n+M) by

L(n+M+p)R(n,p+1) = R(n,p)L(n+p), p = 0, 1, . . . ,M − 1,(2.7)

R(n+M)R(n,0) = R(n,M)R(n).(2.8)

From (2.7) and (2.8), we derive

A(n+M) = R(n,0)A(n)(R(n,0))−1

= R(n,0)L(n)L(n+1) . . . L(n+M−2)L(n+M−1)R(n)(R(n,0))−1

= L(n+M)R(n,1)L(n+1) . . . L(n+M−2)L(n+M−1)R(n)(R(n,0))−1

...

= L(n+M)L(n+M+1)L(n+M+2) . . . R(n,M−1)L(n+M−1)R(n)(R(n,0))−1

= L(n+M)L(n+M+1)L(n+M+2) . . . L(n+2M−1)R(n,M)R(n)(R(n,0))−1

= L(n+M)L(n+M+1)L(n+M+2) . . . L(n+2M−1)R(n+M).
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This implies that the bidiagonal LR transformations (2.7) and the bidiagonal RR

transformation (2.8) generate a similarity transformation from A(n) to A(n+M).

Moreover, by letting E
(n,p)
k denote the (k, k + 1) entry of R(n,p), we obtain the

following recursion formula for giving the LR transformations (2.7) and the RR

transformation (2.8), respectively:





Q
(n+M+p)
k = Q

(n+p)
k + E

(n,p)
k − E

(n,p+1)
k−1 ,

k = 1, 2, . . . ,m, p = 0, 1, . . . ,M − 1,

E
(n,p+1)
k =

Q
(n+p)
k+1

Q
(n+M+p)
k

E
(n,p)
k ,

k = 1, 2, . . . ,m− 1 p = 0, 1, . . . ,M − 1,

(2.9)






E
(n+M)
k = E

(n)
k + E

(n,M)
k − E

(n,0)
k , k = 1, 2, . . . ,m− 1,

E
(n,0)
k+1 =

E
(n)
k+1

E
(n+M)
k

E
(n,M)
k , k = 1, 2, . . . ,m− 2.

(2.10)

A close examination of (2.9) and (2.10) reveals that we need not compute the entries

E
(n,0)
2 , E

(n,0)
3 , . . . , E

(n,0)
m−1 in R(n,0) to start the LR and RR transformations. In fact,

if only E
(n,0)
1 in R(n,0) is given, then (2.9) and (2.10) allow us to compute all the

entries of R(n,0), L(n+M), . . . , L(n+2M−1) and R(n+M) in the following order:

{Q
(n+M+p)
1 , E

(n,p+1)
1 }p=0,1,...,M−1, E

(n+M)
1 , E

(n,0)
2 ,

{Q
(n+M+p)
2 , E

(n,p+1)
2 }p=0,1,...,M−1, E

(n+M)
2 , E

(n,0)
3 ,

...

{Q
(n+M+p)
m−1 , E

(n,p+1)
m−1 }p=0,1,...,M−1, E

(n+M)
m−1 , E(n,0)

m ,

{Q(n+M+p)
m }p=0,1,...,M−1.

The formula for E
(n,0)
1 can be obtained by observing the (1, 1) and (1, 2) entries of

L(n)L(n+1) . . . L(n+M−1)R(n) − s(n)I and L̄(n)R(n,0) in the first equality of (2.6):

(2.11) E
(n,0)
1 =

Q
(n)
1 Q

(n+1)
1 . . .Q

(n+M−1)
1

Q
(n)
1 Q

(n+1)
1 . . .Q

(n+M−1)
1 − s(n)

E
(n)
1 .

Therefore, the shifted LR transformation (2.6) is completed by employing (2.9),

(2.10), and (2.11).

In the actual algorithm, we modify (2.9) and (2.10) to the differential form without

subtraction by introducing auxiliary variables [4], as is done in the dqd algorithm [2].

The differential form is mathematically equivalent to the original (2.9) and (2.10) but
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has better stability properties. For details and error analysis of the shifted dhToda

algorithm in the differential form, we refer to [4].

3. Newton shift strategy

The Newton shift is known to be an effective shift for the shifted QR and dqds

algorithms [1], [12]. The Newton shift s
(n)
N in the shifted LR transformation (2.6)

from A(n) to A(n+M) is defined by

(3.1) s
(n)
N = [tr((A(n))−1)]−1,

where tr(·) denotes the sum of all diagonal entries of a matrix. Since the TN ma-

trix A(n) has distinct positive eigenvalues λ1, λ2, . . . , λm satisfying λ1 > λ2 > . . . >

λm > 0, we easily derive

0 < s
(n)
N =

( 1

λ1
+

1

λ2
+ . . .+

1

λm

)−1

= λm

(
1 +

λm

λ1
+

λm

λ2
+ . . .+

λm

λm−1

)−1

< λm.

Thus, we expect that the Newton shift s
(n)
N is useful in the shifted LR transforma-

tion (2.6). However, we emphasize that s
(n)
N computed by (3.1) is a constant that

does not depend on n, because the eigenvalues of A(n) are equal to those of A(0).

This causes the convergence rate of the sequence {A(n+lM)}l=0,1,... to be at most

linear.

In this section, we explain how to utilize the idea of the Newton shift more effi-

ciently for the shifted LR transformation (2.6). Suppose s(n) has been computed in

some way, and we need to determine the next shift s(n+M) for A(n+M). The key idea

here is to apply the Newton shift to Ā(n) := A(n) − s(n)I instead of A(n+M). Let

s̄
(n)
N := 1/tr((Ā(n))−1) be the Newton shift for Ā(n) and let s(n+M) := s(n) + s̄

(n)
N .

Then, since 0 < s̄
(n)
N < λm−s(n), it follows that 0 < s(n+M) < λm and s

(n+M) can be

used as a valid shift. Moreover, it can easily be verified that s+ [tr(A(n) − sI)−1]−1

is an increasing function of s when 0 6 s < λm. Hence, s
(n+M) is a better shift

than s
(n+M)
N = s

(n)
N . The difficulty with this approach is that the matrix Ā

(n) is not

computed explicitly in the algorithm. To address this, we consider performing the

following two steps of the shifted LR transformations using the same shift s(n),

(3.2)





A(n) − s(n)I = L̄(n)R(n,0),

A(n+M) − s(n)I = R(n,0)L̄(n),

A(n+M) − s(n)I = L̄(n+M)R(n+M,0),

A(n+2M) − s(n)I = R(n+M,0)L̄(n+M).
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Then we can compute s̄
(n)
N efficiently from the quantities appearing in the twofold

shifted LR transformations (3.2), as will be clarified in the following paragraphs.

Thus, in the next two steps, we can employ the shift s(n+2M) as

(3.3) s(n+2M) = s(n) + s̄
(n)
N .

