A CONTINUITY RESULT FOR A QUASILINEAR ELLIPTIC FREE BOUNDARY PROBLEM

ABDESLEM LYAGHFOURI, Ras Al Khaimah

Received August 4, 2019. Published online January 31, 2020.

Abstract. We investigate a two dimensional quasilinear free boundary problem, and show that the free boundary is a union of graphs of continuous functions.

Keywords: quasilinear elliptic free boundary; continuity *MSC 2010*: 35R35, 35J62

1. INTRODUCTION

In this paper we consider the quasilinear free boundary problem studied in [12]

(P)
$$\begin{cases} \text{Find } (u,\chi) \in W^{1,A}(\Omega) \times L^{\infty}(\Omega) \text{ such that:} \\ (i) \quad 0 \leqslant u \leqslant M, \quad 0 \leqslant \chi \leqslant 1, \quad u(1-\chi) = 0 \quad \text{a.e. in } \Omega, \\ (ii) \quad \Delta_A u = -\text{div}(\chi H(x)) \quad \text{in } (W_0^{1,A}(\Omega))', \end{cases}$$

where Ω is an open bounded domain of \mathbb{R}^2 , $x = (x_1, x_2)$, M is a positive constant,

$$A(t) = \int_0^t a(s) \,\mathrm{d}s, \quad \Delta_A u = \operatorname{div} \left(\frac{a(|\nabla u|)}{|\nabla u|} \nabla u \right)$$

in the distributional sense is the A-Laplacian, a is a C^1 function from $[0, \infty)$ to $[0, \infty)$ such that a(0) = 0, a(t) > 0 for t > 0, and for some positive constants a_0, a_1

(1.1)
$$a_0 \leqslant \frac{ta'(t)}{a(t)} \leqslant a_1 \quad \forall t > 0.$$

As a consequence of (1.1), we have the following monotonicity inequality (see [8]):

(1.2)
$$\left(\frac{a(|\xi|)}{|\xi|}\xi - \frac{a(|\zeta|)}{|\zeta|}\zeta\right) \cdot (\xi - \zeta) > 0 \quad \forall \xi, \ \zeta \in \mathbb{R}^2 \setminus \{0\}, \ \xi \neq \zeta.$$

DOI: 10.21136/AM.2020.0190-19

For examples of functions a(t), we refer to [13].

Let $H = (H_1, H_2)$ be a vector function that satisfies for some positive constants $\underline{h}, \overline{h}$

(1.3) $|H_1| \leq \bar{h}, \quad 0 < \underline{h} \leq H_2 \leq \bar{h} \quad \text{in } \Omega,$

(1.4)
$$H \in C^{0,1}(\bar{\Omega})$$

(1.5)
$$\operatorname{div}(H) \ge 0$$
 a.e. in Ω ,

(1.6) $\operatorname{div}(H) \leq \bar{h}$ a.e. in Ω .

We refer to [13] for the definition of the Orlicz-Sobolev space $W^{1,A}(\Omega)$ and its norm.

In [12], it was shown that the free boundary which is defined as the intersection of the sets $\{u = 0\}$ and $\overline{\{u > 0\}}$, is a union of graphs of lower semi-continuous functions depending only on the vector function H. In this paper, we will show that these functions are actually continuous and that χ is the characteristic function of the set $\{u > 0\}$.

Problem (P) describes a variety of free boundary problems including the lubrication problem [1] and the dam problem [16], [15], [2], [6], [3], [10], [18], and [19]. For a more general framework, we refer to [14], [4], [5], [9], [7], [11], [12] and [20].

Throughout this paper, we will denote by $B_r(x)$ or $\overline{B}_r(x)$ the open or closed ball, respectively, of center x and radius r in \mathbb{R}^2 .

2. Preliminary results

When $H_1 = 0$ and H_2 is a constant function, it is easy to show as in [7] that $\chi_{x_2} \leq 0$ in $\mathcal{D}'(\Omega)$ and that the free boundary $\partial \{u > 0\} \cap \Omega$ is the graph of a continuous function $x_2 = \varphi(x_1)$. When H is not a constant vector, we can show as in [5] that

(2.1)
$$\operatorname{div}(\chi H) - \chi(\{u > 0\}) \operatorname{div}(H) \leq 0 \quad \text{in } \mathcal{D}'(\Omega).$$

Actually (2.1) can be obtained from (P) (ii) by adapting the proof of Lemma 2.4. As a consequence of this property, the function χ is decreasing along the orbit $\gamma(w)$ (see Figure 1) of the following differential equation (see [12]):

$$(E(w,h)) \begin{cases} X'(t,w,h) = H(X(t,w,h)), \\ X(0,w,h) = (w,h), \end{cases}$$

where $h \in \pi_{x_2}(\Omega)$, $w \in \pi_{x_1}(\Omega \cap \{x_2 = h\})$, and where π_{x_1} and π_{x_2} are respectively the orthogonal projections on the x_1 and x_2 axes. We will denote by $X(\cdot, w)$ the maximal solution of E(w, h) defined on the interval $(\alpha_-(w), \alpha_+(w))$. We know [5] that the

limits $\lim_{t \to \alpha_-(w)^+} X(t,w) = X(\alpha_-(w),w) \in \partial\Omega \cap \{x_2 < h\}$ and $\lim_{t \to \alpha_+(w)^-} X(t,w) = X(\alpha_+(w),w) \in \partial\Omega \cap \{x_2 > h\}$ both exist.

Now, we recall for the reader's convenience a few technical properties and definitions established in [5] and [12]:

 $\triangleright \alpha_+$ and α_- are uniformly bounded.

 \triangleright For each $h \in \pi_{x_2}(\Omega)$, the following mapping is one to one

$$T_h \colon D_h \to T_h(D_h),$$

$$(t,w) \mapsto T_h(t,w) = (T_h^1, T_h^2)(t,w) = X(t,w),$$

where $D_h = \{(t, w)/w \in \pi_{x_1}(\Omega \cap \{x_2 = h\}), t \in (\alpha_-(w), \alpha_+(w))\}.$ $\triangleright \ \Omega = \bigcup_{h \in \pi_{x_2}(\Omega)} T_h(D_h).$ $\triangleright \ T_h \text{ and } T_h^{-1} \text{ are } C^{0,1}.$ $\triangleright \ \text{The determinant } Y_h(t, w) \text{ of the Jacobian matrix of } T_h \text{ satisfies:}$ (i) $Y_h(t, w) = -H_2(w, h) \exp(\int_0^t (\operatorname{div} H)(X(s, w)) \, \mathrm{d}s) \text{ a.e. in } D_h.$ (ii) $\underline{h} \leqslant |Y_h(t, w)| \leqslant C\bar{h}, C > 0, \text{ a.e. in } D_h.$

The following interior regularity, established in [12], will be useful in Section 3.

Theorem 2.1. For any solution (u, χ) of (P) we have $u \in C^{0,1}_{loc}(\Omega)$.

The following monotonicity of χ based on (2.1) (see [5], [12]) is the key point in parameterizing the free boundary:

(2.2)
$$\frac{\partial}{\partial t}(\chi \circ T_h) \leqslant 0 \quad \text{in } \mathcal{D}'(D_h).$$

Property (2.2) means that χ decreases along the orbits of the differential equation (E(w,h)). The consequence of this monotonicity is materialized in the next theorem (see Figure 2).

Figure 2.

Theorem 2.2. Let (u, χ) be a solution of (P) and $x_0 = T_h(t_0, w_0) \in T_h(D_h)$. (i) If $u(x_0) = u \circ T_h(t_0, w_0) > 0$, then there exists $\varepsilon > 0$ such that

 $u \circ T_h(t, w) > 0 \quad \forall (t, w) \in C_{\varepsilon} = \{(t, w) \in D_h / |w - w_0| < \varepsilon, \ t < t_0 + \varepsilon\}.$

(ii) If $u(x_0) = u \circ T_h(t_0, w_0) = 0$, then $u \circ T_h(t, w_0) = 0$ for all $t \ge t_0$.

The proof of Theorem 2.2 is based on the following strong maximum principle (see [12]):

Lemma 2.1. If $u \in W^{1,A}(U) \cap C^1(U) \cap C^0(\overline{U})$ satisfies $u \ge 0$ and $\Delta_A u \le 0$ in U, then $u \equiv 0$ in U or u > 0 in U.

