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Abstract. We investigate a two dimensional quasilinear free boundary problem, and show
that the free boundary is a union of graphs of continuous functions.
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1. INTRODUCTION

In this paper we consider the quasilinear free boundary problem studied in [12]
Find (u, x) € WH4(Q) x L>=(Q) such that:
(P) (i) 0<u<<M, 0<x<1l, u(l—x)=0 ae inQ,
(i) Aau=—div(xH()) in (W),
where (2 is an open bounded domain of R?, z = (21, 13), M is a positive constant,

A(t) = /Ot a(s)ds, Agu= div(a(||vvlﬁ|)Vu)

in the distributional sense is the A-Laplacian, a is a C! function from [0, c0) to [0, 00)
such that a(0) =0, a(t) > 0 for ¢ > 0, and for some positive constants ag, a1

!
't <4 viso.

(11) a0< a(t) NS

As a consequence of (1.1), we have the following monotonicity inequality (see [8]):

an (-8l - 0>0 ve cer ) €4
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For examples of functions a(t), we refer to [13].

Let H = (Hy,H2) be a vector function that satisfies for some positive con-
stants h, h
(1.3) |Hi|<h, 0<h<Hy<h inQQ,
(1.4) H e c%(Q),
(1.5) div(H) >0 a.e. in ©,
(1.6) div(H) < h a.e. in Q.

We refer to [13] for the definition of the Orlicz-Sobolev space W4(€) and its norm.

In [12], it was shown that the free boundary which is defined as the intersection
of the sets {u = 0} and {u > 0}, is a union of graphs of lower semi-continuous
functions depending only on the vector function H. In this paper, we will show that
these functions are actually continuous and that y is the characteristic function of
the set {u > 0}.

Problem (P) describes a variety of free boundary problems including the lubrica-
tion problem [1] and the dam problem [16], [15], [2], [6], [3], [10], [18], and [19]. For
a more general framework, we refer to [14], [4], [5], [9], [7], [11], [12] and [20].

Throughout this paper, we will denote by B,.(x) or B, () the open or closed ball,
respectively, of center z and radius r in R2.

2. PRELIMINARY RESULTS

When H; = 0 and Hs is a constant function, it is easy to show as in [7] that
Xzo < 0in D’(Q) and that the free boundary {u > 0}NS is the graph of a continuous
function x2 = ¢(x1). When H is not a constant vector, we can show as in [5] that

(2.1) div(yH) — x({u > 0))div(H) < 0 in D'().

Actually (2.1) can be obtained from (P) (ii) by adapting the proof of Lemma 2.4.
As a consequence of this property, the function x is decreasing along the orbit ~(w)
(see Figure 1) of the following differential equation (see [12]):

X'(t,w, h) = H(X (t,w, h)),

(B, 1)) { X(0,w, h) = (w, h),

where h € 7, (), w € 75, (QN{x2 = h}), and where 7, and 7, are respectively the
orthogonal projections on the x; and x5 axes. We will denote by X (-, w) the maximal
solution of E(w,h) defined on the interval (a_(w), ay(w)). We know [5] that the
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limits  lim +X(t,w) = X(a_(w),w) € 2N {z2 < h} and lim X w)=

t—a_ (w) t—og (w)—

X (o (w),w) € 02N {x2 > h} both exist.

X(a-(w), w)

Figure 1.

Now, we recall for the reader’s convenience a few technical properties and defini-
tions established in [5] and [12]:

> a4 and a_ are uniformly bounded.

> For each h € 7,,(Q), the following mapping is one to one

Thi Dh — Th(Dh),
(t,w) = Th(t,w) = (T, T;) (t, w) = X (t, w),

where Dj, = {(t,w)/w € 7y, (2N {x2 = h}), t € (a_(w),at(w))}.

> Q= U Th(Dh).
h€mz, ()

> T}, and T{l are COL,

> The determinant Y}, (¢, w) of the Jacobian matrix of T}, satisfies:
(1) Yn(t,w) = —Ha(w,h) exp(fg(divH)(X(s, w))ds) a.e. in Dy,.
(i) b < |Yi(t,w)| < Ch, C >0, a.e. in Dy,

The following interior regularity, established in [12], will be useful in Section 3.

