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Abstract. We present a parallel solution algorithm for the transient heat equation in
one and two spatial dimensions. The problem is discretized in space by the lowest-order
conforming finite element method. Further, a one-step time integration scheme is used
for the numerical solution of the arising system of ordinary differential equations. For the
latter, the parareal method decomposing the time interval into subintervals is employed. It
leads to parallel solution of smaller time-dependent problems. At each time slice a pseudo-
stationary elliptic heat equation is solved by means of a domain decomposition method
(DDM). In the 2d, case we employ a nonoverlapping Schur complement method, while
in the 1d case an overlapping Schwarz DDM is employed. We document computational
efficiency, as well as theoretical convergence rates of FEM semi-discretization schemes on
numerical examples.
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1. Introduction

Domain decomposition methods (DDM) are well-established techniques of parallel

numerical solution to linear boundary value problems for elliptic partial differential

equations (PDE). The problem is typically discretized by means of the finite element

method leading to a system of linear equations. The discretization usually aligns

with a decomposition of the computational domain into either overlapping [21] or

nonoverlaping [23] subdomains. This results in a number of PDE subproblems that

can be solved in parallel. The concurrent subproblems are coupled via a global coarse
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problem of a much smaller size than the original system. In case of nonoverlapping

DDM, there are methods of balancing domain decomposition [17], finite element

tearing and interconnecting [5], or Schur complement methods [1], to name a few.

All these methods combine direct methods for the subdomain and coarse problems

to build a preconditioner for an iterative method applied to the original large system.

The condition number of such a preconditioned system is only poly-logarithmic in

terms of H/h, where H is a typical subdomain diameter and h denotes the FEM

discretization step. The methods enjoy strong parallel scalability, meaning that both

the computational time and memory consumption is inversely proportional to the

number of computational cores.

The situation becomes more difficult in case of time-evolving PDEs. Due to the

fact that the solution to an evolution problem at a time instance depends only on the

previous time instances it was believed that it would not be possible to break this

sequential nature and develop a parallel solution algorithm. In 2001, Lions, Maday,

and Turinici published a breakthrough paper [13] in this regard. They introduced the

parareal method for parallel-in-time solution of first-order differential equations. The

method decomposes the time interval into subintervals and combines concurrent local

fine integrators with a global coarse integrator in the sense of a predictor-corrector

technique. The convergence of the method was proven in [11]. In [12] it was proven

to be super-linear on bounded and linear on unbounded time intervals. In [12]

connections to the multiple shooting method, as well as the multigrid method were

shown. In [4] the parareal method is presented as a two-grid Newton method. The

authors further deliver a parallel speedup analysis and a feasibility study towards

fluid simulations and structural analysis, the latter of which proves some instability

issues. Stability for hyperbolic systems was later recovered in [2]. Many engineering

applications of the parareal method were done, cf. [18], [20]. We also refer to the

nice overview paper [6].

Besides the parareal method discretizing the PDE in the time direction, waveform

relaxation methods have been developed. They generalize the DDM such that con-

current time-dependent local problems are solved on spatial subdomains through-

out the whole time interval. Nonoverlapping Neumann-Neumann and Dirichlet-

Neumann Schwarz methods applied to 1-dimensional heat equation with some pre-

liminary results in 2 dimensions are presented in [9]. The overlapping Schwarz applied

to 1-dimensional wave equation is presented in [7], [8].

Finally, much interesting work has been done in the direction of parallel-in-time

multigrid methods. In [19], [10] a parallel space-time multigrid method is proposed

and analyzed for the discontinuous-in-time and continuous-in-space Galerkin method

for parabolic problems. Numerical results proving parallel scalability up to billi-

ons of degrees of freedom are given for the 2-dimensional heat equation as well as
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Navier-Stokes equations with geometry evolving in time. Another approach com-

bining a finite-difference multigrid method in space with the parareal method is

presented in [3].

In this paper, we propose a combination of the parareal method and DDM for the

heat equation. In Section 2, we recall the weak formulation of the heat equation, we

discretize it by the finite element method in space, and we recall the convergence the-

ory of the FEM approximations towards the space-time weak solution. In Section 3,

we recall the parareal method, a 2-dimensional nonoverlapping Schur complement

method and a 1-dimensional overlapping Schwarz DDM. In Section 4, we present nu-

merical results confirming the FEM convergence theory, the efficiency of the parareal

method, and its combination with two DDMs. This combination is the novelty of

the paper. We show that the efficiency of the parareal method, i.e., super-linear

convergence with respect to the number of time subintervals, is preserved as long as

the precision of the nested domain decomposition solved is high enough. Our results

are similar for both the 2-dimensional nonoverlapping Schur complement DDM and

the 1-dimensional overlapping Schwarz DDM. Regarding related attempts in litera-

ture, to our best knowledge, the combination of parareal and the Schur complement

DDM has never been studied. A variant of the combination of the parareal and an

overlapping Schwarz has been presented in [15], [16]. Their setup is simpler; only

two spatial subdomains, with an extra domain treated as overlap, are considered and

a single Schwarz iteration is performed within a step of the parareal method.