Thanks to Theorem 2.2, we can define for each $h \in \pi_{x_2}(\Omega)$, the following function φ_h on $\pi_{x_1}(\Omega \cap \{x_2 = h\})$ (see [12]):

$$\varphi_h(w) = \begin{cases} \sup\{t: (t,w) \in D_h, \ u \circ T_h(t,w) > 0\} & \text{if this set is not empty,} \\ \alpha_-(w) & \text{otherwise.} \end{cases}$$

Then we have (see [12]):

Proposition 2.1. For each $h \in \pi_{x_2}(\Omega)$, the function φ_h is lower semi-continuous at each $w \in \pi_{x_1}(\Omega \cap \{x_2 = h\})$ such that $T_h(\varphi_h(w), w) \in \Omega$. Moreover,

(2.3)
$$\{u \circ T_h(t, w) > 0\} \cap D_h = \{t < \varphi_h(w)\}.$$

The following lemma will be of interest in Section 3.

Lemma 2.2. Let $h \in \pi_{x_2}(\Omega)$. For each $k \in \pi_{x_2}(\Omega)$ and $w \in \pi_{x_1}(\Omega \cap \{x_2 = h\})$, let $t_k(w)$ be the unique value of t at which the orbit $\gamma(w)$ of $X(\cdot, w)$ intersects the line $\{x_2 = k\}$ if it exists. Then the function $S(k, w) = t_k(w)$ is Lipschitz continuous in its domain. More precisely, we have for some positive constant C:

$$|S(k,w) - S(k_0,w_0)| \leq C(|k - k_0| + |w - w_0|) \quad \forall (k,w), (k_0,w_0) \in \text{domain}(S).$$

Proof. Let $(k, w), (k_0, w_0) \in \text{domain}(S)$. First we have from the differential equation (E(w, h))

$$k = h + \int_0^{t_k(w)} H_2(X(s, w)) \,\mathrm{d}s$$
 and $k_0 = h + \int_0^{t_{k_0}(w_0)} H_2(X(s, w_0)) \,\mathrm{d}s$.

If we subtract these two equalities, we obtain

(2.4)
$$k - k_0 = \int_0^{t_k(w)} H_2(X(s, w)) \,\mathrm{d}s - \int_0^{t_{k_0}(w_0)} H_2(X(s, w_0)) \,\mathrm{d}s.$$

Next, if we assume that $t_k(w) > t_{k_0}(w_0)$, then we get by (1.3)

(2.5)
$$\underline{h}(t_k(w) - t_{k_0}(w_0)) \leqslant \int_{t_{k_0}(w_0)}^{t_k(w)} H_2(X(s,w)) \, \mathrm{d}s.$$

Now, observe that

$$(2.6) \quad \int_{t_{k_0}(w_0)}^{t_k(w)} H_2(X(s,w)) \,\mathrm{d}s) = \int_0^{t_k(w)} H_2(X(s,w)) \,\mathrm{d}s - \int_0^{t_{k_0}(w_0)} H_2(X(s,w)) \,\mathrm{d}s$$
$$= \int_0^{t_k(w)} H_2(X(s,w)) \,\mathrm{d}s - \int_0^{t_{k_0}(w_0)} H_2(X(s,w_0)) \,\mathrm{d}s$$
$$+ \int_0^{t_{k_0}(w_0)} (H_2(X(s,w_0)) - H_2(X(s,w))) \,\mathrm{d}s.$$

Using (2.4), (2.6) and the fact that $H_2 \circ X$ is Lipschitz continuous in \overline{D}_h , and since $t_{k_0}(w_0)$ is bounded independently of k_0 and w_0 , we obtain from (2.5) for some positive constant C_0

$$\underline{h}(t_k(w) - t_{k_0}(w_0)) \leqslant k - k_0 + C_0 |w - w_0|$$

which leads for $C = \max(1, C_0)/\underline{h}$, to

(2.7)
$$t_k(w) - t_{k_0}(w_0) \leq C(|k - k_0| + |w - w_0|)$$

If $t_k(w) < t_{k_0}(w_0)$, we get in a similar fashion

(2.8)
$$t_{k_0}(w_0) - t_k(w) \leq C(|k - k_0| + |w - w_0|)$$

Combining (2.7) and (2.8), the lemma follows.

Remark 2.1. (i) Our main goal is to prove that for each $h \in \pi_{x_2}(\Omega)$, the function φ_h is actually continuous. Due to the local character of this result, we will confine ourselves to the following situation:

We assume that u = 0 on an open and connected subset Γ of $\partial\Omega$ and consider an open subset $U = T_h(D_h^+ \cap \{w_* < w < w^*\})$ of $T_h(D_h)$ (see Figure 3), where $D_h^+ = \{(t,w)/w \in \pi_{x_1}(\Omega \cap \{x_2 = h\}), t \in (0, \alpha_+(w))\}$ so that $T_h(\{(\alpha_+(w), w), w \in (w_*, w^*)\}) \subset \Gamma$. Hence, we are led to the following problem:

$$(\mathbf{P}) \qquad \begin{cases} \text{Find } (u,\chi) \in W^{1,A}(U) \times L^{\infty}(U) \text{ such that: } u = 0 \text{ on } \Gamma, \\ 0 \leqslant u \leqslant M, \ 0 \leqslant \chi \leqslant 1, \ u(1-\chi) = 0 \quad \text{a.e. in } U, \\ \int_{U} \left(\frac{a(|\nabla u|)}{|\nabla u|} \nabla u + \chi H(x) \right) \cdot \nabla \zeta \, \mathrm{d}x \leqslant 0, \\ \forall \zeta \in W^{1,A}(U), \quad \zeta \geqslant 0 \quad \text{on } \Gamma, \quad \zeta = 0 \quad \text{on } \partial U \setminus \Gamma. \end{cases}$$

(ii) We observe that the free boundary $(\partial \{u > 0\}) \cap U$ is the graph of the lower semi-continuous function φ_h in (w_*, w^*) . Our objective is to prove the continuity of the function φ_h , which we will do in Section 3 by showing that it is also upper semicontinuous. To this end, we need to generalize a few lemmas previously established for a linear operator in [5]. In the sequel and without notice, we will denote by (u, χ) a solution of the problem (P).

Figure 3.

Lemma 2.3. Let $w_1, w_2 \in (w_*, w^*), k \in \pi_{x_2}(U)$ be such that $w_1 < w_2$ and $\{x_2 = k\} \cap \gamma(w_i) \neq \emptyset, i = 1, 2.$ If (see Figure 4)

 $Z_k = T_h(\{(t,w) \in D_h, w \in (w_1,w_2), t > t_k(w)\}) = T_h(\{w_1 < w < w_2\}) \cap \{x_2 > k\},$ and $u \circ T_h(t_k(w_i), w_i) = 0$ for i = 1, 2, then we have

$$\begin{split} \int_{Z_k} \Big(\frac{a(|\nabla u|)}{|\nabla u|} \nabla u + \chi H(x) \Big) \cdot \nabla \zeta \, \mathrm{d}x &\leqslant 0 \quad \forall \, \zeta \in W^{1,A}(Z_k) \cap C^0(\overline{Z}_k), \\ \zeta \geqslant 0 \quad \text{on} \quad \overline{Z}_k \setminus \{x_2 = k\}, \quad \zeta = 0 \quad \text{on} \ \overline{Z}_k \cap \{x_2 = k\}. \end{split}$$

The proof of Lemma 2.3 is inspired by the one of a similar lemma in [14] for the case H(x) = (h(x), 0). Our proof is based on the next lemma.

Lemma 2.4. Under the assumptions of Lemma 2.3, we have

$$\int_{Z_k} \frac{a(|\nabla u|)}{|\nabla u|} \nabla u \cdot \nabla \zeta \, \mathrm{d}x - \int_{Z_k} \chi_{\{u>0\}} \operatorname{div}(H) \zeta \, \mathrm{d}x \leqslant 0$$
$$\forall \zeta \in W^{1,A}(Z_k) \cap C^0(\overline{Z}_k), \ \zeta \ge 0 \ \text{on} \ \overline{Z}_k \setminus \{x_2 = k\}, \ \zeta = 0 \ \text{on} \ \overline{Z}_k \cap \{x_2 = k\}.$$

Proof. Let ζ be as in the lemma, $\varepsilon > 0$, and $F_{\varepsilon}(u) = \min\{u^+/\varepsilon, 1\}$. Using $\chi(Z_k)F_{\varepsilon}(u)\zeta$ as a test function for (P), we get

$$\int_{Z_k} F_{\varepsilon}(u) \frac{a(|\nabla u|)}{|\nabla u|} \nabla u \cdot \nabla \zeta \, \mathrm{d}x + \int_{Z_k} H(x) \cdot \nabla (F_{\varepsilon}(u)\zeta) \, \mathrm{d}x$$
$$\leqslant - \int_{Z_k} F_{\varepsilon}'(u)\zeta |\nabla u| a(|\nabla u|) \, \mathrm{d}x \leqslant 0$$

Integrating by parts, we obtain

(2.9)
$$\int_{Z_k} F_{\varepsilon}(u) \frac{a(|\nabla u|)}{|\nabla u|} \nabla u \cdot \nabla \zeta \, \mathrm{d}x - \int_{Z_k} \operatorname{div}(H) F_{\varepsilon}(u) \zeta \, \mathrm{d}x \leqslant 0.$$

The lemma follows by letting ε go to 0 in (2.9).