Theorem 2.1. For any solution (u, x) of (P) we have u € C2!(Q).

loc
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The following monotonicity of x based on (2.1) (see [5], [12]) is the key point in
parameterizing the free boundary:

(22) %(X o Th) < 0 in D/(Dh)

Property (2.2) means that y decreases along the orbits of the differential equation

(E(w, h)). The consequence of this monotonicity is materialized in the next theorem
(see Figure 2).

Ty (ay (wo), wo)

u>0in Ty (C:)

T}L(Oé, (’u)()), U)())

Figure 2.

Theorem 2.2. Let (u,x) be a solution of (P) and xog = Th(to, wo) € Th(Dp).

(i) If u(zop) = wo Th(tg,wp) > 0, then there exists € > 0 such that
uoTp(t,w) >0 V(t,w) € Ce ={(t,w) € Dp/|w—wo| <e, t <to+e}.
(if) Ifu(zo) = wo Th(to,wo) = 0, then u o Tj(t, wo) = 0 for all t > to.

The proof of Theorem 2.2 is based on the following strong maximum principle
(see [12]):

Lemma 2.1. Ifu € WHA(U)NCHU)NC°(U) satisfies u > 0 and Ayu < 0in U,
thenu=0inU oru>0inU.
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Thanks to Theorem 2.2, we can define for each h € m,,(€2), the following func-
tion ¢y, on my, (2N {x2 = h}) (see [12]):

( {sup{t: (t,w) € Dy, woTp(t,w) > 0} if this set is not empty,
Prlw) =

a_(w) otherwise.

Then we have (see [12]):

Proposition 2.1. For each h € m,,(f2), the function ¢y, is lower semi-continuous
at each w € my, (2N {x2 = h}) such that Ty (pp(w),w) € . Moreover,

(2.3) {woTy(t,w) >0} N Dy ={t < pp(w)}.

The following lemma will be of interest in Section 3.

Lemma 2.2. Let h € 7., (). For each k € 7,,(Q) and w € my, (2N {x2 = h}),
let ti,(w) be the unique value of t at which the orbit y(w) of X (-,w) intersects the
line {xo = k} if it exists. Then the function S(k,w) = ti(w) is Lipschitz continuous
in its domain. More precisely, we have for some positive constant C':

|S(k,w) — S(ko,wo)| < C(|k — ko| + |w —wo|) YV (k,w), (ko,wo) € domain(S).

Proof. Let (k,w), (ko,wp) € domain(S). First we have from the differential
equation (E(w,h))

tr(w) tio (wo)
k:h+/ Hy(X(s,w))ds and k0=h+/ T Ha(X (s,wp)) ds.
0 0

If we subtract these two equalities, we obtain

tk(w) tko(wo)
(2.4) k—ko= / Hy (X (s,w))ds — / Hy(X (s,wp)) ds.
0 0

Next, if we assume that t;(w) > tg, (wp), then we get by (1.3)

tk(w)

(2.5) Bt (w) — th, (w0)) < / Ha(X (s, w)) ds.

trq (wo)
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Now, observe that

tr(w) tr(w) Lo (wo)
(2.6) /t HQ(X(s,w))ds):/o HQ(X(s,w))ds—/O Ha(X (s, w)) ds

ko (wo)

tk(w) tko(wo)
:/ Hg(X(s,w))ds—/ Hy(X (s,wp)) ds
0 0
tko(wo)
+/ (H2(X (s,w0)) — Ha(X (s,w)))ds.
0

Using (2.4), (2.6) and the fact that Hy o X is Lipschitz continuous in D}, and since
tr, (wo) is bounded independently of ko and wy, we obtain from (2.5) for some positive
constant Cj

ﬁ(tk(w) — (’u}o)) <k—ko+ C()|w — w0|,

which leads for C' = max(1, Cy)/h, to

(2.7) tr(w) — try(wo) < C(Jk — ko| + |Jw — wol).