2. Finite element semi-discretization of the transient heat equation

We consider the following initial boundary value problem for the heat equation:

(2.1)





c(x)
∂u

∂t
(x, t)− div(ν(x)∇u(x, t)) = f(x, t), x ∈ Ω, t ∈ I,

u(x, t) = 0, x ∈ ΓD, t ∈ I,

ν(x)
∂u

∂n
(x, t) = g(x, t), x ∈ ΓN, t ∈ I,

u(x, 0) = u0(x), x ∈ Ω,

where we search for the temperature distribution u(x, t) in the spatial domain

Ω ⊂ R
d, d = 1, 2, and the time interval I := (0, T ). The functions c(x) and ν(x) are

the spatial distributions of the heat capacity and the heat conductivity, respectively,

and f(x, t) denotes the volume heat sources. The boundary Γ := ∂Ω is decomposed

into two nonoverlapping components—the Dirichlet part ΓD, on which we prescribe

the zero temperature, and the Neumann part ΓN, on which a numerical flux g is
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prescribed. By n we denote the unit normal vector outward to Ω, and u0 is the

spatial distribution of the initial temperature.

Let V := H1
0,ΓD

(Ω) = {v ∈ L2(Ω): ∇v ∈ [L2(Ω)]d, v = 0 on ΓD}, where the

gradient is in the distributional sense and the boundary values are in the sense of

traces. We denote the dual space of V by V ∗. The weak formulation of (2.1) reads

to find u ∈ L2(I, V ) such that ∂u/∂t ∈ L2(I, V ∗), u(x, 0) = u0(x) a.e. in Ω, and for

almost all t ∈ I:

(2.2)

∫

Ω

c(x)
∂u

∂t
(x, t)v(x) dx+

∫

Ω

ν(x)∇u(x, t) · ∇v(x) dx

=

∫

Ω

f(x, t)v(x) dx+

∫

ΓN

g(x, t)v(x) ds(x) ∀ v(x) ∈ V.

The following theorem is a direct consequence of [24], Theorem 23.A.

Theorem 2.1. Let I := (0, T ), T > 0, and let Ω ⊂ R
d, d = 1, 2, be a bounded

simply-connected domain with Lipschitz boundary, which consists of two nonover-

lapping Lebesgue measurable components ΓD and ΓN with measΓD > 0. Assume

further that u0 ∈ L2(Ω), f ∈ L2(Ω× I), g ∈ L2(ΓN × I), and c, ν ∈ L∞(Ω) be such

that c(x) > c0 > 0 and ν(x) > ν0 > 0 a.e. in Ω. Then there exists a unique solution

u to (2.2), which continuously depends on the data, i.e., there exists C > 0 such that

‖u‖L2(I;V ) + ‖u′‖L2(I;V ∗) 6 C(‖u0‖L2(Ω) + ‖f‖L2(Ω×I) + ‖g‖L2(ΓN×I)).

We recall that the norm in the Bochner-Lebesgue space L2(I, B), whereB is a Banach

space, is defined as follows:

‖u‖L2(I;B) :=

(∫

I

‖u(t)‖2B dt

)1/2

.

We introduce a shape-regular and quasi-uniform finite element triangulation of Ω

and the conforming finite element subspace V h := span(ϕ1(x), . . . , ϕn(x)) ⊂ V ,

where ϕi(x) is the element-wise linear nodal FEM basis function. The Galerkin

approximation of (2.2) results in the following Cauchy problem for linear system of

the first-order ordinary differential equations:

(2.3)

{
Mu

′(t) +Ku(t) = b(t) ∀ t ∈ I,

u(0) = u0,

where the entries of M, K, and b, respectively, read as follows: (M)ij :=
∫
Ω
cϕjϕi,

(K)ij :=
∫
Ω ν∇ϕj∇ϕi, and (b(t))i :=

∫
Ω f(t)ϕi +

∫
ΓN

g(t)ϕi for i, j = 1, . . . , n. The
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function uh
0(x) :=

n∑
j=1

(u0)jϕj(x) is an approximation of u0(x). The approximate

solution reads as follows:

(2.4) uh(x, t) :=

n∑

j=1

(u(t))jϕj(x).

Note that the unique solvability of problem (2.3) follows from the fact that bothM

and K are symmetric positive definite.

From [22], Theorems 1.2 and 1.3 we have the following convergence result.