To estimate the value of s̄
(n)
N , we hereinafter compute the Newton shift s̄

(n+M)
N =

1/tr((Ā(n+M))−1) instead of s̄
(n)
N , where Ā

(n+M) = A(n+M)−s(n)I. Since eigenvalues

of Ā(n+M) are equal to those of Ā(n), it is obvious that s̄
(n+M)
N can be used instead

of s̄
(n)
N . Since det(Ā

(n)) = det(Ā(n+M)), we can express the (i, i) entry of (Ā(n+M))−1,

denoted by ((Ā(n+M))−1)i,i as

(3.4) ((Ā(n+M))−1)i,i =
cof(Ā

(n+M)
i,i )

det(Ā(n))
,

where cof(Ā
(n+M)
i,i ) is the (i, i) cofactor of Ā(n+M) and denotes the determinant of

the submatrix obtained by deleting the ith row and column of Ā(n+M). According

to the first equation of (3.2), we can decompose Ā(n) = A(n) − s(n)I using the lower

triangular matrix L̄(n) and the upper bidiagonal matrix R(n,0) as Ā(n) = L̄(n)R(n,0).

Noting that all the diagonal entries of R(n,0) are 1, we see that the denominator

det(Ā(n)) is equal to the product of all diagonal entries of L̄(n), namely

(3.5) det(Ā(n)) = (L̄(n))1,1(L̄
(n))2,2 . . . (L̄

(n))m,m.

We can also examine the numerator cof(Ā
(n+M)
i,i ) in terms of the principal submatri-

ces formed by gathering the i1, i1 + 1, . . . , i2th rows and j1, j1 + 1, . . . , j2th columns

of Ā(n+M), denoted Ā(n+M)(i1 : i2; j1 : j2). Since Ā(n+M) is a lower Hessenberg

matrix, we easily derive

(3.6) cof(Ā
(n+M)
i,i ) = det(Ā(n+M)(1 : i−1; 1 : i−1)) det(Ā(n+M)(i+1 : m; i+1 : m)).

The third equation of (3.2) immediately leads to Ā(n+M)(1 : i − 1; 1 : i − 1) =

L̄(n+M)(1 : i− 1; 1 : i− 1)R(n+M,0)(1 : i− 1; 1 : i− 1). Noting that L̄(n+M)(1 : i− 1;

1 : i− 1) is lower triangular and det(R(n+M,0)(1 : i− 1; 1 : i− 1)) = 1, we obtain

(3.7) det(Ā(n+M)(1 : i−1; 1 : i−1)) = (L̄(n+M))1,1(L̄
(n+M))2,2 . . . (L̄

(n+M))i−1,i−1.

Similarly, from the second equation of (3.2), we derive

(3.8) det(Ā(n+M)(i+ 1 : m; i+ 1 : m))

= det(R(n,0)(i+ 1 : m; i+ 1 : m)) det(L̄(n)(i+ 1 : m; i+ 1 : m))

= (L̄(n))i+1,i+1(L̄
(n))i+2,i+2 . . . (L̄

(n))m,m.
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Therefore, it follows from (3.6), (3.7), and (3.8) that

(3.9) cof(Ā
(n+M)
i,i ) = (L̄(n+M))1,1(L̄

(n+M))2,2 . . . (L̄
(n+M))i−1,i−1

× (L̄(n))i+1,i+1(L̄
(n))i+2,i+2 . . . (L̄

(n))m,m.

Combining (3.5) and (3.9) with (3.4), we have

(3.10) s̄
(n)
N =

( m∑

i=1

((Ā(n+M))−1)i,i

)−1

=

( m∑

i=1

(L̄(n+M))1,1(L̄
(n+M))2,2 . . . (L̄

(n+M))i−1,i−1

(L̄(n))1,1(L̄(n))2,2 . . . (L̄(n))i,i

)−1

.

To compute values of the diagonal entries of L̄(n) and L̄(n+M), we employ

the first three equations of (3.2). Since the (k, k + 1) entries of A(n) − s(n)I =

L(n)L(n+1) . . . L(n+M−1)R(n)−s(n)I and L̄(n)R(n,0) areQ
(n)
k Q

(n+1)
k . . . Q

(n+M−1)
k E

(n)
k

and (L̄(n))k,kE
(n,0)
k , respectively, we derive the following from the first equation

of (3.2)

(3.11) (L̄(n))k,k =
Q

(n)
k Q

(n+1)
k . . . Q

(n+M−1)
k E

(n)
k

E
(n,0)
k

, k = 1, 2, . . . ,m− 1.

On the other hand, the equality of the (m− 1,m) entries on both sides of the second

equation of (3.2) leads to

(3.12) (L̄(n))m,m =
Q

(n+M)
m−1 Q

(n+M+1)
m−1 . . . Q

(n+2M−1)
m−1 E

(n+M)
m−1

E
(n,0)
m−1

.

Finally, we compute the diagonal entries of L̄(n+M) from the third equation of (3.2)

(3.13)

(L̄(n+M))k,k =
Q

(n+M)
k Q

(n+M+1)
k . . . Q

(n+2M−1)
k E

(n+M)
k

E
(n+M,0)
k

, k = 1, 2, . . . ,m− 1.

At the beginning of the iteration, we determine the shift s(0) < λm in some way;

for example, using the Newton shift (3.1). Then we perform two steps of shifted

LR transformations using s(0) as in (3.2), and obtain L(M), L(M+1), . . . , L(2M−1),

R(n), R(M), R(0,0), and R(M,0). By substituting the entries of these matrices

into (3.11), (3.12), and (3.13), we can compute (L̄(0))1,1, (L̄
(0))2,2, . . . , (L̄

(0))m,m and

(L̄(M))1,1, (L̄
(M))2,2, . . . , (L̄

(M))m−1,m−1. Then, we can compute s̄
(n)
N from (3.10)

and the shift to be used in the next two steps by s(2M) = s(0) + s̄
(n)
N . This pro-

cess is repeated and the shift is updated at each step of the twofold shifted LR

transformations.
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4. Minimum eigenvalue

To examine the convergence rate of the sequence of shifted LR transformations,

we need to understand the behavior of the minimum eigenvalue λm of the TN ma-

trix A(n). In this section, we prepare three lemmas for the value of λm.

We first clarify the relationship between the minimum eigenvalues of the TN ma-

trix A(n) and its principal submatrix A(n)(1 : m − 1; 1 : m − 1). Here, we ex-

press A(n)(1 : m − 1; 1 : m − 1) using the leading principal submatrices of L(n),

L(n+1), . . . , L(n+M−1) and R(n) as

(4.1) A(n)(1 : m− 1; 1 : m− 1)

= ( Im−1 0m−1 )L
(n)L(n+1) . . . L(n+M−1)R(n)

(
Im−1

0
⊤
m−1

)

= (L(n)(1 : m− 1; 1 : m− 1) 0m−1 )L
(n+1)L(n+2) . . . L(n+M−1)

×

(
R(n)(1 : m− 1; 1 : m− 1)

0
⊤
m−1

)

...