Proof of Lemma 2.3. For $\varepsilon > 0$ small enough, let

$$\alpha_{\varepsilon}(w) = \min\left\{1, \frac{(w-w_1)^+}{\varepsilon}, \frac{(w_2-w)^+}{\varepsilon}\right\},\$$

and observe that

(2.10)
$$\int_{Z_k} \left(\frac{a(|\nabla u|)}{|\nabla u|} \nabla u + \chi H(x) \right) \cdot \nabla \zeta \, \mathrm{d}x$$
$$= \int_{Z_k} \left(\frac{a(|\nabla u|)}{|\nabla u|} \nabla u + \chi H(x) \right) \cdot \nabla [(\alpha_{\varepsilon} \circ T_h^{-1})\zeta] \, \mathrm{d}x$$
$$+ \int_{Z_k} \left(\frac{a(|\nabla u|)}{|\nabla u|} \nabla u + \chi H(x) \right) \cdot \nabla [(1 - \alpha_{\varepsilon} \circ T_h^{-1})\zeta] \, \mathrm{d}x.$$

Since $\chi(Z_k)(\alpha_{\varepsilon} \circ T_h^{-1})\zeta$ is a test function for (P), we have:

(2.11)
$$\int_{Z_k} \left(\frac{a(|\nabla u|)}{|\nabla u|} \nabla u + \chi H(x) \right) \cdot \nabla [(\alpha_{\varepsilon} \circ T_h^{-1})\zeta] \, \mathrm{d}x \leqslant 0.$$

Applying Lemma 2.4 to the function $(1 - \alpha_{\varepsilon} \circ T_h^{-1})\zeta$, we get

$$(2.12) \quad \int_{Z_k} \frac{a(|\nabla u|)}{|\nabla u|} \nabla u \cdot \nabla [(1 - \alpha_{\varepsilon} \circ T_h^{-1})\zeta] \, \mathrm{d}x \leqslant \int_{Z_k} \chi_{\{u>0\}} \operatorname{div}(H) (1 - \alpha_{\varepsilon} \circ T_h^{-1})\zeta \, \mathrm{d}x.$$

Taking into account (2.11)-(2.12), we obtain from (2.10)

(2.13)
$$\int_{Z_k} \left(\frac{a(|\nabla u|)}{|\nabla u|} \nabla u + \chi H(x) \right) \cdot \nabla \zeta \, \mathrm{d}x$$
$$\leqslant \int_{Z_k} \chi_{\{u>0\}} \operatorname{div}(H) (1 - \alpha_{\varepsilon} \circ T_h^{-1}) \zeta \, \mathrm{d}x$$
$$+ \int_{Z_k} \chi H(x) \cdot \nabla [(1 - \alpha_{\varepsilon} \circ T_h^{-1}) \zeta] \, \mathrm{d}x.$$

Using the change of variables $x = T_h(t, w)$ and arguing as in the proof of Theorem 2.1 in [5], we obtain

(2.14)
$$\int_{Z_k} \chi H(x) \cdot \nabla [(1 - \alpha_{\varepsilon} \circ T_h^{-1})\zeta] \, \mathrm{d}x$$
$$= \int_{T_h^{-1}(Z_k)} -Y_h \chi \circ T_h \frac{\partial}{\partial t} [1 - \alpha_{\varepsilon} \zeta \circ T_h] \, \mathrm{d}t \, \mathrm{d}w$$
$$= -\int_{T_h^{-1}(Z_k)} (1 - \alpha_{\varepsilon}) Y_h \chi \circ T_h \frac{\partial}{\partial t} [\zeta \circ T_h] \, \mathrm{d}t \, \mathrm{d}w.$$

Then we derive from (2.13) and (2.14)

(2.15)
$$\int_{Z_k} \left(\frac{a(|\nabla u|)}{|\nabla u|} \nabla u + \chi H(x) \right) \cdot \nabla \zeta \, \mathrm{d}x$$
$$\leqslant \int_{Z_k} \chi_{\{u>0\}} \operatorname{div}(H) (1 - \alpha_{\varepsilon} \circ T_h^{-1}) \zeta \, \mathrm{d}x$$
$$- \int_{T_h^{-1}(Z_k)} (1 - \alpha_{\varepsilon}) Y_h \chi \circ T_h \frac{\partial}{\partial t} [\zeta \circ T_h] \, \mathrm{d}t \, \mathrm{d}w.$$

Hence, the lemma follows by letting ε go to 0 in (2.15).

Lemma 2.5. Let $x_0 = T_h(t_0, w_0) \in U$. If $u \circ T_h = 0$ in $B_r(t_0, w_0)$, then

$$u \circ T_h = 0$$
 in C_r and $\chi \circ T_h = 0$ a.e. in C_r

where $C_r = \{(t, w) \in D_h, |w - w_0| < r, t > t_0\} \cup B_r(t_0, w_0).$

75

Proof. By Theorem 2.2 (ii), we have $u \circ T_h = 0$ in C_r . Applying Lemma 2.3 with domains $Z_k = T_h(\{w_1 < w < w_2\}) \cap \{x_2 > k\} \subset T_h(C_r), (k \in \pi_{x_2}(U)), \text{ and taking } \zeta = x_2 - k$, we obtain $\int_{Z_k} \chi H_2 \, dx \leq 0$. Then we deduce from (1.3) that $\chi = 0$ a.e. in Z_k . This holds for all domains Z_k in $T_h(C_r)$. Hence, $\chi = 0$ a.e. in $T_h(C_r)$.

Lemma 2.6. Let $x_0 = T_h(t_0, w_0) \in U$ such that $B_r = B_r(t_0, w_0) \subset D_h$. Then the following three situations are impossible:

$$\begin{aligned} \text{(i)} & \begin{cases} u \circ T_h(t, w_0) = 0 & \forall t \in (t_0 - r, t_0 + r), \\ u \circ T_h(t, w) > 0 & \forall t \in (t_0 - r, t_0 + r), \quad \forall w \neq w_0, \\ \end{cases} \\ \text{(ii)} & \begin{cases} u \circ T_h(t, w) = 0 & \forall (t, w) \in B_r \cap \{w \leqslant w_0\}, \\ u \circ T_h(t, w) > 0 & \forall (t, w) \in B_r \cap \{w > w_0\}, \\ u \circ T_h(t, w) = 0 & \forall (t, w) \in B_r \cap \{w \geqslant w_0\}, \\ u \circ T_h(t, w) > 0 & \forall (t, w) \in B_r \cap \{w \geqslant w_0\}. \end{aligned}$$

Proof. Assume that (ii) holds. The proofs of (i) and (iii) are based on similar arguments. Let $\zeta \in \mathcal{D}(T_h(B_r)), \zeta \ge 0$. Using the fact that, by Lemma 2.5, $\chi \circ T_h = 0$ a.e. in $B_r \cap \{w \le w_0\}$, we obtain after using the change of variable T_h , and taking into account (1.3) and (1.5),

$$\int_{T_h(B_r)} \frac{a(|\nabla u|)}{|\nabla u|} \nabla u \cdot \nabla \zeta \, \mathrm{d}x = \int_{B_r \cap \{w > w_0\}} \frac{\partial}{\partial t} (-Y_h(t,w)) \zeta \circ T_h \, \mathrm{d}t \, \mathrm{d}w$$
$$= \int_{B_r \cap \{w > w_0\}} H_2(w,h) (\mathrm{div}H) (X(t,w)) \zeta \circ T_h \, \mathrm{d}t \, \mathrm{d}w \ge 0.$$

This means that $\triangle_A u \leq 0$ in $\mathcal{D}'(T_h(B_r))$. By Lemma 2.1, either u > 0 or u = 0 in $T_h(B_r)$, which contradicts the assumption.