Theorem 2.2. Let the assumptions of Theorem 2.1 hold true. Further, let

ΓD := Γ, i.e., ΓN = ∅, uh be the solution to (2.3), (2.4), and u be the solution

to (2.2). Assume uh
0 = 0 on Γ. Then there exists C > 0 independent of h such that

for r ∈ {1, 2} and t > 0:

‖uh(x, t)− u(x, t)‖L2(Ω) 6 ‖uh
0(x) − u0(x)‖L2(Ω)

+ Chr

(
‖u0(x)‖Hr(Ω) +

∫ t

0

∥∥∥∂u
∂s

(x, s)
∥∥∥
Hr(Ω)

ds

)

and

‖∇uh(x, t)−∇u(x, t)‖L2(Ω) 6 ‖∇uh
0(x)−∇u0(x)‖L2(Ω)

+ Chr−1

{
‖u0(x)‖Hr(Ω) + ‖u(x, t)‖Hr(Ω) +

(∫ t

0

∥∥∥∂u
∂s

(x, s)
∥∥∥
2

Hr−1(Ω)
ds

)1/2}
.

Finally, we employ time-stepping schemes. We decompose I into m time intervals

(tk−1, tk), where tk := kδt, k = 0, 1, . . . ,m, and δt := T/m. In the backward

Euler time-stepping method, the time derivative is approximated by the backward

difference

u
′(tk) ≈

1

δt
(uk − uk−1),

where uk := u(tk). Hence, we sequentially solve the following linear systems:

(2.5) (M+ δtK)uk = δtbk +Muk−1, k > 1,

where bk := b(tk). The approximate solution reads

(2.6) uh
k(x) :=

n∑

j=1

(uk)jϕj(x).
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From [22], Theorem 1.5 we have the following convergence result.

Theorem 2.3. Let the assumptions of Theorem 2.2 hold true. Further, let uh
k,

k > 0, be the solution to (2.5), (2.6), and let there exist K > 0 independent of h

such that for all r ∈ {1, 2}:

‖uh
0(x)− u0(x)‖L2(Ω) 6 Khr‖u0(x)‖Hr(Ω)

and u0(x) = 0 on Γ. Then there exists C > 0 such that for k > 0 and r ∈ {1, 2} we

have

‖uh
k(x)− u(x, tk)‖L2(Ω) 6 Chr

(
‖u0(x)‖Hr(Ω) +

∫ tk

0

∥∥∥∂u
∂s

(x, s)
∥∥∥
Hr(Ω)

ds

)

+ δt

∫ tk

0

∥∥∥∂
2u

∂s2
(x, s)

∥∥∥
L2(Ω)

ds.

A higher convergence-in-time rate can be achieved by employing the Crank-

Nicolson scheme. We arrive at the following sequence of linear systems:

(2.7)
(
M+

1

2
δtK

)
uk = δtbk−1/2 +

(
M−

1

2
δtK

)
uk−1, k > 1.

From [22], Theorem 1.6 we have the following convergence result.

Theorem 2.4. Let the assumptions of Theorem 2.2 hold true. Further, let uh
k,

k > 0, be the solution to (2.7), (2.6), and let there exist K > 0 independent of h

such that for all r ∈ {1, 2}:

‖uh
0(x)− u0(x)‖L2(Ω) 6 Khr‖u0(x)‖Hr(Ω)

and u0(x) = 0 on Γ. Then there exists C > 0 such that for k > 0 and r ∈ {1, 2} we

have

‖uh
k(x)− u(x, tk)‖L2(Ω) 6 Chr

(
‖u0(x)‖Hr(Ω) +

∫ tk

0

∥∥∥∂u
∂s

(x, s)
∥∥∥
Hr(Ω)

ds

)

+ C(δt)2
∫ tk

0

(∥∥∥∂
3u

∂s3
(x, s)

∥∥∥
L2(Ω)

+
∥∥∥△x

(∂2u

∂s2
(x, s)

)∥∥∥
L2(Ω)

)
ds.
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3. Domain decomposition coupled with parareal

We introduce parallelism into the numerical solution procedures for the FEM semi-

discretized system (2.3). We include parallelization in time by means of the parareal

method as well as parallelization in space by means of domain decomposition methods

for the auxiliary pseudo-stationary linear systems (2.5) or (2.7) arising at each time

step.

3.1. Parareal. We adopt the following parallel strategy for solution to (2.3). We

split the time interval I = (0, T ) into M nonoverlapping, for simplicity, equidistant

subintervals (Tk, Tk+1), k = 0, 1, . . . ,M − 1, where Tk := k∆T and ∆T := T/M ,

M ≪ m. Assume that ∆T is an integer multiple of δt. Given a solution estimate on

the coarse time-grid Uk ≈ u(Tk) for k = 0, 1, . . . ,M − 1, where U0 := u0, we solve

the following M problems on shorter time intervals in parallel:

(3.1)

{
Mv

′
k(t) +Kvk(t) = b(t) ∀ t ∈ Ik := (Tk, Tk+1),

vk(Tk) = Uk.