=

(
M−1∏
p=0

L(n+p)(1 : m− 1; 1 : m− 1) 0m−1

)

×

(
R(n)(1 : m− 1; 1 : m− 1)

0
⊤
m−1

)

= L(n)(1 : m− 1; 1 : m− 1)L(n+1)(1 : m− 1; 1 : m− 1)

× . . .× L(n+M−1)(1 : m− 1; 1 : m− 1)×R(n)(1 : m− 1; 1 : m− 1),

where Ik and 0k denote the k-by-k identity matrix and the k-dimensional zero column

vector, respectively. Since bidiagonal entries of L(n)(1 : m − 1; 1 : m − 1) and

R(n)(1 : m− 1; 1 : m− 1) are positive, A(n)(1 : m− 1; 1 : m− 1) is a nonsingular TN

matrix and its eigenvalues are positive. The interlacing theorem [7], [9] immediately

leads to the inequality λm 6 µm−1, where µm−1 denotes the minimum eigenvalue

of A(n)(1 : m − 1; 1 : m − 1). Noting the TN property of A(n) and A(n)(1 : m − 1;

1 : m− 1), we derive the following lemma for a stricter inequality:

Lemma 4.1. The minimum eigenvalues λm and µm−1 satisfy:

(4.2) λm < µm−1.

P r o o f. We define two matrices that are similar to L(n) and R(n), respectively,

by L̃(n) := JmL(n)Jm and R̃
(n) :=JmR(n)Jm, where Jm := diag(1,−1, . . . , (−1)m−1).
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Then L̃(n) and L̃(n)(1 : m− 1; 1 : m− 1) have positive diagonal entries and negative

lower subdiagonal entries, so we easily see that all lower triangular entries, including

diagonals, of (L̃(n))−1 and (L̃(n)(1 : m − 1; 1 : m − 1))−1 are positive. Similarly,

all upper triangular entries, including diagonals, of (R̃(n))−1 and (R̃(n)(1 : m − 1;

1 : m− 1))−1 are positive.

Next, we express L̃(n) and R̃(n) as 2-by-2 block matrices:

L̃(n) =

(
L̃(n)(1 : m− 1; 1 : m− 1) 0m−1

−e
⊤
m−1 Q

(n)
m

)
,

R̃(n) =

(
R̃(n)(1 : m− 1; 1 : m− 1) −E

(n)
m−1em−1

0
⊤
m−1 1

)
,

where ek denotes the k-dimensional unit column vector whose kth entry is 1. With

the formula for the inverse of a block matrix, we obtain

(L̃(n))−1(4.3)

=

(
(L̃(n)(1 : m− 1; 1 : m− 1))−1

0m−1

(Q
(n)
m )−1

e
⊤
m−1(L̃

(n)(1 : m− 1; 1 : m− 1))−1 (Q
(n)
m )−1

)
,

(R̃(n))−1(4.4)

=

(
(R̃(n)(1 : m− 1; 1 : m− 1))−1 E

(n)
m−1(R̃

(n)(1 : m− 1; 1 : m− 1))−1
em−1

0
⊤
m−1 1

)
.

Equations (4.3) and (4.4) suggest that

(
(L̃(n)(1 : m− 1; 1 : m− 1))−1

0m−1

0
⊤
m−1 0

)
� (L̃(n))−1,

(
(R̃(n)(1 : m− 1; 1 : m− 1))−1

0m−1

0
⊤
m−1 0

)
� (R̃(n))−1,

where X � Y signifies that Y − X is nonnegative. For nonnegative square matri-

ces X1, Y1, X2, and Y2, if X1 � Y1 and X2 � Y2, then X1X2 � Y1Y2 [7]. Therefore,

we derive

(4.5)

(
(R̃(n)(1 : m− 1; 1 : m− 1))−1

0m−1

0
⊤
m−1 0

)

×

(
(L̃(n+M−1)(1 : m− 1; 1 : m− 1))−1

0m−1

0
⊤
m−1 0

)

×

(
(L̃(n+M−2)(1 : m− 1; 1 : m− 1))−1

0m−1

0
⊤
m−1 0

)

× . . .×

(
(L̃(n)(1 : m− 1; 1 : m− 1))−1

0m−1

0
⊤
m−1 0

)

� (R̃(n))−1(L̃(n+M−1))−1(L̃(n+M−2))−1 . . . (L̃(n))−1.
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We introduce a matrix similar to A(n) as

Ã(n) := JmA(n)Jm = L̃(n)L̃(n+1) . . . L̃(n+M−1)R̃(n).

Similarly to (4.1), it follows that Ã(n)(1 : m − 1; 1 : m − 1) = L̃(n)(1 : m − 1;

1 : m−1)L̃(n+1)(1 : m−1; 1 : m−1) . . . L̃(n+M−1)(1 : m−1; 1 : m−1)R̃(n)(1 : m−1;

1 : m− 1). Thus, we can rewrite (4.5) as

(
(Ã(n)(1 : m− 1; 1 : m− 1))−1

0m−1

0
⊤
m−1 0

)
� (Ã(n))−1.

From the positivity of (L̃(n))−1, (R̃(n))−1 and their principal matrices, it is obvious

that (Ã(n))−1 and (Ã(n)(1 : m− 1; 1 : m− 1))−1 are positive matrices.

Using the Perron-Frobenius theorem [7], we see that the normalized eigenvector of

Ã(n)(1 : m− 1; 1 : m− 1) corresponding to the maximum eigenvalue µ−1
m−1 has only

positive entries. For ε > 0, η > 0, and the normalized eigenvector xm−1, we prepare

the positive matrix:

(4.6)

(
(Ã(n)(1 : m− 1; 1 : m− 1))−1 εxm−1

µ−1
m−1ηx

⊤
m−1 εη

)
.

Then, we derive

(
(Ã(n)(1 : m− 1; 1 : m− 1))−1 εxm−1

µ−1
m−1ηx

⊤
m−1 εη

)(
xm−1

η

)

=

(
µ−1
m−1xm−1 + εηxm−1

µ−1
m−1η‖xm−1‖

2 + εη2

)
= (µ−1

m−1 + εη)

(
xm−1

η

)
,

which implies that the nonnegative matrix in (4.6) has an eigenvalue µ−1
m−1 + εη.

Since (Ã(n))−1 is a positive matrix, there exist some ε and η satisfying

(4.7)

(
(Ã(n)(1 : m− 1; 1 : m− 1))−1 εxm−1

(µm−1)
−1ηxm−1

⊤ εη

)
� (Ã(n))−1.

According to Horn and Johnson [7], p. 491, for positive square matrices X and Y ,

the spectral radius of X is smaller than or equal to that of Y if X � Y . Thus, we

obtain

µ−1
m−1 < µ−1

m−1 + εη 6 λ−1
m ,

which immediately yields (4.2). �
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For convenience, we hereinafter use the abbreviations Ā
(n)
λm

:= A(n) − λmI and

Ā
(n)
λm

(1 : k; 1 : k) := A(n)(1 : k; 1 : k)− λmIk. We next present an implicit expression

of the minimum eigenvalue λm using the entries of A
(n).

Lemma 4.2. The entries and minimum eigenvalue of A(n) satisfy

(4.8)

λm = (A(n))m,m− (A(n))m−1,mA(n)(m; 1 : m− 1)(Ā
(n)
λm

(1 : m− 1; 1 : m− 1))−1
em−1.