3. Continuity of the free boundary

As pointed out in Section 2, in order to prove the continuity of the function φ_h , it is enough to show that it is upper semi-continuous. The main idea to do that is to compare u with a suitable barrier function near a free boundary point. In the following step, we construct such a function. For this purpose, let $\varepsilon > 0$, $w_1, w_2 \in$ (w_*, w^*) such that $w_1 < w_2$, $k \in \pi_{x_2}(U)$, and assume that ε is small enough to guarantee that $Z_k^{k+\varepsilon}(w_1, w_2) = T_h(\{w_1 < w < w_2\}) \cap \{k < x_2 < k + \varepsilon\} \subset U$ and $\varepsilon < \underline{h}/2\overline{h}$. The proof of the main result requires a number of lemmas. First, observe that since a(t) > 0 for t > 0, we deduce from (1.1) that a is one-to-one. Then we consider the function

$$\overline{v}_{\varepsilon}(x_1, x_2) = \vartheta_{\varepsilon}(k + \varepsilon - x_2) \text{ with } \vartheta_{\varepsilon}(t) = \int_0^t a^{-1}(2\bar{h}\varepsilon - \bar{h}s) \,\mathrm{d}s \quad \text{for } t \in [0, \varepsilon],$$

which satisfies

(3.1)
$$\Delta_A \overline{v}_{\varepsilon} = -\overline{h} \quad \text{in } Z_k^{k+\varepsilon}(w_1, w_2).$$

Next, let v_{ε} be the unique solution in $W^{1,A}(Z_k^{k+\varepsilon}(w_1,w_2))$ of the problem

(3.2)
$$\begin{cases} \Delta_A v_{\varepsilon} = -\operatorname{div}(H) & \text{in } Z_k^{k+\varepsilon}(w_1, w_2), \\ v_{\varepsilon} = \overline{v}_{\varepsilon} & \text{on } \partial Z_k^{k+\varepsilon}(w_1, w_2). \end{cases}$$

Then we obtain:

Lemma 3.1. We have

(3.3)
$$0 \leqslant v_{\varepsilon} \leqslant \overline{v}_{\varepsilon} \quad \text{in } Z_k^{k+\varepsilon}(w_1, w_2).$$

Proof. To simplify the notation, we drop the dependence of $Z_k^{k+\varepsilon}(w_1, w_2)$ on (w_1, w_2) .

(i) Note that $v_{\varepsilon}^{-} \in W^{1,A}(Z_{k}^{k+\varepsilon})$ and $v_{\varepsilon}^{-} = 0$ on $\partial Z_{k}^{k+\varepsilon}(w_{1}, w_{2})$. Therefore, we obtain from (3.2) and (1.5)

(3.4)
$$\int_{Z_k^{k+\varepsilon}} \frac{a(|\nabla v_{\varepsilon}|)}{|\nabla v_{\varepsilon}|} \nabla v_{\varepsilon} \cdot \nabla v_{\varepsilon}^- dx = \int_{Z_k^{k+\varepsilon}} \operatorname{div}(H) v_{\varepsilon}^- dx,$$

$$\int_{Z_k^{k+\varepsilon}} \frac{a(|\nabla v_{\varepsilon}^-|)}{|\nabla v_{\varepsilon}^-|} \nabla v_{\varepsilon}^- \cdot \nabla v_{\varepsilon}^- dx = \int_{Z_k^{k+\varepsilon}} -\operatorname{div}(H) v_{\varepsilon}^- dx$$

$$\int_{Z_k^{k+\varepsilon}} |\nabla v_{\varepsilon}^-|a(|\nabla v_{\varepsilon}^-|) dx = \int_{Z_k^{k+\varepsilon}} -\operatorname{div}(H) v_{\varepsilon}^- dx \leqslant 0.$$

Taking into account (3.4) and the fact that ta(t) is an increasing function, we deduce that $\nabla v_{\varepsilon}^{-} = 0$ a.e. in $Z_{k}^{k+\varepsilon}$. Since $v_{\varepsilon}^{-} = 0$ on $\partial Z_{k}^{k+\varepsilon}$, we must have $v_{\varepsilon}^{-} = 0$ in $Z_{k}^{k+\varepsilon}$. Hence, $v_{\varepsilon} \ge 0$ in $Z_{k}^{k+\varepsilon}$.

(ii) Similarly, we observe that $(v_{\varepsilon} - \overline{v}_{\varepsilon})^+ \in W^{1,A}(Z_k^{k+\varepsilon})$ and $(v_{\varepsilon} - \overline{v}_{\varepsilon})^+ = 0$ on $\partial Z_k^{k+\varepsilon}$. Therefore, we obtain from (3.1) and (3.2)

(3.5)
$$\int_{Z_k^{k+\varepsilon}} \frac{a(|\nabla v_{\varepsilon}|)}{|\nabla v_{\varepsilon}|} \nabla v_{\varepsilon} \cdot \nabla (v_{\varepsilon} - \overline{v}_{\varepsilon})^+ \, \mathrm{d}x = \int_{Z_k^{k+\varepsilon}} \operatorname{div}(H)(v_{\varepsilon} - \overline{v}_{\varepsilon})^+ \, \mathrm{d}x,$$

(3.6)
$$\int_{Z_k^{k+\varepsilon}} \frac{a(|\nabla \overline{v}_{\varepsilon}|)}{|\nabla \overline{v}_{\varepsilon}|} \nabla \overline{v}_{\varepsilon} \cdot \nabla (v_{\varepsilon} - \overline{v}_{\varepsilon})^+ \, \mathrm{d}x = \int_{Z_k^{k+\varepsilon}} \bar{h}(v_{\varepsilon} - \overline{v}_{\varepsilon})^+ \, \mathrm{d}x.$$

(1

Subtracting (3.6) from (3.5), and using (1.6), we get

(3.7)
$$\int_{Z_k^{k+\varepsilon}} \left(\frac{a(|\nabla v_{\varepsilon}|)}{|\nabla v_{\varepsilon}|} \nabla v_{\varepsilon} - \frac{a(|\nabla \overline{v}_{\varepsilon}|)}{|\nabla \overline{v}_{\varepsilon}|} \nabla \overline{v}_{\varepsilon} \right) \cdot \nabla (v_{\varepsilon} - \overline{v}_{\varepsilon})^+ \, \mathrm{d}x$$
$$= \int_{Z_k^{k+\varepsilon}} (\operatorname{div}(H) - \overline{h}) (v_{\varepsilon} - \overline{v}_{\varepsilon})^+ \, \mathrm{d}x \leqslant 0.$$

Taking into account (3.7) and (1.2), we obtain $\nabla (v_{\varepsilon} - v_{\varepsilon})^+ = 0$ a.e. in $Z_k^{k+\varepsilon}$. Since $(v_{\varepsilon} - \overline{v}_{\varepsilon})^+ = 0$ on $\partial Z_k^{k+\varepsilon}$, we get $(v_{\varepsilon} - \overline{v}_{\varepsilon})^+ = 0$ in $Z_k^{k+\varepsilon}$. Hence, $v_{\varepsilon} \leq \overline{v}_{\varepsilon}$ in $Z_k^{k+\varepsilon}$. \Box

Lemma 3.2. After extending v_{ε} by 0 to $Z_{k+\varepsilon}$, we obtain

$$\begin{split} \int_{Z_k} \left(\frac{a(|\nabla v_{\varepsilon}|)}{|\nabla v_{\varepsilon}|} \nabla v_{\varepsilon} + \chi([v_{\varepsilon} > 0]) H(x) \right) \cdot \nabla \zeta \, \mathrm{d}x \geqslant 0 \\ \forall \zeta \in W^{1,A}(Z_k), \ \zeta \geqslant 0, \ \zeta = 0 \ \text{on} \ \partial Z_k \cap U \end{split}$$

Proof. First we have $\Delta_A v_{\varepsilon} = -\operatorname{div} H \leqslant 0$ in $Z_k^{k+\varepsilon}(w_1, w_2)$, and by (3.3), $v_{\varepsilon} \ge 0$ in $Z_k^{k+\varepsilon}(w_1, w_2)$. By Lemma 2.1 we obtain $v_{\varepsilon} > 0$ in $Z_k^{k+\varepsilon}(w_1, w_2)$.

Let us point out that $v_{\varepsilon} = 0$ on $L = \partial Z_k^{k+\varepsilon}(w_1, w_2) \cap \{x_2 = k + \varepsilon\}$ and $v_{\varepsilon} \in C_{\text{loc}}^{1,\alpha}(Z_k^{k+\varepsilon}(w_1, w_2) \cup L)$ for some $\alpha \in (0, 1)$ (see [17]). Moreover, we have

(3.8)
$$|\nabla v_{\varepsilon}(x)| \leq a^{-1}(2\bar{h}\varepsilon) \quad \forall x \in L.$$

Indeed, from Lemma 3.1 we have $v_{\varepsilon} \leq \overline{v}_{\varepsilon}$ in $Z_k^{k+\varepsilon}(w_1, w_2)$, and since $v_{\varepsilon} = \overline{v}_{\varepsilon} = 0$ on L and $v_{\varepsilon}, \overline{v}_{\varepsilon} \geq 0$, we obtain

$$\forall (x_1, x_2) \in Z_k^{k+\varepsilon}(w_1, w_2) \Big| \frac{v_{\varepsilon}(x_1, x_2) - v_{\varepsilon}(x_1, k+\varepsilon)}{x_2 - k - \varepsilon} \Big| \leqslant \Big| \frac{\overline{v_{\varepsilon}}(x_1, x_2) - \overline{v_{\varepsilon}}(x_1, k+\varepsilon)}{x_2 - k - \varepsilon} \Big|.$$

Letting x_2 go to $k + \varepsilon$, we get $|v_{\varepsilon x_2}(x_1, k + \varepsilon)| \leq |\overline{v}_{\varepsilon x_2}(x_1, k + \varepsilon)|$ on L, which is equivalent to $|\nabla v_{\varepsilon}(x_1, k + \varepsilon)| \leq |\nabla \overline{v}_{\varepsilon}(x_1, k + \varepsilon)|$ on L, since $v_{\varepsilon} = \overline{v}_{\varepsilon} = 0$ on L.