In this way we predict the solution u(t) ≈ vk(t) on Ik up to the error ek(t) :=

u(t)− vk(t), which is the solution to the following homogeneous system over I:

(3.2)





Mek(t) = 0 ∀ t ∈ Ik ∀ k ∈ {0, 1, . . . ,M − 1},

ek(Tk)− ek−1(Tk) = vk−1(Tk)−Uk ∀ k ∈ {1, 2, . . . ,M − 1},

e0(0) = 0.

Notice that the solution to problem (3.2) would lead to a sequential procedure,

the computational cost of which is the same as that of solution to the original prob-

lem (2.3). Therefore, in the parareal method we solve (3.2) only approximately. The

idea of the parareal method [13] is to alternate the predictor, which is the numerical

solution to (3.1) using the fine scheme with time-step δt, and the corrector, which is

the approximate solution to (3.2) using a coarse scheme, typically with time-step ∆T .

Obviously, after i such predictor-corrector steps we get the discretized solution on

[0, Ti]. Nevertheless, the parareal method converges super-linearly [11] with respect

to ∆T also on the yet unresolved interval (Ti, T ]. In fact, the parallel speedup,

i.e. the number of parallel processes times the ratio between the computational time

of the sequential algorithm and the computational time of the parallel one, is roughly

inversely proportional to the number of iterations, cf. [4].

We shall summarize the parareal algorithm. Denoting by Iδt(Tk, Tk+1,b,Uk)

a one-step numerical solution procedure to (3.1) and assuming the same one-step
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method for the solution of (3.2), but now with the time-step ∆T ,

I∆T (Tk, Tk+1,0, ek−1(Tk) + vk−1(Tk)−Uk︸ ︷︷ ︸
=ek(Tk)

)

the parareal method can be written in the following condensed form: Given the initial

coarse prediction U
0
k+1 := I∆T (Tk, Tk+1,b,U

0
k) with U

0
0 := u0, the ith iteration of

the parareal reads

(3.3) U
i+1
k+1 = Iδt(Tk, Tk+1,b,U

i
k)︸ ︷︷ ︸

=:U
i+1/2
k+1

≈vk(Tk+1)

+I∆T (Tk, Tk+1,0,U
i+1
k −U

i
k︸ ︷︷ ︸

≈ek(Tk)

)

for k = 0, 1, . . . ,M − 1. The first term on the right-hand side of (3.3) is the fine-

grid predictor while the rest is the coarse-grid corrector, which, e.g., in case of the

backward Euler method (2.5) reads as follows:

( 1

∆T
M+K

)
(Ui+1

k+1 −U
i+1/2
k+1 )

︸ ︷︷ ︸
≈ek(Tk+1)

−
1

∆T
M

[
(Ui+1

k −U
i+1/2
k )︸ ︷︷ ︸

≈ek−1(Tk)

+(U
i+1/2
k −U

i
k)︸ ︷︷ ︸

≈vk−1(Tk)−Uk

]

︸ ︷︷ ︸
≈ek(Tk)

= 0, k = 0, 1, . . . ,M − 1,

where Ui
0 = u0. Hence, (3.3) indeed coincides with (3.1) and (3.2).

The overall algorithm reads:

Algorithm

U
0
0 := u0

for k := 0, 1, . . . ,M − 1 do

U
0
k+1 := I∆T (Tk, Tk+1,b,U

0
k)

end for

i := 0

repeat

U
i+1/2
k+1 := Iδt(Tk, Tk+1,b,U

i
k), k = 0, 1, . . . ,M − 1 % solve in parallel

U
i+1
0 := u0

for k := 0, 1, . . . ,M − 1 do

U
i+1
k+1 := U

i+1/2
k+1 + I∆T (Tk, Tk+1,0,U

i+1
k −U

i
k)

end for

i := i+ 1

until maxk ‖Ui
k −U

i−1/2
k ‖ 6 tolerance
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3.2. Domain decomposition methods. Assuming a one-step time integrator,

at each time step of the temporal fine-grid predictor (3.1) as well as the coarse-grid

corrector (3.2), a linear system, e.g. (2.5) or (2.7), is solved. Since it is an FEM

discretization of an elliptic problem, we can employ a spatial DDM to increase the

parallelism. We opt for a Schur complement method [1], [14] in the 2-dimensional

case. Since in the 1-dimensional counterpart the Schur complement method is simply

the direct solver, we employ an overlapping Schwarz method to verify the robustness

of the parareal.

3.2.1. 2-dimensional Schur complement DDM. Let us denote the symmetric

and positive-definite system arising at an iteration of the one-step time integration

scheme of (2.3) by

(3.4) Au = b.