P r o o f. It is obvious that Ā
(n)
λm

has an eigenvalue of 0. Let z be the eigenvector

corresponding to the 0 eigenvalue. Moreover, let z(i) denote the ith entry of z.

Then, from Ā
(n)
λm

z = 0, it follows that

Ā
(n)
λm

(1 : m− 1; 1 : m− 1)z(1 : m− 1) + (A(n))m−1,mz(m)em−1 = 0,(4.9)

A(n)(m; 1 : m− 1)z(1 : m− 1) + ((A(n))m,m − λm)z(m) = 0.(4.10)

With the help of Lemma 4.1, we see that Ā
(n)
λm

(1 : m − 1; 1 : m − 1) is nonsingular.

Therefore, (4.9) leads to

(4.11) z(1 : m− 1) = −(A(n))m−1,mz(m)(Ā
(n)
λm

(1 : m− 1; 1 : m− 1))−1
em−1.

Combining (4.10) with (4.11), we derive

(4.12) [−(A(n))m−1,mA(n)(m; 1 : m− 1)(Ā
(n)
λm

(1 : m− 1; 1 : m− 1))−1
em−1

+ (A(n))m,m − λm]z(m) = 0.

Let us assume here that z(m) = 0. Then, we can simplify (4.9) as

Ā
(n)
λm

(1 : m− 1; 1 : m− 1)z(1 : m− 1) = 0,

which implies that λm is an eigenvalue of A
(n)(1 : m− 1; 1 : m− 1). This contradicts

Lemma 4.1. Consequently, noting that z(m) 6= 0 in (4.12), we have (4.8). �

We also present a lemma for an implicit expression of the minimum eigenvalue λm

by considering the LU decomposition of Ā
(n)
λm

.

Lemma 4.3. There exists a lower triangular matrix L̆(n) with (L̆(n))m,m = 0 and

a unit upper bidiagonal matrix R̆(n,0) such that Ā
(n)
λm

= L̆(n)R̆(n,0). Let Ĕ
(n,0)
k be

the upper diagonal entries of R̆(n,0). Moreover, let L(n) := L(n)L(n+1) . . . L(n+M−1).

Then,

(4.13) λm =

[ m∑

j=1

(Ĕ
(n,0)
j Ĕ

(n,0)
j+1 . . . Ĕ

(n,0)
m−1 )((L

(n))−1)m,j

]−1

.
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P r o o f. Using Lemma 4.1 recursively, we observe that all eigenvalues of principal

submatrices A(n)(1 : m− 1; 1 : m− 1), A(n)(1 : m− 2; 1 : m− 2), . . ., A(n)(1; 1) are

larger than λm. In other words, det(Ā
(n)
λm

(1 : k; 1 : k)) 6= 0 for k = 1, 2, . . . ,m − 1.

Hence, Ā
(n)
λm

(1 : m − 1; 1 : m − 1) admits the LU decomposition Ā
(n)
λm

(1 : m − 1;

1 : m−1) = L̆(n)(1 : m−1; 1 : m−1)R̆(n,0)(1 : m−1; 1 : m−1), where L̆(n)(1 : m−1;

1 : m − 1) and R̆(n,0)(1 : m − 1; 1 : m − 1) are nonsingular. Using the block LU

decomposition of a 2-by-2 block matrix [6], we obtain

(4.14)

(
X1,1 X1,2

X2,1 X2,2

)
=

(
L1,1 O

X2,1R
−1
1,1 X2,2 −X2,1X

−1
1,1X1,2

)

×

(
R1,1 (L1,1)

−1X1,2

O I

)
,

which holds when the (1, 1) blockX1,1 admits the LU decompositionX1,1 = L1,1R1,1.

We can obtain the LU decomposition of Ā
(n)
λm

by

(4.15)

Ā
(n)
λm

=

(
L̆(n)(1 : m− 1; 1 : m− 1) 0

A(n)(m; 1 : m− 1)(R̆(n,0)(1 : m− 1; 1 : m− 1))−1 (L̆(n))m,m

)

×

(
R̆(n,0)(1 : m− 1; 1 : m− 1) (A(n))m−1,m(L̆(n)(1 : m− 1; 1 : m− 1))−1

em−1

0 1

)
.

Since Ā
(n)
λm

is singular and both L̆(n)(1 : m−1; 1 : m−1) and R̆(n,0)(1 : m−1; 1 : m−1)

are nonsingular, (L̆(n))m,m must be 0. Therefore, we can adopt the first and second

matrices on the right-hand side of (4.15) as L̆(n) and R̆(n,0), respectively.

Noting that A(n) = L(n)R(n), we derive the following equality for L̆(n) and R̆(n,0):

(4.16) R̆(n,0)L̆(n) + λmI = R̆(n,0)L(n)R(n)(R̆(n,0))−1.

Since the mth column of L̆(n) is 0, the (m,m) entry of Ă(n+M) := R̆(n,0)L̆(n) + λmI

is λm. Equation (4.16) implies that the (m,m) entry of R̆(n,0)L(n)R(n)(R̆(n,0))−1 is

equal to λm. Considering the (m− 1)-by-(m− 1) principal submatrix in the matrix

equality Ă(n+M) = R̆(n,0)L(n)R(n)(R̆(n,0))−1, we obtain

(4.17) Ă(n+M)(1 : m− 1; 1 : m− 1)

= R̆(n,0)(1 : m− 1; 1 : m)L(n)(1 : m; 1 : m− 1)

×R(n)(1 : m− 1; 1 : m− 1)(R̆(n,0))−1(1 : m− 1; 1 : m− 1).

Noting here that all the diagonal entries of R(n) and (R̆(n,0))−1 are 1 in (4.17), we

derive

cof(Ă(n+M)
m,m ) = det(R̆(n,0)(1 : m− 1; 1 : m)L(n)(1 : m; 1 : m− 1)).
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With the help of the Cauchy-Binet formula [7], p. 22, we derive

det(R̆(n,0)(1 : m− 1; 1 : m)L(n)(1 : m; 1 : m− 1)) =

m∑

j=1

cof(R̆
(n,0)
m,j )cof(L

(n)
j,m).

Recalling the matrix form of R(n) and R̆(n,0), we see that

cof(R̆
(n,0)
m,j ) = Ĕ

(n,0)
j Ĕ

(n,0)
j+1 . . . Ĕ

(n,0)
m−1

and
cof(L

(n)
j,m) = ((L(n))−1)m,j det(L

(n))

= ((L(n))−1)m,j det(A
(n)) = ((L(n))−1)m,j det(A

(n+M)).

It follows that

(4.18) cof(Ă(n+M)
m,m ) =

m∑

j=1

(Ĕ
(n,0)
j Ĕ

(n,0)
j+1 . . . Ĕ

(n,0)
m−1 )((L

(n))−1)m,j det(A
(n+M)).

Since

det(A(n+M)) = det(Ă(n+M)) and cof(Ă(n+M)
m,m )/det(Ă(n+M)) = ((Ă(n+M))−1)m,m,

we can rewrite (4.18) as

(4.19) ((Ă(n+M))−1)m,m =

m∑

j=1

(Ĕ
(n,0)
j Ĕ

(n,0)
j+1 . . . Ĕ

(n,0)
m−1 )((L

(n))−1)m,j.