Given that $|\nabla \overline{v}_{\varepsilon}| = \vartheta'_{\varepsilon}(k + \varepsilon - x_2) \leqslant \vartheta'_{\varepsilon}(0) = a^{-1}(2\overline{h}\varepsilon)$, (3.8) holds.

Now since the outward unit normal vector to L is $\nu = e_2 = (0, 1)$, we get by (1.3) and (3.8), since $\varepsilon \in (0, \underline{h}/2\overline{h})$

(3.9)
$$\frac{a(|\nabla v_{\varepsilon}|)}{|\nabla v_{\varepsilon}|} \nabla v_{\varepsilon} \cdot \nu + H(x) \cdot \nu = \frac{a(|\nabla v_{\varepsilon}|)}{|\nabla v_{\varepsilon}|} \nabla v_{\varepsilon} \cdot e_{2} + H_{2}(x) \ge -a(|\nabla v_{\varepsilon}|) + \underline{h}$$
$$\ge -2\bar{h}\varepsilon + \underline{h} \ge 0 \quad \text{on } L.$$

Finally, for $\zeta \in W^{1,A}(Z_k)$, $\zeta \ge 0$, $\zeta = 0$ on $\partial Z_k \cap U$, we obtain from (3.2) and (3.9)

$$\int_{Z_k} \left(\frac{a(|\nabla v_{\varepsilon}|)}{|\nabla v_{\varepsilon}|} \nabla v_{\varepsilon} + \chi(\{v_{\varepsilon} > 0\}) H(x) \right) \cdot \nabla \zeta \, \mathrm{d}x$$
$$= \int_L \left(\frac{a(|\nabla v_{\varepsilon}|)}{|\nabla v_{\varepsilon}|} \nabla v_{\varepsilon} \cdot \nu + H(x) \cdot \nu \right) \zeta \, \mathrm{d}\sigma \ge 0.$$

Lemma 3.3. Assume that

$$u \circ T_h(t_k(w_1), w_1) = u \circ T_h(t_k(w_2), w_2) = 0,$$

$$u \circ T_h(t_k(w), w) \leq \vartheta_{\varepsilon}(\varepsilon) = v_{\varepsilon}(t_k(w), w) \quad \forall w \in (w_1, w_2)$$

Then we have

$$\lim_{\delta \to 0} \frac{1}{\delta} \int_{Z_k^{k+\varepsilon}(w_1, w_2) \cap \{0 < u - v_{\varepsilon} < \delta\}} \left(\frac{a(|\nabla u|)}{|\nabla u|} \nabla u - \frac{a(|\nabla v_{\varepsilon}|)}{|\nabla v_{\varepsilon}|} \nabla v_{\varepsilon} \right) \cdot \nabla (u - v_{\varepsilon}) \, \mathrm{d}x = 0.$$

Proof. For $\delta, \eta > 0$, let $F_{\delta}(s)$ be as in the proof of Lemma 2.4, $d_{\eta}(x_2) = F_{\eta}(x_2 - \overline{k})$ and $\overline{k} = k + \varepsilon$. By applying Lemma 2.3 and Lemma 3.2 respectively for $\zeta = F_{\delta}(u - v_{\varepsilon}) + d_{\eta}(1 - F_{\delta}(u))$ and $\zeta = F_{\delta}(u - v_{\varepsilon})$, we get

$$\begin{split} &\int_{Z_k} \left(\frac{a(|\nabla u|)}{|\nabla u|} \nabla u + \chi H(x) \right) \cdot \nabla (F_{\delta}(u - v_{\varepsilon})) \, \mathrm{d}x \\ &\leqslant - \int_{Z_k} \left(\frac{a(|\nabla u|)}{|\nabla u|} \nabla u + \chi H(x) \right) \cdot \nabla (d_{\eta}(1 - F_{\delta}(u))) \, \mathrm{d}x \\ &- \int_{Z_k} \left(\frac{a(|\nabla v_{\varepsilon}|)}{|\nabla v_{\varepsilon}|} \nabla v_{\varepsilon} + \chi (\{v_{\varepsilon} > 0\}) H(x) \right) \cdot \nabla (F_{\delta}(u - v_{\varepsilon})) \, \mathrm{d}x \leqslant 0. \end{split}$$

Adding these inequalities, we get since $d_{\eta} = 0$ in $\{v_{\varepsilon} > 0\}$

$$\begin{split} \int_{Z_k \cap \{v_{\varepsilon} > 0\}} F_{\delta}'(u - v_{\varepsilon}) \Big(\frac{a(|\nabla u|)}{|\nabla u|} \nabla u - \frac{a(|\nabla v_{\varepsilon}|)}{|\nabla v_{\varepsilon}|} \nabla v_{\varepsilon} \Big) \cdot \nabla (u - v_{\varepsilon}) \, \mathrm{d}x \\ \leqslant - \int_{Z_k \cap \{v_{\varepsilon} = 0\}} (1 - d_{\eta}) \Big(\frac{a(|\nabla u|)}{|\nabla u|} \nabla u + \chi H(x) \Big) \cdot \nabla (F_{\delta}(u)) \, \mathrm{d}x \\ - \int_{Z_k \cap \{v_{\varepsilon} = 0\}} (1 - F_{\delta}(u)) \Big(\frac{a(|\nabla u|)}{|\nabla u|} \nabla u + \chi H(x) \Big) \cdot \nabla \, \mathrm{d}_{\eta} \, \mathrm{d}x = I_1^{\delta \eta} + I_2^{\delta \eta}. \end{split}$$

Since

$$|I_1^{\delta\eta}| \leqslant \int_{D_{k\cap\{\overline{k} < x_2 < \overline{k} + \eta\}}} (a(|\nabla u|) + |H(x)|) |\nabla(F_{\delta}(u))| \, \mathrm{d}x,$$

we obtain $\lim_{\eta \to 0} I_1^{\delta \eta} = 0$. As for $I_2^{\delta \eta}$, we have

$$\begin{split} I_{2}^{\delta\eta} &= -\int_{Z_{k}\cap[u=v_{\varepsilon}=0]} \chi H(x) \cdot \nabla \,\mathrm{d}_{\eta} \,\mathrm{d}x \\ &- \int_{Z_{k}\cap[u>v_{\varepsilon}=0]} (1-F_{\delta}(u)) \Big(\frac{a(|\nabla u|)}{|\nabla u|} \nabla u + H(x) \Big) \cdot \nabla \,\mathrm{d}_{\eta} \,\mathrm{d}x \\ &\leqslant - \int_{Z_{k}\cap[u>v_{\varepsilon}=0]} (1-F_{\delta}(u)) \Big(\frac{a(|\nabla u|)}{|\nabla u|} \nabla u + H(x) \Big) \cdot \nabla \,\mathrm{d}_{\eta} \,\mathrm{d}x = I_{3}^{\delta\eta}, \end{split}$$

since we have by (1.3) $\chi H(x) \cdot \nabla d_{\eta} = \chi H_2(x) \partial_{x_2} d_{\eta} = \eta^{-1} \chi H_2(x) \chi_{\{\overline{k} < x_2 < \overline{k} + \eta\}} \ge 0$ in $Z_k \cap \{u = v_{\varepsilon} = 0\}.$