If ¢, (w) < tg,(wo), we get in a similar fashion

(2.8) ti, (o) — ti(w) < C(lk — kol + |w — wo)).

Combining (2.7) and (2.8), the lemma follows. O

Remark 2.1. (i) Our main goal is to prove that for each h € m,,(Q), the
function ¢y, is actually continuous. Due to the local character of this result, we will
confine ourselves to the following situation:

We assume that « = 0 on an open and connected subset I' of 02 and consider
an open subset U = Tj,(D} N {w, < w < w*}) of Ty(Dy) (see Figure 3), where
D = {(t,w)/w € my, (2N {x2 = h}), t € (0,4 (w))} so that T, ({(ay(w),w), w €
(ws,w*)}) CC I'. Hence, we are led to the following problem:

Find (u,x) € WHA(U) x L>(U) such that: w =0 on T,
0<us<M 0<x<l,ul-—x)=0 ae inU,
(P) a(|Vul)
H(z)) - V¢dr <0,
/U( T VX (a:)) V¢ da
VCeWLAU), ¢=>0 onl, ¢=0 ondU\T.

(ii) We observe that the free boundary (0{u > 0}) N U is the graph of the lower
semi-continuous function ¢, in (w.,w*). Our objective is to prove the continuity of
the function ¢y, which we will do in Section 3 by showing that it is also upper semi-
continuous. To this end, we need to generalize a few lemmas previously established
for a linear operator in [5]. In the sequel and without notice, we will denote by (u, x)
a solution of the problem (P).
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Th(avs (wa), ws)

Th(07 w*) Th(07 w*)

Figure 3.

Lemma 2.3. Let wi,ws € (wi,w*), k € 7, (U) be such that w; < we and
{zo =k} Ny(w;) #0,i=1,2. If (see Figure 4)

Z =Th({(t,w) € Dp, w € (w1,ws), t > tp(w)}) =Th({wr < w <wa})N{ze > k},

and u o Ty (tg(w;),w;) =0 for i = 1,2, then we have

/ (a(wu')vu +xH(@)) - VCdr <0 V¢ e WHA(Z) N C(Zy),
Z |Vl

¢>0 on Zp\{za=k}, (=0 onZ,N{zs =k}

I' (u=0)

¥(w2)
Figure 4.
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The proof of Lemma 2.3 is inspired by the one of a similar lemma in [14] for the
case H(xz) = (h(x),0). Our proof is based on the next lemma.

Lemma 2.4. Under the assumptions of Lemma 2.3, we have

/ “(W“')vu-vgdx—/ X{usoy div(H)¢dz <0
A |Vl A

V¢eWhA(Z)NCYZL), ¢=00nZp\{za =k}, (=0 o0n Z,N{xy = k}.

Proof. Let ¢ be as in the lemma, ¢ > 0, and F.(u) = min{u®/e,1}. Using
X(Zi)F:(u)( as a test function for (P), we get

A Y, vedr+ [ @) VF()) do
Zs, |Vul Z

< - | P@qvua(vu)ds <o,

Zk

Integrating by parts, we obtain

a(|Vul) :
(2.9) /Zk F.(u) V] Vu-V(dr — /Zk div(H)F.(u)¢dx < 0.

The lemma follows by letting € go to 0 in (2.9). O

Proof of Lemma 2.3. For € > 0 small enough, let

w—w)T (wy —w)t
ag(w):min{l,( . ) ,( 25 ) },

and observe that

(2.10) /Z (a(||vv;||)Vu + XH(a:)) -V(¢dx

— [ (U200 4 (@) Vi o T 0o
7z, \ |Vl

- [ (“m”wwﬂ(m)) V(1 - az 0 T )¢ da.