Noting that Ă(n+M) is a 2×2 block lower triangular matrix with the (2, 2) block λm,

we know that ((Ă(n+M))−1)m,m = λ−1
m . Substituting this into the left-hand side

of (4.19), we obtain (4.13). �

5. Bottom-right entry and its neighboring entries

We can observe the asymptotic convergence of the shifted LR transformation (2.6)

with s(n) < λm from A(n) to A(n+M) as n → ∞ by comparing the (m,m) and

(m − 1,m) entries of A(n+M) with those of A(n). In this section, we present an

expression of the (m,m) and (m− 1,m) entries of A(n+M) using the entries of A(n)

and the shift s(n).

We first give a lemma for a relationship of the (m,m) entry of A(n+M) to that

of A(n) involving the other entries of A(n), the minimum eigenvalue λm, and the

shift s(n).
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Lemma 5.1. Under the shifted LR transformation (2.6) from A(n) to A(n+M)

with s(n) < λm , it holds that

(5.1) (A(n+M))m,m − s(n)

= (λm − s(n))[1 + (A(n)(m; 1 : m− 1))(Ā
(n)
λm

(1 : m− 1; 1 : m− 1))−1

× (Ā(n)(1 : m− 1; 1 : m− 1))−1
em−1(A

(n))m−1,m].

P r o o f. Since Ā(n) with s(n) < λm has the LU decomposition Ā
(n) = L̄(n)R(n,0),

we can also decompose Ā(n)(1 : m − 1; 1 : m − 1) as Ā(n)(1 : m − 1; 1 : m − 1) =

L̄(n)(1 : m−1; 1 : m−1)R(n,0)(1 : m−1; 1 : m−1). By letting X1,1 = Ā(n)(1 : m−1;

1 : m − 1), X1,2 = (A(n))m−1,mem−1, X2,1 = A(n)(m; 1 : m − 1), and X2,2 =

(Ā(n))m,m = (A(n))m,m − s(n) in (4.14), we obtain

(5.2)

Ā(n) =

(
L̄(n)(1 : m− 1; 1 : m− 1) 0

A(n)(m; 1 : m− 1)(R(n,0)(1 : m− 1; 1 : m− 1))−1 (L̄(n))m,m

)

×

(
R(n,0)(1 : m− 1; 1 : m− 1) (A(n))m−1,m(L̄(n)(1 : m− 1; 1 : m− 1))−1

em−1

0 1

)
,

where

(5.3) (L̄(n))m,m = (A(n))m,m − s(n)

− (A(n))m−1,mA(n)(m; 1 : m− 1)(Ā(n)(1 : m− 1; 1 : m− 1))−1
em−1.

Equation (2.6) immediately leads to

(5.4) (A(n+M))m,m = (R(n,0)L̄(n))m,m + s(n) = (L̄(n))m,m + s(n).

Combining (5.4) with (5.3), we derive

(5.5) (A(n+M))m,m = (A(n))m,m

− (A(n))m−1,mA(n)(m; 1 : m− 1)(Ā(n)(1 : m− 1; 1 : m− 1))−1
em−1.

Using Lemma 4.2, we can rewrite (5.5) as

(5.6) (A(n+M))m,m = λm + (A(n))m−1,mA(n)(m; 1 : m− 1)

× [(Ā
(n)
λm

(1 : m− 1; 1 : m− 1))−1 − (Ā(n)(1 : m− 1; 1 : m− 1))−1]em−1.

Since Y −1−X−1 = X−1(X−Y )Y −1 for nonsingular matrices X and Y in (5.6), we

have (5.1). �
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Similarly to the case of the (m,m) entry of A(n+M), we can derive a lemma for the

case of the (m− 1,m) entry of A(n+M) with the help of the block LU decomposition

of the principal submatrix.

Lemma 5.2. Under the shifted LR transformation (2.6) with s(n) < λm from A(n)

to A(n+M), it holds that

(5.7) (A(n+M))m−1,m = (A(n))m−1,m(λm − s(n))

× [(A(n))m−1,m−1 − s(n) − (A(n))m−2,m−1A
(n)(m− 1; 1 : m− 2)

× (Ā(n)(1 : m− 2; 1 : m− 2))−1
em−2]

−1

× [1 + (A(n))m−1,mA(n)(m; 1 : m− 1)(Ā
(n)
λm

(1 : m− 1; 1 : m− 1))−1

× (Ā(n)(1 : m− 1; 1 : m− 1))−1
em−1].

P r o o f. From (2.6), we easily observe that

(A(n+M))m−1,m = (R(n,0))m−1,m(L̄(n))m,m,(5.8)

(L̄(n))m,m = (A(n+M))m,m − s(n).(5.9)

The block LU decomposition (5.2) also leads to

(5.10) (R(n,0))m−1,m = (A(n))m−1,m((L̄(n))m−1,m−1)
−1.

Considering the resulting block LU decomposition:

Ā(n)(1 : m− 1; 1 : m− 1) = L̄(n)(1 : m− 1; 1 : m− 1)R(n,0)(1 : m− 1; 1 : m− 1)

=

(
Ā(n)(1 : m− 2; 1 : m− 2) (A(n))m−2,m−1em−2

A(n)(m− 1; 1 : m− 2) (A(n))m−1,m−1 − s(n)

)
,

we derive

(5.11)

(L̄(n))m−1,m−1 = (A(n))m−1,m−1 − s(n)

− (A(n))m−2,m−1A
(n)(m− 1; 1 : m− 2)(Ā(n)(1 : m− 2; 1 : m− 2))−1

em−2.

Substituting (5.9), (5.10), and (5.11) into (5.8) and using Lemma 5.1, we obtain (5.7).

�

The following lemma also gives an expression of the product Q
(n+M)
m Q

(n+M+1)
m . . .

Q
(n+2M−1)
m , which plays an important role in Section 6.

Lemma 5.3. The product Q
(n+M)
m Q

(n+M+1)
m . . . Q

(n+2M−1)
m satisfies

(5.12)

Q(n+M)
m Q(n+M+1)

m . . . Q(n+2M−1)
m =

[ m∑

j=1

(E
(n,0)
j E

(n,0)
j+1 . . . E

(n,0)
m−1 )((L

(n))−1)m,j

]−1

.
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P r o o f. It is obvious that Q
(n+M)
m Q

(n+M+1)
m . . . Q

(n+2M−1)
m = (L(n+M))m,m.

According to the formula concerning the bottom-right entry of the lower triangular

matrix in the LU decomposition, we can rewrite (L(n+M))m,m as det(A(n+M))/

cof(A
(n+M)
m,m ). It follows that

(5.13) Q(n+M)
m Q(n+M+1)

m . . .Q(n+2M−1)
m =

det(A(n+M))

cof(A
(n+M)
m,m )

.

Similarly to the proof of Lemma 4.3, we derive

(5.14) cof(A(n+M)
m,m ) =

m∑

j=1

(E
(n,0)
j E

(n,0)
j+1 . . . E

(n,0)
m−1 )((L

(n))−1)m,j det(A
(n+M)).