We shall describe the domain decomposition method referring to Figure 1. We

follow the presentation in [14]. We assume that besides the FEM triangulation, the

computational domain Ω ⊂ R
2 is decomposed into N nonoverlapping triangular or

rectangular subdomains Ωi, i = 1, . . . , N , of a typical diameter H so that the inter-

face, the so-called skeleton, aligns with the finite element triangulation of a typical

x

y

L

0 L

h

H

Figure 1. Discretization of the spatial domain.
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diameter h, h ≪ H . We group the FEM basis functions ϕ1, . . . , ϕn ∈ Vh into N + 1

sets as follows:

⊲ In the first set I1 we take indices whose basis functions have supports in Ω1,

⊲ in the second set I2 we collect indices whose basis functions have supports in Ω2,

⊲ . . .

⊲ In the set IN we pick indices whose basis functions have supports in ΩN .

⊲ Finally, we take the remainding indices IS whose basis functions are associated to

the nodes along the skeleton or the Neumann part ΓN of the boundary.

After this perturbation of indices, the upper-left block of the system (3.4) becomes

block-diagonal, which we exploit in the following solution procedure, the first and

last step of which can be performed by N concurrent processes:

(1) AIi,Iiu
P
Ii
= bIi for i = 1, 2, . . . , N ,

(2) Su
H
IS

= bIS −
N∑
i=1

AIS ,Iiu
P
Ii
,

(3) AIi,Iiu
H
Ii
= −AIi,ISu

H
IS
for i = 1, 2, . . . , N ,

where S := AIS ,IS−
N∑
i=1

AIS ,Ii(AIi,Ii)
−1

AIi,IS . The solution (up to the permutation)

is u = u
H + u

P.

The idea of the DDM of our choice, the so-called vertex-based method [1], [23],

[14], is to replace the costly Schur complement S by an approximation Ŝ. We rely

on the observation that S is a blockwise sparse matrix with the sparsity pattern

corresponding to the graph of the skeleton. Namely, only the pairs of basis functions

that are associated to a common subdomain Ωi have a nonzero contribution in S.

To exploit this property, we number all the edges, including those along ΓN, of the

skeleton 1, 2, . . . , NE and group the skeleton indices IS into the following subsets:

⊲ In the first set IE1 we take indices adjacent to the interior nodes of the first edge,

⊲ . . .

⊲ In the set IENE
we pick indices adjacent to the interior nodes of the last edge.

⊲ In the set IV we collect the remaining nodes, which are called vertices. Either

they are shared by at least three subdomains, or they are end-points of a Neumann

edge.

We abbreviate the union of all the edge sets by IE . We denote the number of

elements in a set I by |I|. Furthermore, referring to Figure 2, we replace the vertex

basis functions, the support of which covers only the adjacent finite element triangles,

with basis functions of the support enlarged to the adjacent subdomains.

Note that since we consider only triangular or rectangular subdomains, the latter

transformation of vertex basis functions is linear and the FEM coordinates of the

transformed vertex basis functions are columns of
(

R
E

I
V

)
, where I

V ∈ R
|IV |×|IV |
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Figure 2. Extension of vertex basis functions (blue lines) to coarse-space basis functions
(red lines) along an edge. In the adjacent subdomains the extension is discrete-
harmonic, i.e., bilinear.

is the identity matrix and R
E ∈ R

|IE |×|IV | realizes the linear interpolation of the

new vertex functions onto the interior nodes along the adjacent edges. Denoting by

I
E ∈ R

|IE|×|IE | the identity matrix, the Schur complement is represented as follows:

S =

(
I
E

0

−R
E

I
V

)(
SIE ,IE S̃IE ,IV

S̃IV ,IE S̃IV ,IV

)(
I
E −(RE)T

0 I
V

)
.

In this representation, the matrix S̃IV ,IV is nothing but the FEM discretization of

the same bilinear form using the new vertex functions. This is why we shall denote

it by AH := S̃IV ,IV . It gives rise to a spatial coarse-grid solver.

Finally, in the Schur complement approximation Ŝ we neglect the off-diagonal

matrices S̃IV ,IE , S̃IE ,IV , and we also replace the edge-edge interaction matrix SIE ,IE

by its block-diagonal part ŜIE ,IE := diag(SIE
1
,IE

1
, . . . ,SIE

NE
,IE

NE

). We arrive at the

following representation of the approximate Schur complement inverse:

Ŝ
−1 =

NE∑

i=1

(RE
IE
i ,∗)

T (SIE
i ,IE

i
)−1

R
E
IE
i ,∗ +

(
(RE)T

I
V

)
(AH)−1 (RE

I
V ) .

The action of this matrix to a vector comprises the solution to NE independent

Dirichlet problems formulated on pairs of subdomains that are adjacent to a com-

mon skeleton edge. Further, the action of Ŝ−1 involves the solution of a coarse-grid

problem arising from the same operator, which is now discretized by the FEM on

the DDM skeleton grid. It is proven in [14] that the condition number of this pre-

conditioned system is

κ(Ŝ−1
S) 6 C

(
1 + log

H

h

)2
,

where C depends only on the shape of Ω, provided quasi-uniformity and shape-

regularity of both the DDM decomposition and the FEM discretization and assuming

that eventual jumps of bilinear form coefficients align with the DDM discretization.