Since x(Zk)(ae o T}, ')C is a test function for (P), we have:

(2.11) /Z (aﬁlvvzjl)Vu + XH(a:)) V(e o T, 1)¢] da < 0.
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Applying Lemma 2.4 to the function (1 — a. o Th_l)C, we get

v B . _
(2.12) /Z a(||vzf||)Vu.V[(1—aeoTh Y¢lde < /Z Xgus0p div(H)(1—a 0Ty )¢ da

Taking into account (2.11)—(2.12), we obtain from (2.10)

v
(2.13) /Z k (“ﬁ'vzii')w + XH(x)) V¢ da
< / X{uso0y div(H)(1 — ac o Th_l)Cdx

Zy

+/Z xH(z) - V[(1 — a: o T, 1)¢] da.

Using the change of variables ¢ = T}, (¢, w) and arguing as in the proof of Theorem 2.1
in [5], we obtain

(2.14) / xH(z) - V[(1 —a. o T )] d
Z
0
= / —YhXOTh—[l —OzEC:OTh] dt dw
T, (Zi) ot

= —/ (1 —a)Yuxo Thg[c o Ty] dt dw.
7,7 (2) ot

Then we derive from (2.13) and (2.14)

v
(2.15) /Zk (a(||v:||)Vu + XH(a:)) -V¢dz
< / X{us0y div(H)(1 — ac o T{l)g dz
Zy

_ / (1 as)Yix o Ta 2 [¢ o Th] dt duw.
T, (Z0) ot
Hence, the lemma follows by letting & go to 0 in (2.15). O
Lemma 2.5. Let xo = Ty(to,wp) € U. If wo Ty, =0 in B, (tg,wp), then
uwolp,=0 inC, and xoT,=0 a.e. inC,,

where C, = {(t,w) € Dy, |w —wp| <1, t>to} U By(to, wo).
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Proof. By Theorem 2.2 (ii), we have uo T}, = 0 in C,. Applying Lemma 2.3
with domains Z = Tp({wn < w < we}) N{ze > k} C TH(C,), (k € 74, (U)), and
taking ¢ = x2 — k, we obtain ka XHz dz < 0. Then we deduce from (1.3) that x =0
a.e. in Zj. This holds for all domains Zj, in T,(C).). Hence, x = 0 a.e. in T,,(C,). O

Lemma 2.6. Let ©9 = Tx(to,wo) € U such that B, = By(to,wp) C Dy. Then
the following three situations are impossible:

woTh(t,wg) =0 Vte (tg—r,to+7r),

® {uoTh(t,w)>0 Vte (to—rto+r), Yw#uwy,
uoTp(t,w) =0 V(t,w) e B, N{w < wo},

(i) {UOTh(t,w)>0 V(t,w) € B, N{w > wo},
uoTp(t,w) =0 V(t,w) e B, N{w > wo},

(i) {UOTh(t,w)>0 Y (t,w) € By N{w < wo}.

Proof. Assume that (ii) holds. The proofs of (i) and (iii) are based on similar
arguments. Let ¢ € D(T),(B,)), ¢ = 0. Using the fact that, by Lemma 2.5, xyoT), =0
a.e. in B, N {w < wp}, we obtain after using the change of variable T}, and taking
into account (1.3) and (1.5),

a(|Vu)) / 9
Vu-Vede = Y (t, w))C o T, dt dw
/Th(B ) |VU| Brn{w>wo} 8t( h( )) h

- / Ho(w, h)(divH) (X (t, w))C o Ty, dt dw > 0.
BrN{w>woe}

This means that Asu < 0 in D'(T),(B,)). By Lemma 2.1, either u > 0 or u = 0 in
Th(B;), which contradicts the assumption. O

3. CONTINUITY OF THE FREE BOUNDARY

As pointed out in Section 2, in order to prove the continuity of the function ¢y,
it is enough to show that it is upper semi-continuous. The main idea to do that is
to compare u with a suitable barrier function near a free boundary point. In the
following step, we construct such a function. For this purpose, let ¢ > 0, w1, ws €
(wy,w*) such that wy < wa, k € 7, (U), and assume that ¢ is small enough to
guarantee that Z; " (wy, wz) = Tp({wr < w < w2}) N {k <z < k+¢e} CC U and
€ < h/2h.
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The proof of the main result requires a number of lemmas. First, observe that
since a(t) > 0 for ¢ > 0, we deduce from (1.1) that @ is one-to-one. Then we consider
the function