Therefore, by combining (5.13) with (5.14), we have (5.12). �

6. Convergence rate

In this section, we clarify the convergence rate of the sequences {Q
(2lM)
k }l=0,1,...,

{E
(2lM)
k }l=0,1,..., and {s(2lM)}l=0,1,... appearing in the shifted LR transforma-

tion (2.6) as l → ∞ under the shift strategy (3.3). We also provide a numerical

example to check the convergence acceleration.

We first investigate the convergence rate of s(2lM) as l → ∞. Rewriting the shift

strategy (3.3) in terms of the eigenvalues λ1, λ2, . . . , λm, we obtain

(6.1) s(2(l+1)M) = s(2lM) +
λm − s(2lM)

1 + (λm − s(2lM))
∑m−1

j=1 (λj − s(2lM))−1
.

From this expression, it is clear that if s(2lM) < λm, the denominator in the second

term on the right-hand side is larger than 1. Therefore, we have

s(2(l+1)M) < s(2lM) + λm − s(2lM) = λm.

Since s(0) is chosen to be smaller than λm, we know by induction that s
(2lM) < λm

holds for all l > 0. Furthermore, we see that the sequence {s(2lM)}l=0,1,... is mono-

tonically increasing, since the second term on the right-hand side of (6.1) is positive.

That is, it is a monotonically increasing sequence bounded above and it converges

to some constant smaller than or equal to λm. Now, we rewrite (6.1) as

(6.2) λm − s(2(l+1)M) = (λm − s(2lM))

{
1−

[
1 +

m∑

j=1

(
1−

λj − λm

λj − s(2lM)

)]−1}
.
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Since {s(2lM)}l=0,1,... is monotonically increasing, there is a constant 0 < c < λm

such that s(2lM) > c holds for any sufficiently large l. For a sufficiently large l, the

following inequality holds:

0 < 1−

[
1 +

m∑

j=1

(
1−

λj − λm

λj − s(2lM)

)]−1

6 1−

[
1 +

m∑

j=1

(
1−

λj − λm

λj − c

)]−1

< 1.

Therefore, the sequence {λm − s(2lM)}l=0,1,... converges at least geometrically to 0

and lim
l→∞

s(2lM) = λm. We can further rewrite (6.2) as

(6.3) λm − s(2(l+1)M) = (λm − s(2lM))2
∑m−1

j=1 (λj − s(2lM))−1

1 + (λm − s(2lM))
∑m−1

j=1 (λj − s(2lM))−1
.

Noting that the second factor on the right-hand side converges to a positive constant

as l → ∞, we can conclude that {s(2lM)}l=0,1,... converges to λm quadratically as

follows:

(6.4) lim
l→∞

λm − s(2(l+1)M)

(λm − s(2lM))2
= lim

l→∞

∑m−1
j=1 (λj − s(2lM))−1

1 + (λm − s(2lM))
∑m−1

j=1 (λj − s(2lM))−1

=

m−1∑

j=1

1

λj − λm

.

With respect to the convergence rate of the sequence E
(2lM)
k as l → ∞, we present

the following theorem.

Theorem 6.1. Under the shifted LR transformation (2.6) with the shift stra-

tegy (3.3), E
(2lM)
m−1 converges to 0 with order 2− ε for arbitrary ε > 0, that is,

(6.5) lim
l→∞

E
(2(l+1)M)
m−1

(E
(2lM)
m−1 )2−ε

= 0.

P r o o f. It is easy to check that

(A(2lM))m−1,m = (Q
(2lM)
m−1 Q

(2lM+1)
m−1 . . .Q

((2l+1)M−1)
m−1 )E

(2lM)
m−1 ,

(A((2l+1)M))m−1,m = (Q
((2l+1)M)
m−1 Q

((2l+1)M+1)
m−1 . . . Q

(2(l+1)M−1)
m−1 )E

((2l+1)M)
m−1 .

Combining these with Lemma 5.2, we derive

(6.6) E
((2l+1)M)
m−1 = ̺(2lM)(λm − s(2lM))E

(2lM)
m−1 ,
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where

(6.7)

̺(2lM) :=
Q

(2lM)
m−1 Q

(2lM+1)
m−1 . . . Q

((2l+1)M−1)
m−1

Q
((2l+1)M)
m−1 Q

((2l+1)M+1)
m−1 . . . Q

(2(l+1)M−1)
m−1

×
1 + (A(2lM))m−1,mA(2lM)(m; 1 : m− 1)(Ā

(2lM)
λm

(1 : m− 1; 1 : m− 1))−1
ēm−1

(A(2lM))m−1,m−1 − s(2lM) − (A(2lM))m−2,m−1A(2lM)(m− 1; 1 : m− 2)ēm−2
,

ē
(2lM)
m−1 := (Ā(2lM)(1 : m− 1; 1 : m− 1))−1

em−1,

ē
(2lM)
m−2 := (Ā(2lM)(1 : m− 2; 1 : m− 2))−1

em−2.

Since we proved in [5] that A(2lM) converges to a lower triangular matrix with di-

agonals λ1, λ2, . . . , λm as l → ∞, the term (A(2lM))m−1,m−1 in (6.7) converges to

λm−1 and both (A
(2lM))m−1,m and (A

(2lM))m−2,m−1 converge to 0. The row vectors

A(2lM)(m; 1 : m−1) and A(2lM)(m−1; 1 : m−2) converge to some constant vectors.

Since Ā(2lM) = A(2lM)−s(2lM)I is nonsingular, the inverse matrices (Ā(2lM)(1 : m−1;

1 : m−1))−1 and (Ā(2lM)(1 : m−2; 1 : m−2))−1 converge to some constant matrices.

Moreover, we showed in [5] that Q
(2lM)
m−1 Q

(2lM+1)
m−1 . . . Q

((2l+1)M−1)
m−1 converges to λm−1

as l → ∞, so the ratio Q
(2lM)
m−1 Q

(2lM+1)
m−1 . . . Q

((2l+1)M−1)
m−1 /(Q

((2l+1)M)
m−1 Q

((2l+1)M+1)
m−1 . . .

Q
((2(l+1)M−1)
m−1 ) converges to 1. Substituting all of these into (6.7), we obtain

(6.8) lim
l→∞

̺(2lM) = lim
l→∞

1

λm−1 − s(2lM)
=

1

λm−1 − λm

.

We now consider the ratio E
(2(l+1)M)
m−1 /(E

(2lM)
m−1 )2−ε where ε is arbitrary positive.

First, by using (6.6) twice and noting that s((2l+1)M) = s(2lM) in (3.2), we have

(6.9) E
(2(l+1)M)
m−1 = ̺(2lM)̺((2l+1)M)(λm − s(2lM))2E

(2lM)
m−1 .