Let $J = \{w \in (w_1, w_2)/\varphi_h(w) > t_{\overline{k}}(w)\}$. Then given that $u \in C^{0,1}_{\text{loc}}(U)$, one has for some positive constant C

$$\begin{split} |I_3^{\delta\eta}| &\leqslant \frac{C}{\eta} \int_{Z_k \cap \{u > v_\varepsilon = 0\} \cap \{\overline{k} < x_2 < \overline{k} + \eta\}} (1 - F_\delta(u)) \, \mathrm{d}x \\ &= \frac{C}{\eta} \int_J \int_{t_{\overline{k}}(w)}^{\min(\varphi_h(w), t_{\overline{k} + \eta}(w))} (1 - F_\delta(u \circ T_h))(t, w) \cdot (-Y_h(t, w)) \, \mathrm{d}t \, \mathrm{d}w \\ &\leqslant C \bar{h} \int_J \left(\frac{1}{\eta} \int_{t_{\overline{k}}(w)}^{t_{\overline{k}}(w) + \eta} (1 - F_\delta(u \circ T_h)) \, \mathrm{d}t\right) \, \mathrm{d}w. \end{split}$$

Since the function $t \mapsto 1 - F_{\delta}(u \circ T_h(t, w))$ is continuous, we obtain

$$\limsup_{\eta \to 0} |I_3^{\delta\eta}| \leqslant C\bar{h} \int_J (1 - F_{\delta}(u \circ T_h(t_{\overline{k}}(w), w))) \,\mathrm{d}w.$$

Hence,

$$\int_{Z_k^{k+\varepsilon}(w_1,w_2)\cap\{0< u-v_{\varepsilon}<\delta\}} \frac{1}{\delta} \Big(\frac{a(|\nabla u|)}{|\nabla u|} \nabla u - \frac{a(|\nabla v_{\varepsilon}|)}{|\nabla v_{\varepsilon}|} \nabla v_{\varepsilon} \Big) \cdot \nabla (u-v_{\varepsilon})^+ \, \mathrm{d}x$$
$$\leqslant C \int_J (1 - F_{\delta}(u \circ T_h(t_{\overline{k}}(w),w))) \, \mathrm{d}w.$$

The lemma follows by letting $\delta \to 0$.

Lemma 3.4. Assume that the assumptions of Lemma 3.3 hold. Then we have

(3.10)
$$\int_{Z_k^{k+\varepsilon}(w_1,w_2)} \mathbb{A}(x)\nabla(u-v_{\varepsilon})^+ \cdot \nabla\zeta \,\mathrm{d}x = 0 \quad \forall \zeta \in \mathcal{D}(Z_k^{k+\varepsilon}(w_1,w_2)),$$

where

$$\mathbb{A}(\xi) = (\mathbb{A}_{ij}), \quad \mathbb{A}_{ij} = \frac{\partial \mathcal{A}^i}{\partial x_j} \quad and \quad \mathcal{A}^i(\xi) = \frac{a(|\xi|)}{|\xi|}\xi_i.$$

Proof. First, we observe that we have for any $\zeta \in \mathcal{D}(Z_k^{k+\varepsilon}(w_1, w_2))$

$$(3.11) \quad \int_{Z_k^{k+\varepsilon}(w_1,w_2)} \chi(\{u > v_{\varepsilon}\}) \Big(\frac{a(|\nabla u|)}{|\nabla u|} \nabla u - \frac{a(|\nabla v_{\varepsilon}|)}{|\nabla v_{\varepsilon}|} \nabla v_{\varepsilon} \Big) \cdot \nabla \zeta \, \mathrm{d}x \\ = \lim_{\delta \to 0} \int_{Z_k^{k+\varepsilon}(w_1,w_2)} F_{\delta}(u - v_{\varepsilon}) \Big(\frac{a(|\nabla u|)}{|\nabla u|} \nabla u - \frac{a(|\nabla v_{\varepsilon}|)}{|\nabla v_{\varepsilon}|} \nabla v_{\varepsilon} \Big) \cdot \nabla \zeta \, \mathrm{d}x = \lim_{\delta \to 0} I_{\delta},$$

where

$$(3.12)$$

$$I_{\delta} = \int_{Z_{k}^{k+\varepsilon}(w_{1},w_{2})} \left(\frac{a(|\nabla u|)}{|\nabla u|} \nabla u - \frac{a(|\nabla v_{\varepsilon}|)}{|\nabla v_{\varepsilon}|} \nabla v_{\varepsilon}\right) \cdot \nabla(F_{\delta}(u-v_{\varepsilon})\zeta) \,\mathrm{d}x$$

$$- \frac{1}{\delta} \int_{Z_{k}^{k+\varepsilon}(w_{1},w_{2}) \cap [0 < u-v_{\varepsilon} < \delta]} \zeta \left(\frac{a(|\nabla u|)}{|\nabla u|} \nabla u - \frac{a(|\nabla v_{\varepsilon}|)}{|\nabla v_{\varepsilon}|} \nabla v_{\varepsilon}\right) \cdot \nabla(u-v_{\varepsilon}) \,\mathrm{d}x$$

$$= I_{\delta}^{1} - I_{\delta}^{2}.$$

By Lemma 3.3 and (1.2) we have

(3.13)
$$\lim_{\delta \to 0} I_{\delta}^2 = 0.$$

Regarding the integral I_{δ}^{1} , we have from (P)(ii) and the problem (3.2), because $(F_{\delta}(u - v_{\varepsilon})\zeta) \in W_{0}^{1,A}(Z_{k}^{k+\varepsilon}(w_{1}, w_{2}))$ and $\chi = 1$ a.e. in $\{u > v_{\varepsilon}\}$ that

$$(3.14) I_{\delta}^{1} = \int_{Z_{k}^{k+\varepsilon}(w_{1},w_{2})} \frac{a(|\nabla u|)}{|\nabla u|} \nabla u \cdot \nabla (F_{\delta}(u-v_{\varepsilon})\zeta) \, \mathrm{d}x - \int_{Z_{k}^{k+\varepsilon}(w_{1},w_{2})} \frac{a(|\nabla v_{\varepsilon}|)}{|\nabla v_{\varepsilon}|} \nabla v_{\varepsilon} \cdot \nabla (F_{\delta}(u-v_{\varepsilon})\zeta) \, \mathrm{d}x = - \int_{Z_{k}^{k+\varepsilon}(w_{1},w_{2})} \chi H(x) \cdot \nabla (F_{\delta}(u-v_{\varepsilon})\zeta) \, \mathrm{d}x + \int_{Z_{k}^{k+\varepsilon}(w_{1},w_{2})} H(x) \cdot \nabla (F_{\delta}(u-v_{\varepsilon})\zeta) \, \mathrm{d}x = 0.$$

It follows from (3.11)–(3.14) that

$$\int_{Z_k^{k+\varepsilon}(w_1,w_2)} \chi(\{u > v_\varepsilon\}) \Big(\frac{a(|\nabla u|)}{|\nabla u|} \nabla u - \frac{a(|\nabla v_\varepsilon|)}{|\nabla v_\varepsilon|} \nabla v_\varepsilon \Big) \cdot \nabla \zeta \, \mathrm{d}x = 0$$
$$\forall \zeta \in \mathcal{D}(Z_k^{k+\varepsilon}(w_1,w_2)),$$

which can be written as

(3.15)
$$\int_{Z_k^{k+\varepsilon}(w_1,w_2)} \chi(\{u > v_{\varepsilon}\}) \left(\int_0^1 \frac{\mathrm{d}}{\mathrm{d}t} (\mathcal{A}(\nabla w_t)) \,\mathrm{d}t \right) \cdot \nabla \zeta \,\mathrm{d}x = 0$$
$$\forall \zeta \in \mathcal{D}(Z_k^{k+\varepsilon}(w_1,w_2)),$$

where

$$\mathcal{A}(\xi) = (\mathcal{A}^1, \mathcal{A}^2)(\xi) = \frac{a(|\xi|)}{|\xi|}\xi$$

and $w_t = tu + (1-t)v_{\varepsilon}$. Now observe that

(3.16)
$$\int_0^1 \frac{\mathrm{d}}{\mathrm{d}t} (\mathcal{A}(\nabla w_t)) \,\mathrm{d}t = \left(\int_0^1 \frac{\partial \mathcal{A}^i}{\partial x_j} (\nabla w_t) \right)_{i,j=1,2} \nabla(u-v) = \mathbb{A}(x) \nabla(u-v).$$

Hence, we obtain (3.10) from (3.15) and (3.16).

Hence, we obtain (3.10) from (3.15) and (3.16).