Te(21,x2) = Oe(k + € — x2) with ¥.(t) = /Ot a~'(2he — hs)ds for t € [0,¢],
which satisfies
(3.1) AaT. = —h in ZJTF(wi,ws).
Next, let v. be the unique solution in W4 (Z ¢ (wy, ws)) of the problem

Aqve = —div(H) in ZFFE(wy, ws),
(3.) { A (H) k(w1 wz)

Ve = T, on 8Z;§+E(w1, wa).
Then we obtain:
Lemma 3.1. We have
(3.3) 0< v T in Z7Te (wy, ws).
Proof. To simplify the notation, we drop the dependence of Z,’:*E(wl,wg) on
(w1, wa).

(i) Note that v; € WhA(ZF ) and vZ = 0 on dZ} ¥ (wy,ws). Therefore, we
obtain from (3.2) and (1.5)

/ WV g, gy dy = / div(H)v7 da,
Z11§+5 |V'U5|

zZpre
(3.4) / UV ) G vy da = / _div(H)v? da,
Z;z'*'a |VU6 | Z:+E

- “Ndx = —div(H)vZ dx <0.
/ o [V a7z ) o / N d <0

Taking into account (3.4) and the fact that ta(t) is an increasing function, we deduce
that Voo = 0 a.e. in Z; 7. Since v = 0 on 9Z, ¢, we must have v7 = 0 in Z} <.
Hence, v. > 0 in Z;CH'E.
(ii) Similarly, we observe that (v. — 7.)* € WH4(ZF*) and (v. — 7.)" = 0 on
0Z}+<. Therefore, we obtain from (3.1) and (3.2)
(3.5) / MV% V(ve =) dx = / div(H) (v — v.)" du,
zhe [Vl

k+e
Zk

a(Vo) o o [
(3.6) /Z:ﬁ Vo Ve - V(ve —7:)" da = . h(ve — o))" da.
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Subtracting (3.6) from (3.5), and using (1.6), we get

a(|Vee]) a(|Ve|) o v
(3.7 /Z,’j“( Vol Ve Vo va) V(ve —7:)" dx

- / (div(H) — h)(v. — 7.)" dz < 0.
Zhte

Taking into account (3.7) and (1.2), we obtain V(v. —v.)™ = 0 a.e. in Z;™°. Since
(ve—Te)T =0on 5‘Z,’:+6, we get (ve—0:)T =0in Z,’j“. Hence, v. < 7. in Z,f“. O

Lemma 3.2. After extending v. by 0 to Zj., we obtain

/zk (%Ws +x([v- > ) H(x)) - V¢ da > 0

V¢e WhA(Zy), ¢=0, C=00n0Z,NU.

Proof. First we have Agv. = —divH < 0in Z,f“(wl,wg), and by (3.3), ve = 0
in Z,’j“(wl, ws). By Lemma 2.1 we obtain v, > 0 in Z,’j“(wl, wa).

Let us point out that v. = 0 on L = 8Z;§+E(w1,w2) N{xs = k+ e} and
Ve € Cl’a(Z,’j"’E(wl, wy) U L) for some a € (0,1) (see [17]). Moreover, we have

loc

(3.8) |Vo(z)] <a '(2he) Vo€ L.

Indeed, from Lemma 3.1 we have v. < U, in Z§+E(w1,w2), and since v, = v, = 0
on L and v, T, > 0, we obtain
Te(x1,2) — Ve (21, k + €)

YV (x1,22) € ZpE (wy,ws) Ty —k—¢

ve (21, 22) — vs(xl,k'—i—a)‘ <
J?Q—ki—E =

Letting x2 go to k + &, we get |vey, (21,5 + €)| < |Uew, (21, k + €)| on L, which is
equivalent to |Vue(z1,k + ¢)| < |VU:(x1,k + €)| on L, since v, =7, =0 on L.
Given that |Vo.| = 9.(k + & — x2) < 9.(0) = a~*(2he), (3.8) holds.
Now since the outward unit normal vector to L is v = ez = (0, 1), we get by (1.3)
and (3.8), since ¢ € (0, h/2h)

a(|Vee|) _
(3.9) WV% v+ H(x) v=

a(|Voe|)
Vo]
> —2he+h>0 onL.