From (6.9), we immediately derive

(6.10)

E
(2(l+1)M)
m−1

(E
(2lM)
m−1 )2−ε

=
̺(2lM)̺((2l+1)M)

(̺((2l−2)M)̺((2l−1)M))2−ε

( λm − s(2lM)

(λm − s(2(l−1)M))2

)2

× (λm − s(2(l−1)M))2ε
E

(2lM)
m−1

(E
(2(l−1)M)
m−1 )2−ε

=

l−1∏

j=0

[ ̺((2j+2)M)̺((2j+3)M)

(̺(2jM)̺((2j+1)M))2−ε

(λm − s(2(j+1)M)

(λm − s(2jM))2

)2
(λm − s(2jM))2ε

] E
(2M)
m−1

(E
(0)
m−1)

2−ε
.

From (6.8) and (6.4), we see that the rates ̺((2j+2)M)̺((2j+3)M)/(̺(2jM)̺((2j+1)M))2−ε

and (λm − s(2(j+1)M))/(λm − s(2jM))2 converge to some constants as j → ∞. More-

over, (λm − s(2jM))ε → 0 as j → ∞. Thus, the bracketed part on the right-hand
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side of (6.10) converges to 0 as j → ∞. Therefore, their product also approaches 0

as l → ∞. This immediately leads to (6.5). �

Before analyzing the convergence of the sequence Q
(2lM)
k as l → ∞, we present

the relationships of E
(2lM,0)
k and Ĕ

(2lM,0)
k to E

(2lM)
k .

Lemma 6.1. The variables E
(2lM,0)
k , Ĕ

(2lM,0)
k , and E

(2lM)
k satisfy

E
(2lM,0)
k = β

(2lM)
k E

(2lM)
k , k = 1, 2, . . . ,m− 1,(6.11)

Ĕ
(2lM,0)
k = β̆

(2lM)
k E

(2lM)
k , k = 1, 2, . . . ,m− 1,(6.12)

where

β
(2lM)
k := [(A(2lM))k,k − s(2lM) − (A(2lM))k−1,kA

(2lM)(k; 1 : k − 1)

× (Ā(2lM)(1 : k − 1; 1 : k − 1))−1
ek−1]

−1(Q
(2lM)
k Q

(2lM+1)
k . . . Q

((2l+1)M−1)
k )

β̆
(2lM)
k := [(A(2lM))k,k − λm − (A(2lM))k−1,kA

(2lM)(k; 1 : k − 1)

× (Ā
(2lM)
λm

(1 : k − 1; 1 : k − 1))−1
ek−1]

−1(Q
(2lM)
k Q

(2lM+1)
k . . . Q

((2l+1)M−1)
k ).

Moreover, β
(2lM)
k → λk/(λk − λm) and β̆

(2lM)
k → λk/(λk − λm) as l → ∞.

P r o o f. Similarly to the derivation of (5.11), we derive for k = 1, 2, . . . ,m− 1:

(6.13) (L̄(2lM))k,k = (A(2lM))k,k − s(2lM)

− (A(2lM))k−1,kA
(2lM)(k; 1 : k − 1)(Ā(2lM)(1 : k − 1; 1 : k − 1))−1

ek−1.

Combining this with (3.11), we have (6.11). By replacing s(2lM) with λm and re-

peating the same argument, we obtain (6.12). The limits of β
(2lM)
k and β̆

(2lM)
k as

l → ∞ are easily checked by using (A(2lM))k,k → λk, (A
(2lM))k−1,k → 0, and

Q
(2lM)
k Q

(2lM+1)
k . . . Q

((2l+1)M−1)
k → λk as l → ∞. �

Combining Lemma 6.1 with the lemmas from the previous sections, we obtain the

following theorem concerning the convergence rate of Q
(2lM)
k as l → ∞.

Theorem 6.2. Under the shifted LR transformation (2.6) with the shift stra-

tegy (3.3), the product Q
(2lM)
m Q

(2lM+1)
m . . .Q

((2l+1)M−1)
m converges to the minimum

eigenvalue λm with order 2− ε for arbitrary ε > 0, that is,

(6.14) lim
l→∞

λm −Q
(2(l+1)M)
m Q

(2(l+1)M+1)
m . . .Q

((2l+3)M−1)
m

(λm −Q
(2lM)
m Q

(2lM+1)
m . . . Q

((2l+1)M−1)
m )2−ε

= 0.
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P r o o f. From Lemmas 4.3 and 5.3, we easily derive

(6.15) (λm −Q((2l+1)M)
m Q((2l+1)M+1)

m . . . Q(2(l+1)M−1)
m )

×

[ m∑

j=1

(E
(2lM,0)
j E

(2lM,0)
j+1 . . . E

(2lM,0)
m−1 )((L(2lM))−1)m,j

]

×

[ m∑

j=1

(Ĕ
(2lM,0)
j Ĕ

(2lM,0)
j+1 . . . Ĕ

(2lM,0)
m−1 )((L(2lM))−1)m,j

]

=

m−1∑

j=1

((L(2lM))−1)m,j(E
(2lM,0)
j E

(2lM,0)
j+1 . . . E

(2lM,0)
m−1

− Ĕ
(2lM,0)
j Ĕ

(2lM,0)
j+1 . . . Ĕ

(2lM,0)
m−1 )

=

m−1∑

j=1

[((L(2lM))−1)m,j

m−1∑

k=j

(Ĕ
(2lM,0)
j Ĕ

(2lM,0)
j+1 . . . Ĕ

(2lM,0)
k−1 )

× (E
(2lM,0)
k+1 E

(2lM,0)
k+2 . . . E

(2lM,0)
m−1 )(E

(2lM,0)
k − Ĕ

(2lM,0)
k )].

Using Lemma 6.1, we can rewrite Ĕ
(2lM,0)
k − E

(2lM,0)
k , appearing in (6.15), as

(6.16) E
(2lM,0)
k − Ĕ

(2lM,0)
k = (λm − s(2lM))γ

(2lM)
k E

(2lM)
k ,

where

(6.17) γ
(2lM)
k := − [1 +A(2lM)(k; 1 : k − 1)(Ā(2lM)(1 : k − 1; 1 : k − 1))−1

× (Ā
(2lM)
λm

(1 : k − 1; 1 : k − 1))−1
ek−1(A

(2lM))k−1,k]β
(2lM)
k β̆

(2lM)
k

× (Q
(2lM)
k Q

(2lM+1)
k . . . Q

((2l+1)M−1)
k )−1.

Recalling that A(2lM) converges to a lower triangular matrix as l → ∞, we see that

the (k − 1)-dimensional row vector A(2lM)(k; 1 : k − 1) converges to some constant

vector as l → ∞. Similarly, the inverse matrices (Ā(2lM)(1 : k − 1; 1 : k − 1))−1 and

(Ā
(2lM)
λm

(1 : k − 1; 1 : k − 1))−1 converge to some constant matrices as n → ∞.