Lemma 3.5. We have

(3.17)
$$\min(1,a_0)\frac{a(z)}{z}|\xi|^2 \leqslant \mathbb{A}_{ij}(z)\xi_i\xi_j \leqslant \max(1,a_1)\frac{a(z)}{z}|\xi|^2 \quad \forall z \neq 0 \ \forall \xi \in \mathbb{R}^2.$$

Proof. Let $z \neq 0$ and $\xi = (\xi_1, \xi_2) \in \mathbb{R}^2$. Since $\mathbb{A} \in C^1(\mathbb{R}^2 \setminus \{(0, 0)\})$, we get by direct calculation

$$A_{ij}(z) = \frac{\partial(\mathcal{A}^{i}(z))}{\partial z_{j}} = \frac{a'(z)z - a(z)}{z^{3}} z_{i}z_{j} + \frac{a(z)}{z} \delta_{ij}$$
$$A_{ij}(z)\xi_{i}\xi_{j} = \frac{a'(z)z - a(z)}{z^{3}} (z_{1}\xi_{1} + z_{2}\xi_{2})^{2} + \frac{a(z)}{z} |\xi|^{2}.$$

Using (1.1), we obtain

$$\frac{a(z)}{z}\Big((a_0-1)\frac{|z\cdot\xi|^2}{z^2}+|\xi|^2\Big) \leqslant \mathbb{A}_{ij}(z)\xi_i\xi_j \leqslant \frac{a(z)}{z}\Big((a_1-1)\frac{|z\cdot\xi|^2}{z^2}+|\xi|^2\Big).$$

Then, if $a_0 \ge 1$, the left-hand side of inequality (3.17) holds. When $a_0 < 1$, we use the Cauchy-Schwarz inequality $|z \cdot \xi| \le |z| |\xi|$, to conclude. We proceed in the same way for the right-hand side.

Lemma 3.6. Assume that the assumptions of Lemma 3.3 hold. Then we have:

If u is not positive in
$$Z_k^{k+\varepsilon}(w_1, w_2)$$
, then $u = 0$ in $Z_{k+\varepsilon}$.

Proof. Assume that u is not positive in $Z_k^{k+\varepsilon}(w_1, w_2)$. Then

$$\exists (t_0, w_0) \text{ such that } T_h(t_0, w_0) \in Z_k^{k+\varepsilon}(w_1, w_2) \text{ and } u \circ T_h(t_0, w_0) = 0.$$

This leads by Theorem 2.2 (ii) to

(3.18)
$$u \circ T_h(t, w_0) = 0 \quad \forall t \in [t_0, t_{k+\varepsilon}].$$

From Lemmas 3.4 and 3.5 we know that

(3.19)
$$\operatorname{div}(\mathbb{A}(x)\nabla(u-v_{\varepsilon})^{+}) = 0 \quad \text{in } Z_{k}^{k+\varepsilon}(w_{1},w_{2}).$$

Moreover, by Lemma 3.5, the matrix $\mathbb{A}(x)$ satisfies for all $x \in Z_k^{k+\varepsilon}(w_1, w_2)$ and $\xi \in \mathbb{R}^2$

(3.20)
$$\min(1, a_0)\lambda(x)|\xi|^2 \leq \mathbb{A}(x)\xi \cdot \xi \leq \max(1, a_1)\lambda(x)|\xi|^2$$
$$\text{with } \lambda(x) = \int_0^1 \frac{a(|\nabla w_t(x)|)}{|\nabla w_t(x)|} \, \mathrm{d}t, \quad w_t = tu + (1-t)v_{\varepsilon}.$$

Next, we have $v_{\varepsilon} \in C^{1,\alpha}(Z_k^{k+\varepsilon}(w_1, w_2) \cup L)$, where

$$L = \partial Z_k^{k+\varepsilon}(w_1, w_2) \cap \{x_2 = k + \varepsilon\}.$$

We also have $v_{\varepsilon} = 0$ on L and $v_{\varepsilon} > 0$ in $Z_k^{k+\varepsilon}(w_1, w_2)$. So v_{ε} achieves its minimum value on the line segment L. By Lemma 3.2 of [12], we must have $|\nabla v_{\varepsilon}| > 0$ along L. Therefore, for δ small enough such that $w_1 + \delta < w_2 - \delta$ there exist two positive constants c_0 , c_1 such that

$$\forall x \in \overline{Z}_{k}^{k+\varepsilon}(w_{1}, w_{2}) \cap \{k+\varepsilon - \delta \leqslant x_{2} \leqslant k+\varepsilon\} \cap \{w_{1}+\delta \leqslant w \leqslant w_{2}-\delta\} = Z_{k+\varepsilon-\delta}^{k+\varepsilon}$$

$$(3.21) \qquad \qquad c_{0} \leqslant |\nabla v_{\varepsilon}(x)| \leqslant c_{1}.$$

On the other hand, $|\nabla u|$ is also bounded in $Z_{k+\varepsilon-\delta}^{k+\varepsilon}$, since by Theorem 2.1, $u \in C^{0,1}(\overline{Z}_k^{k+\varepsilon}(w_1, w_2))$. It follows from (3.20)–(3.21) that we have for two positive constants λ_0 and λ_1

$$\lambda_0 \leqslant \lambda(x) \leqslant \lambda_1$$
 in $Z_{k+\varepsilon-\delta}^{k+\varepsilon}$

and therefore, we get from (3.20)

(3.22)
$$\min(1, a_0)\lambda_0|\xi|^2 \leq \mathbb{A}(x)\xi \cdot \xi \leq \max(1, a_1)\lambda_1|\xi|^2 \quad \forall x \in Z^{k+\varepsilon}_{k+\varepsilon-\delta} \quad \forall \xi \in \mathbb{R}^2.$$

Taking into account (3.18), we see that

It follows from (3.19), (3.22), (3.23), and the strong maximum principle that $(u - v_{\varepsilon})^+ \equiv 0$ in $Z_{k+\varepsilon-\delta}^{k+\varepsilon}$. Consequently, we obtain $u \leq v_{\varepsilon}$ in $Z_{k+\varepsilon-\delta}^{k+\varepsilon}$, and therefore $u \circ T_h(t_{k+\varepsilon}(w), w) = 0$ for all $w \in (w_1 + \delta, w_2 - \delta)$. Since δ is arbitrarily small, we get $u \circ T_h(t_{k+\varepsilon}(w), w) = 0$ for all $w \in (w_1, w_2)$. Hence, by Theorem 2.2 (ii) we obtain u = 0 in $Z_{k+\varepsilon}$.

Lemma 3.7. Let $w_0 \in (w_*, w^*)$, $x_0 = T_h(t_0, w_0)$ be such that $u(x_0) = 0$ and for some $\eta > 0$, $B_\eta(T_h(t_0, w_0)) \subset U$. Then there exist two sequences $(t_n^-, w_n^-)_n$ and $(t_n^+, w_n^+)_n$ such that $\lim_{n \to \infty} (t_n^+, w_n^+) = \lim_{n \to \infty} (t_n^-, w_n^-) = (t_0, w_0)$ and for all n,

(i) $T_h(t_n^-, w_n^-) \in B_\eta(T_h(t_0, w_0)) \cap \{w < w_0\}, \ u \circ T_h(t_n^-, w_n^-) = 0,$ (ii) $T_h(t_n^+, w_n^+) \in B_\eta(T_h(t_0, w_0)) \cap \{w > w_0\}, \ u \circ T_h(t_n^+, w_n^+) = 0.$

Proof. First we observe that by Lemma 2.6 the following situations cannot occur simultaneously:

(a) $u \circ T_h > 0$ in $B_\eta(T_h(t_0, w_0)) \cap \{w < w_0\},\$

(b) $u \circ T_h > 0$ in $B_\eta(T_h(t_0, w_0)) \cap \{w > w_0\}.$

In fact, to prove the lemma, it is enough to show that neither (a) nor (b) hold. So assume for example that (a) holds. Then by Lemma 2.6 there exists a sequence $(t_n^+, w_n^+)_n$ such that $T_h(t_n^+, w_n^+) \in B_\eta(T_h(t_0, w_0)) \cap \{w > w_0\}$,

$$u \circ T_h(t_n^+, w_n^+) = 0$$
 and $\lim_{n \to \infty} (t_n^+, w_n^+) = (t_0, w_0).$

Let $k = \max\{T_h^2(t_0, w_0), T_h^2(t_n^+, w_n^+)\}$. Then since $u(x_0) = 0$ and u is continuous at x_0 , we may assume that for n large enough we have

(3.24)
$$u \circ T_h(t_k(w), w) \leq \vartheta_{\varepsilon}(\varepsilon) \quad \forall w \in (w_0, w_n^+).$$

For $\varepsilon > 0$ small enough and n large enough, we may also assume that

We observe that because of the sequence $(t_n^+, w_n^+)_n$ and Theorem 2.2 (i), u is not positive in $Z_k^{k+\varepsilon}(w_0, w_n^+)$. Then, by using (3.24), (3.25), and Lemma 3.6, we conclude that for $\varepsilon > 0$ small enough and n large enough we must have u = 0 in $Z_{k+\varepsilon} \cap T_h(\{w_0 < w < w_n^+\})$. Now since we have assumed that (a) holds, we are in contradiction with Lemma 2.6.