3.2.2. 1-dimensional overlapping Schwarz DDM. We decompose the spatial

interval Ω := (0, L) into N equidistant subintervals to which we add an overlap
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δ ∈ (0, H), H := L/N , i.e., Ωk := (min{(k − 1)H − δ, 0},max{kH + δ, L}). The

overlapping Schwarz DDM applied to a boundary value problem for an elliptic PDE,

e.g., the following Dirichlet problem:

{
−div(ν(x)∇u(x)) +m(x)u(x) = f(x), x ∈ Ω,

u(0) = u(L) = 0,

is an iterative procedure, where in the iterations i = 1, 2, . . . the following k =

1, 2, . . . , N Dirichlet auxiliary subproblems are solved in parallel:

(3.5)





−div(ν(x)∇ui
k(x)) +m(x)ui

k(x) = f(x), x ∈ Ωk,

ui
k(kH − δ) = ui−1

k−1(kH − δ), k > 1,

ui
k(kH + δ) = ui−1

k+1(kH + δ), k < N,

ui
1(0) = ui

N (L) = 0.

The problems (3.5) are discretized by the FEM with a step-size h ≪ H .

4. Numerical experiments

We present three kinds of numerical results. In Section 4.1, we confirm the theoret-

ically predicted convergence rates of the finite element semi-discretization combined

with the two time-stepping schemes. In Section 4.2, we show robustness of the con-

vergence of the parareal method with respect to the number of temporal subdomains.

Finally, in Section 4.3 we display robustness of the combinations of the parareal with

the Schur complement DDM in 2 dimensions as well as with the overlapping Schwarz

method in 1 spatial dimension. In all these studies we shall consider problem (2.1)

with the following setup:

c(x) := 25, ν(x) := 1, f(x, t) := 0, Ω := (0, 1)d, ΓD := Γ,(4.1)

ΓN := ∅, T := 2, u0(x) :=
d∏

i=1

sin(πxi),

where d ∈ {1, 2} is the spatial dimension.

4.1. Convergence of discretized solutions. We present convergence rates of

the approximate solutions (2.6) using the backward Euler (2.5) and the Crank-

Nicolson (2.7) time-stepping schemes in 1 spatial dimension at the final time t := T .

The 1-dimensional, d := 1, exact solution to (2.1) with setup (4.1) is as follows:

(4.2) u(x, t) := sin(πx)e−π
2t/c.
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We study the error of uh,δt(x, T ) := uh
m(x), which is the discretized solution (2.6)

at time T = mδt. The spatial and temporal steps are equal, h = δt. As predicted

by Theorem 2.4, in Table 1 we observe the quadratic convergence of the Crank-

Nicolson scheme in the L2-norm. The linear convergence of the backward Euler

method guaranteed by Theorem 2.3 is becoming visible for fine discretizations, while

for h = δt < 1/64 the error is in the pre-asymptotic phase.

h = δt 1/4 1/8 1/16 1/32 1/64 1/128 1/256

Euler 1.81e−2 2.22e−3 1.34e−3 1.10e−3 6.65e−4 3.62e−4 1.88e−4

eoc — 3.03 0.73 0.28 0.73 0.88 0.94

Crank 2.96e−2 7.60e−3 1.91e−3 4.79e−4 1.20e−4 2.99e−5 7.48e−6

eoc — 1.96 1.99 2.00 2.00 2.00 2.00

Table 1. Convergence in the L2-norm ‖u(x, T )− uh,δt(x, T )‖L2(Ω) for the backward Euler
and the Crank-Nicolson schemes for (4.2).

According to the theory, in Table 2 we show that the convergence in the

H1-seminorm is only linear in both cases. The quadratic convergence for the

Crank-Nicolson scheme would require a higher-order finite element approxima-

tion in space. The experimental orders of convergence are computed as follows:

eoch := log2(error
2h/errorh).

h = δt 1/4 1/8 1/16 1/32 1/64 1/128 1/256

Euler 2.26e−1 1.14e−1 5.76e−2 2.89e−2 1.45e−2 7.24e−3 3.62e−3

eoc — 0.98 0.99 0.99 1.00 1.00 1.00

Crank 2.30e−1 1.15e−1 5.72e−2 2.86e−2 1.43e−2 7.15e−3 3.57e−3

eoc — 1.01 1.00 1.00 1.00 1.00 1.00

Table 2. Convergence in the seminorm |u(x, T )− uh,δt(x, T )|H1(Ω) for the backward Euler
and the Crank-Nicolson schemes for (4.2).