Considering this result and using (A(2lM))k−1,k → 0, β
(2lM)
k → λk/(λk − λm),

β̆
(2lM)
k → λk/(λk − λm) and Q

(2lM)
k Q

(2lM+1)
k . . . Q

((2l+1)M−1)
k → λk as l → ∞

in (6.17), we see that

lim
l→∞

γ
(2lM)
k = −

λk

(λk − λm)2
.
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Using Lemma 6.1 and (6.16), we can rewrite (6.15) as

(6.18) (λm −Q((2l+1)M)
m Q((2l+1)M+1)

m . . .Q(2(l+1)M−1)
m )

×

[ m∑

j=1

(E
(2lM,0)
j E

(2lM,0)
j+1 . . . E

(2lM,0)
m−1 )((L(2lM))−1)m,j

]

×

[ m∑

j=1

(Ĕ
(2lM,0)
j Ĕ

(2lM,0)
j+1 . . . Ĕ

(2lM,0)
m−1 )((L(2lM))−1)m,j

]

= (λm − s(2lM))δ(2lM)E
(2lM)
m−1 ,

where

(6.19) δ(2lM) :=

m−1∑

j=1

[(E
(2lM)
j E

(2lM)
j+1 . . . E

(2lM)
m−2 )((L(2lM))−1)m,j ]

×

m−1∑

k=j

(β̆
(2lM)
j β̆

(2lM)
j+1 . . . β̆

(2lM)
k−1 )(β

(2lM)
k+1 β

(2lM)
k+2 . . . β

(2lM)
m−1 )γ

(2lM)
k .

Since A(2lM) converges to a lower triangular matrix with positive diagonals λ1,

λ2, . . . , λm, from the continuity of the LU decomposition, its lower triangular fac-

tor L(2lM) also converges to the same nonsingular matrix. Thus, the limit of

((L(2lM))−1)m,k as l → ∞ exists. Letting σk := lim
l→∞

((L(2lM))−1)m,k and not-

ing that E
(2lM)
k → 0, β

(2lM)
k → λk/(λk − λm), β̂

(2lM)
k → λk/(λk − λm), and

γ
(2lM)
k → −λk/(λk − λm)2 as l → ∞ in (6.19), we obtain

(6.20) lim
l→∞

δ(2lM) = lim
l→∞

((L(2lM))−1)m,m−1γ
(2lM)
m−1 = −

σm−1λm−1

(λm−1 − λm)2
.

Considering (6.18) again, we derive

(6.21) λm −Q((2l+1)M)
m Q((2l+1)M+1)

m . . .Q(2(l+1)M−1)
m = (λm − s(2lM))τ (2lM)E

(2lM)
m−1 ,

where

(6.22) τ (2lM) := δ(2lM)

[ m∑

j=1

(E
(2lM,0)
j E

(2lM,0)
j+1 . . . E

(2lM,0)
m−1 )((L(2lM))−1)m,j

]−1

×

[ m∑

j=1

(Ĕ
(2lM,0)
j Ĕ

(2lM,0)
j+1 . . . Ĕ

(2lM,0)
m−1 )((L(2lM))−1)m,j

]−1

.
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Combining (6.22) with E
(2lM,0)
k → 0, Ĕ

(2lM,0)
k → 0, and ((L(2lM))−1)m,m =

((L(2lM))m,m)−1 → ((A(2lM))m,m)−1 → λ−1
m as l → ∞ with (6.20) leads to

(6.23) lim
l→∞

τ (2lM) = −
σm−1λm−1λ

2
m

(λm−1 − λm)2
.

From (6.21), it follows that, for arbitrary positive ε,

(6.24)
λm −Q

((2l+3)M)
m Q

((2l+3)M+1)
m . . . Q

(2(l+2)M−1)
m

λm − (Q
((2l+1)M)
m Q

((2l+1)M+1)
m . . .Q

(2(l+1)M−1)
m )2−ε

=
τ (2(l+1)M)

(τ (2lM))2−ε
·
λm − s(2(l+1)M)

(λm − s(2lM))2
· (λm − s(2lM))ε ·

E
(2(l+1)M)
m−1

(E
(2lM)
m−1 )2−ε

.

On the right-hand side of (6.24), τ (2(l+1)M)/(τ (2lM))2−ε and (λm − s(2(l+1)M))/

(λm − s(2lM))2 converge to some positive constants and (λm − s(2lM))ε converges

to 0 as l → ∞. Furthermore, from Theorem 6.1, we see that E
(2(l+1)M)
m−1 /(E

(2lM)
m−1 )2−ε

also converges to 0. Therefore, the right-hand side of (6.24) converges to 0 as l → ∞.

This immediately leads to (6.14). �

We present a numerical example to demonstrate the accelerated convergence in the

sequence of shifted LR transformations with the shift strategy proposed in Section 3.

Numerical tests were carried out with IEEE double-precision arithmetic.

For test matrices, we prepare a TN matrix with M = 5

A(0) = L(0)L(1) . . . L(4)R(0),

L(n) :=




2

1 2
. . .

. . .

1 2


 ∈ R

100×100, n = 0, 1, . . . , 4,

R(0) :=




1 1

1
. . .
. . . 1

1


 ∈ R

100×100.

In the sequence of shifted LR transformations, the initial values are given as Q
(0)
k =

Q
(1)
k = . . . = Q

(4)
k = 2 for k = 1, 2, . . . ,m, and E

(0)
k = 1 for k = 1, 2, . . . ,m − 1.

With respect to the convergence history, we numerically compare the proposed shift

strategy with s(0) = 0 to the zero-shift strategy, namely, s(n) = 0 for every n in

the shifted LR transformations. Figure 1 shows the convergence of E
(lM)
99 to 0 as l

increases in the shifted LR transformations. In Figure 1, the horizontal and vertical
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axes denote the values of l and E
(lM)
99 , respectively, and the solid lines with the

symbols “∗” and “◦” represent the values of E
(lM)
99 in the cases of the zero-shift

strategy and in the proposed strategy, respectively. From Figure 1, we see that

the proposed shift strategy enables us to accelerate the convergence of the shifted

LR transformations in comparison with the linear convergence of the zero-shift LR

transformations. Similarly to the convergence of E
(lM)
99 , we observe that a higher-

order convergence is achieved in the other variables in the shifted LR transformations

with the proposed shift strategy.

0 20 40 60 80 100
10

−50

10
−40

10
−30

10
−20

10
−10

10
0

Figure 1. A graph of the values l of n = lM (horizontal axis) and the values E
(n)
99 (ver-

tical axis with logarithmic scale) in the sequence of shifted LR transformations.
∗: zero-shift strategy and ◦: proposed shift strategy.

7. Conclusion

In this paper, we briefly explained the shifted LR transformation for a TN banded

Hessenberg matrix, which is based on the discrete hungry Toda equation. We then

designed an efficient shift strategy for the shifted LR transformation using the idea

of the Newton shift. The Newton shift usually produces a valid shift, which is smaller

than the minimum eigenvalue of the updated target matrix. However, a simple ap-

plication of the Newton shift results in only linear convergence. This is because all

the updated target matrices are all similar and the Newton shift strategy always

generates the same shift for all iterations. To develop a more efficient shift strategy,

we proposed a method of computing the Newton shift not from the updated target

matrix itself, but from the shifted one, which implicitly appears in the shifted LR

transformations. We showed that the resulting shift strategy achieves a convergence

rate of order 2− ε for any ε > 0 for the variables appearing in the shifted LR trans-

formations. We also numerically verified the convergence acceleration by comparing

it with the zero-shift LR transformations.
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