Similarly, if we assume that (b) holds, we get a contradiction as well.

We are now ready to prove the main result of this paper.

Theorem 3.1. The function φ_h is continuous in the interval (w_*, w^*) .

Proof. Let $w_0 \in (w_*, w^*)$. We will prove that φ_h is continuous at w_0 . To this end, it is enough to show that φ_h is upper semi-continuous at w_0 .

Let $x_0 = T_h(\varphi_h(w_0), w_0) = T_h(t_0, w_0)$ and let $\varepsilon > 0$. Since $u(x_0) = 0$ and u is continuous at x_0 , there exists $\eta \in (0, \varepsilon)$ such that

$$(3.26) u(x) \leq \vartheta_{\varepsilon}(\varepsilon) \quad \forall x \in B_{\eta}(x_0) \subset \subset U.$$

By Lemma 3.7, there exists two sequences $(t_n^-, w_n^-)_n$ and $(t_n^+, w_n^+)_n$ such that $\lim_{n\to\infty} (t_n^+, w_n^+) = \lim_{n\to\infty} (t_n^-, w_n^-) = (t_0, w_0)$ and for all n

- (i) $T_h(t_n^-, w_n^-) \in B_\eta(T_h(t_0, w_0)) \cap \{w < w_0\}, \ u \circ T_h(t_n^-, w_n^-) = 0,$
- (ii) $T_h(t_n^+, w_n^+) \in B_\eta(T_h(t_0, w_0)) \cap \{w > w_0\}, \ u \circ T_h(t_n^+, w_n^+) = 0.$

Let $k = \max\{T_h^2(t_n^-, w_n^-), T_h^2(t_0, w_0), T_h^2(t_n^+, w_n^+)\}$ and let C be the constant in Lemma 2.2. We observe that we can choose ε small enough and n large enough so that

(3.27)
$$\varepsilon' = \varepsilon/2C < \underline{h}/2\overline{h},$$
$$Z_k^{k+\varepsilon'}(w_n^-, w_n^+) \subset B_\eta(x_0).$$

We also observe that because $T_h(t_0, w_0) = 0$, and by Theorem 2.2 (i), u is not positive in $Z_k^{k+\varepsilon'}(w_n^-, w_n^+)$. Then, by using (3.26), (3.27), and Lemma 3.6, we see that for nlarge enough, we must have

$$u = 0$$
 in $T_h(\{w_n^- < w < w_n^+\}) \cap \{x_2 \ge k + \varepsilon'\}.$

Therefore, we obtain

(3.28)
$$\varphi_h(w) \leqslant t_{k+\varepsilon'}(w) \quad \forall w \in (w_n^-, w_n^+).$$

From Lemma 2.2, we infer that we have for $\eta < \varepsilon/4C$

(3.29)
$$t_{k+\varepsilon'}(w) \leq t_{x_{02}}(w_0) + C(|k+\varepsilon'-x_{02}|+|w-w_0|)$$
$$\leq t_0 + C(\eta+\varepsilon'+\eta) = t_0 + 2C\eta + \varepsilon/2$$
$$\leq t_0 + \varepsilon/2 + \varepsilon/2 = t_0 + \varepsilon.$$

Combining (3.28) and (3.29), we obtain

$$\varphi_h(w) \leqslant \varphi_h(w_0) + \varepsilon \quad \forall w \in (w_n^-, w_n^+),$$

which is the upper semi-continuity of φ_h at w_0 .

Corollary 3.1. We have

$$\chi = \chi_{\{u>0\}}.$$

Proof. We observe that by (2.3), it is enough to show that we have for each h

(3.30)
$$\chi \circ T_h = \chi_{\{t < \varphi_h(w)\}}.$$

First, we have by (P) (i) and (2.3)

(3.31)
$$\chi \circ T_h = 1 \quad \text{a.e. in } \{t < \varphi_h(w)\}.$$

Next, we have by Lemma 2.5

(3.32)
$$\chi \circ T_h = 0 \quad \text{a.e. in } \operatorname{Int}(\{u \circ T_h = 0\}) = \operatorname{Int}(\{t \ge \varphi_h(w)\}).$$

Now, the set $\{t = \varphi_h(w)\}$ being of measure zero (since φ_h is continuous at each point w such that $T_h(\varphi_h(w), w) \in \Omega$), we conclude that (3.30) follows from (3.31)–(3.32).

A cknowledgement. The author is grateful for the facilities and excellent research conditions provided by the Fields Institute, where part of this research was carried out.

References

- S. J. Alvarez, J. Carrillo: A free boundary problem in theory of lubrication. Commun. Partial Differ. Equations 19 (1994), 1743–1761.
- [2] J. Carrillo, A. Lyaghfouri: The dam problem for nonlinear Darcy's laws and Dirichlet boundary conditions. Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 26 (1998), 453–505. zbl MR

zbl MR doi

zbl MR

- [3] S. Challal, A. Lyaghfouri: A filtration problem through a heterogeneous porous medium. Interfaces Free Bound. 6 (2004), 55–79.
- [4] S. Challal, A. Lyaghfouri: On the continuity of the free boundary in problems of type div(a(x)∇u) = −(h(x)χ(u))x₁. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 62 (2005), 283–300.
- [5] S. Challal, A. Lyaghfouri: On a class of free boundary problems of type $\operatorname{div}(a(X)\nabla u) = -\operatorname{div}(\chi(u)H(x))$. Differ. Integral Equ. 19 (2006), 481–516.
- [6] S. Challal, A. Lyaghfouri: On the dam problem with two fluids governed by a nonlinear Darcy's law. Adv. Differ. Equ. 11 (2006), 841–892.
- [7] S. Challal, A. Lyaghfouri: On the continuity of the free boundary in the problem $\Delta_p u = -(h(x, y)\chi(u))_x$. Appl. Anal. 86 (2007), 1177–1184.
- [8] S. Challal, A. Lyaghfouri: Hölder continuity of solutions to the A-Laplace equation involving measures. Commun. Pure Appl. Anal. 8 (2009), 1577–1583.
- [9] S. Challal, A. Lyaghfouri: Lipschitz continuity of solutions of a free boundary problem involving the p-Laplacian. J. Math. Anal. Appl. 355 (2009), 700–707.
 Zbl MR doi
- [10] S. Challal, A. Lyaghfouri: The heterogeneous dam problem with leaky boundary condition. Commun. Pure Appl. Anal. 10 (2011), 93–125.
 Zbl MR doi
- [11] S. Challal, A. Lyaghfouri: Continuity of the free boundary in a problem involving the A-Laplacian. Available at https://arxiv.org/abs/1906.11791 (2019), 18 pages.
- [12] S. Challal, A. Lyaghfouri: Lipschitz continuity of solutions to a free boundary problem involving the A-Laplacian. Available at https://arxiv.org/abs/1906.06511 (2019), 14 pages.
- [13] S. Challal, A. Lyaghfouri, J. F. Rodrigues: On the A-obstacle problem and the Hausdorff measure of its free boundary. Ann. Mat. Pura Appl. (4) 191 (2012), 113–165.
- [14] M. Chipot: On the continuity of the free boundary in some class of two-dimensional problems. Interfaces Free Bound. 3 (2001), 81–99.
- [15] M. Chipot, A. Lyaghfouri: The dam problem for non-linear Darcys laws and non-linear leaky boundary conditions. Math. Methods Appl. Sci. 20 (1997), 1045–1068.
- [16] M. Chipot, A. Lyaghfouri: The dam problem for linear Darcy's law and nonlinear leaky boundary conditions. Adv. Differ. Equ. 3 (1998), 1–50.
- [17] G. M. Lieberman: The natural generalization of the natural conditions of Ladyzhenskaya and Ural'tseva for elliptic equations. Commun. Partial Differ. Equations 16 (1991), 311–361.
 Zbl MR doi
- [18] A. Lyaghfouri: A free boundary problem for a fluid flow in a heterogeneous porous medium. Ann. Univ. Ferrara, Nuova Ser., Sez. VII (2003), 209–262.
 Zbl MR doi
- [19] A. Lyaghfouri: The dam problem. Handbook of Differential Equations: Stationary Partial Differential Equations (M. Chipot, eds.). Handbook of Differential Equations 3, Elsevier, Amsterdam, 2006, pp. 465–552.

 [20] A. Lyaghfouri: On the Lipschitz continuity of the solutions of a class of elliptic free boundary problems. J. Appl. Anal. 14 (2008), 165–181.
 Zbl MR doi

Author's address: Abdeslem Lyaghfouri, American University of Ras Al Khaimah, Department of Mathematics and Natural Sciences, Ras Al Khaimah, UAE, e-mail: abdeslem.lyaghfouri@aurak.ac.ae.