We demonstrate the convergence for yet another example, which is now growing

linearly in time:

(4.3) u(x, t) := sin(πx)t.

The rest of the setup remains the same. In Table 3 we again observe the quadratic

convergence of the Crank-Nicolson scheme in the L2-norm, but now the correspond-

ing convergence of the backward Euler scheme is also quadratic. This is because the

time integrators preserve the linear time growth, hence, only the quadratic spatial

FEM error is observed. In Table 4 we show that the convergence in the H1-seminorm

is linear in both cases. Due to the precise time integration a hardly any difference

between the two integrators is observed.
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h = δt 1/4 1/8 1/16 1/32 1/64 1/128 1/256

Euler 7.10e−2 1.71e−2 4.23e−3 1.05e−3 2.63e−4 6.56e−5 1.64e−5

eoc — 2.05 2.02 2.01 2.00 2.00 2.00

Crank 6.97e−2 1.69e−2 4.21e−3 1.05e−3 2.62e−4 6.56e−5 1.64e−5

eoc — 2.04 2.01 2.00 2.00 2.00 2.00

Table 3. Convergence in the L2-norm ‖u(x, T )− uh,δt(x, T )‖L2(Ω) for the backward Euler
and the Crank-Nicolson schemes for (4.3).

h = δt 1/4 1/8 1/16 1/32 1/64 1/128 1/256

Euler 9.97e−1 5.02e−1 2.52e−1 1.26e−1 6.30e−2 3.15e−2 1.57e−2

eoc — 0.99 1.00 1.00 1.00 1.00 1.00

Crank 9.98e−1 5.02e−1 2.52e−1 1.26e−1 6.30e−2 3.15e−2 1.57e−2

eoc — 0.99 1.00 1.00 1.00 1.00 1.00

Table 4. Convergence in the seminorm |u(x, T )− uh,δt(x, T )|H1(Ω) for the backward Euler
and the Crank-Nicolson schemes for (4.3).

4.2. Robustness of parareal. We fix the spatial and temporal discretization

steps, h := 1/32 and δt := 1/512, respectively, and we choose the backward Euler

scheme. We shall study the following L2-error of the parareal iterations,

(4.4)
‖uh,δt,∆T,i

parareal (x, T )− uh,δt(x, T )‖L2(Ω)

‖uh,δt(x, T )‖L2(Ω)
,

where

uh,δt,∆T,i
parareal (x, T ) :=

n∑

j=1

(Ui
M )jϕj(x),

which is the approximation (3.3) of the ith iteration of the parareal method at the

time T = M∆T . In Table 5 we can see that in order to achieve a given precision (e.g.,

1e−8) the number of iterations decreases (i = 6, 5, 5) with an increasing parallelism in

time (∆T = 1/4, 1/8, 1/16). This means that the overall complexity of the predictor

steps enjoys optimal parallel scalability. In practice, the parallel speedup is partly

deteoriated by the sequential corrector steps.

∆T i := 1 i := 2 i := 3 i := 4 i := 5 i := 6

1/2 2.04e−1 1.28e−2 2.62e−4 0 0 0

1/4 1.28e−1 6.72e−3 1.93e−4 3.33e−6 3.86e−8 1.87e−9

1/8 7.08e−2 2.28e−3 4.52e−5 6.20e−7 8.10e−9 1.29e−9

1/16 3.70e−2 6.53e−4 7.41e−6 6.09e−8 5.18e−10 5.78e−11

Table 5. Relative error (4.4) of parareal iterations for the 2d problem.
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4.3. Robustness of DDM coupled with parareal. Finally, we present nu-

merical results of the novel combination of the parareal method coupled with the

Schur complement DDM in 2 spatial dimensions. Again, we fix the spatial and tem-

poral discretization steps, h := 1/32 and δt := 1/512, respectively, and we choose

the backward Euler scheme. We shall study error (4.4) of the parareal iterations,

but now the arising linear systems (2.5) are solved by the preconditioned conjugate

gradients (PCG) method up to the relative precision 1e−8 using the Schur comple-

ment DDM preconditioner of Section 3.2.1. The results in Table 6 show the error

after three parareal iterations. We observe that the convergence in the column i := 3

of Table 5 is not affected. Moreover, the convergence is independent of the spatial

parallelism and it is again improving with the increasing parallelism in time. Note

that the maximal numbers of PCG iterations were 6, 15, 27, and 21, respectively, for

the DDM parameters H := 1/2, 1/4, 1/8, and 1/16.

∆T H := 1/2 H := 1/4 H := 1/8 H := 1/16

1/2 2.62e−4 2.62e−4 2.62e−4 2.62e−4

1/4 1.92e−4 1.92e−4 1.92e−4 1.92e−4

1/8 4.40e−5 4.40e−5 4.40e−5 4.40e−5

1/16 6.95e−6 6.95e−6 6.96e−6 6.95e−6

Table 6. Relative error (4.4) after 3 parareal-DDM iterations in 2d when fixing the relative
precision of the underlying PCG to 1e−8.

In Table 7 we show that the convergence of the parareal method is slightly de-

teriorated when relaxing the relative precision of the nested PCG method to 1e−6.

This leads to more iterations of the parareal method, which is compensated by lower

numbers of PCG iterations, namely, 5, 14, 18, and 13, respectively, for the DDM

parameters H := 1/2, 1/4, 1/8, and 1/16.

∆T H := 1/2 H := 1/4 H := 1/8 H := 1/16

1/2 2.62e−4 2.62e−4 2.64e−4 2.63e−4

1/4 1.92e−4 1.92e−4 1.94e−4 1.93e−4

1/8 4.41e−5 4.42e−5 5.57e−5 5.01e−5

1/16 7.75e−6 8.32e−6 3.58e−5 2.50e−5

Table 7. Relative error (4.4) after 3 parareal-DDM iterations in 2d when fixing the relative
precision of the underlying PCG to 1e−6.

In Tables 8 and 9 we present results of 1-dimensional counterparts to Tables 6

and 7. Here we fix the discretization steps to h := 1/256 and δt := 1/512 and

we choose the backward Euler scheme. We combine the parareal method with the

187



1-dimensional overlapping Schwarz DDM of Section 3.2.2 for the approximate solu-

tion to the auxiliary linear systems (2.5). In the Schwarz method, we fix the overlap

to δ := H/4. The results listed in Table 8 show the error after three parareal it-

erations. Similarly to the 2d case we observe that the convergence of parareal is

improving with increasing time parallelism. We can also see that the convergence

is influenced by the precision (relative residual error) of the Schwarz method, which

we alternate between 1e−8 in Table 8 and 1e−6 in Table 9. The faster convergence

of the parareal method is compensated by the higher number of underlying Schwarz

iterations. Namely, when fixing the relative precision of Schwarz iterations to 1e−8,

we observe 1, 2, 3, 6, and 12 Schwarz iterations for H := 1/2, 1/4, 1/8, 1/16, and

1/32, respectively. For the relative precision 1e−6, the respective numbers of Schwarz

iterations decreases to 1, 1, 2, 4, and 9.

∆T H := 1/2 H := 1/4 H := 1/8 H := 1/16 H := 1/32

1/16 2.56e−10 2.56e−10 2.48e−10 2.19e−10 3.75e−10

1/32 1.60e−11 1.62e−11 6.78e−12 2.22e−11 6.17e−10

1/64 8.99e−13 1.03e−12 1.00e−11 3.89e−11 6.35e−10

1/128 1.25e−13 2.55e−13 1.37e−11 4.27e−11 6.40e−10

1/256 9.86e−14 2.31e−13 1.77e−11 4.82e−11 6.51e−10

Table 8. Relative error (4.4) after 3 parareal-DDM iterations in 1d when fixing the precision
of the underlying Schwarz method to 1e−8.

∆T H := 1/2 H := 1/4 H := 1/8 H := 1/16 H := 1/32

1/16 2.56e−10 3.40e−9 1.09e−8 4.44e−8 8.44e−8

1/32 1.60e−11 4.69e−9 1.22e−8 4.55e−8 8.48e−8

1/64 8.99e−13 6.34e−9 1.43e−8 4.73e−8 8.51e−8

1/128 1.25e−13 8.49e−9 1.80e−8 5.09e−8 8.58e−8

1/256 9.86e−14 1.10e−8 2.31e−8 5.73e−8 8.72e−8

Table 9. Relative error (4.4) after 3 parareal-DDM iterations in 1d when fixing the precision
of the underlying Schwarz method to 1e−6.

5. Conclusion

In this paper we dealt with a combination of the parareal and domain decompo-

sition methods for the transient heat equation in 1 and 2 spatial dimensions. We re-

called the convergence theory of the FEM semi-discretization and two time-stepping

schemes and we confirmed the theory by numerical experiments in 1d. Further, we

recalled the parareal method, the 2d vertex-based Schur complement DDM, and the

1d overlapping Schwarz DDM. We presented novel combinations of the parareal and

DDM with numerical results indicating robustness of the new method.
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The message of our paper is that the convergence of parareal is not affected by

the underlying inexact DDM solver, provided its accuracy is related to that of the

parareal method. To the best of our knowledge, this robustness of the parareal

method with respect to inexact local solves has not been studied in the literature

yet. Both our combinations of the parareal and 2d vertex-based Schur complement

DDM or 1d overlapping Schwarz DDM on multiple subdomains are novel. The

combination with Schwarz DDM has been previously presented in [15], [16] only for

two spatial subdomains.

This paper is intended as an initial study. However, massively parallel simulations

are needed, which will be, together with space-time Galerkin approach, presented in

the near future.
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