Ve -ea + Hy(x) > —a(|Vue|) + b

Finally, for ¢ € WY4(Z), ¢ >0, ¢ = 0 on 9Z;, N U, we obtain from (3.2) and (3.9)

/zk (%Ws +x({ve > 0N H()) - V¢ de

= /(%VUE-V—FH(J))-V)CdUZO.
L e
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Lemma 3.3. Assume that

wo Th(tg(wr),wr) = uwo Th(tg(ws),ws) =0,
wo Th(tp(w), w) < Ye(e) = ve(ty(w),w) Yw € (w1, ws).

Then we have

. a(lVul) o, ol Vee)

500 Zf+5(w1,w2)ﬂ{0<u7v5<5}( |VU| |V’UE|

Vvs) -V(u—vs)dz =0.

Proof. For 4,n > 0, let F5(s) be as in the proof of Lemma 2.4, d,(z2) =
F,(zo — k) and k = k + ¢. By applying Lemma 2.3 and Lemma 3.2 respectively
for ¢ = Fs(u — ve) + dy(1 — F5(u)) and ¢ = Fs(u — ve), we get

/ZV (a(||vV;L||)VU+xH(a;)) Y (Fs(u —v.)) dz

a(|Vul)
s _/Zk( V] v“’LXH(x)) - V(dy(1 = Fs(u))) dx

- [ (BBl 4 (g > p @) - V- ) dr <0,
z N Ve

Adding these inequalities, we get since d,, = 0 in {v. > 0}

Vul) a(|Vve|)
Fi(u— v, o] Vu — Ve ) -V(u—v.)dz
Lo B (M Ty Vi) V)

a(|Va)
g‘/zma_m“‘d")( v | Vut xH(@)) - V(Fs(w)) do

- Lkﬂ{va_o}

7 < / (a(|Vul) + [H(@))IV (Fs ()] d,

kN{k<zg<k+n}

D¢ + XH(x)) Vd,dz =1+ 10",

Since

we obtain lim I = 0. As for IJ7, we have
n—

" = —/ xH(z) - Vd,dz
ZN[u=v.=0]
a(|Vul)
- 1— Fs(u Vu+ H(z))-Vd,dz
/Zkﬁ[u>1)5=0]( ( ))( |Vu| )) K

a(|Vul) 5
< - 1— Fs(u Vu+H(z)) -Vd,dz = 1",
/Zkﬁ[u>va—0]( ( ))( |Vu| )) K 3
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since we have by (1.3) xH(z) - Vd, = xH2(x)0z,d, = nfleg(x)x{chKg_m} =20
in Z, N{u =v. = 0}.

Let J = {w € (w1,w2)/pn(w) > tz(w)}. Then given that u € Cloo’i(U), one has
for some positive constant C

c

15" < = (1 - Fs(u))dz

/Zkﬁ{u>v5=0}ﬁ{E<x2<E+?7}

n

C min(en(w),tz,, (w))

= = / / (1 = Fs(uoTy))(t,w) - (=Yr(t,w))dt dw
nJgj t;(w)

_ 1 [tE(w)+n
<Ch/ <—/ (1—F5(uoTh))dt) dw.
J

n t;(w)

Since the function ¢ — 1 — Fs(u o Ty (t,w)) is continuous, we obtain

1imsup|[§n| < Cﬁ/(l — Fs(u o Ty (tg(w), w))) dw.
T

n—0

Hence,

1 e

/ _(a(|Vu|)vu_ a(|Vu |)VU5> -V(U—U5)+d$
Z:*E(wl,w2)0{0<u—va<6} 0 |Vu| |V’U5|
< c/(1 — Fy(wo Th(tp(w), w))) duw.
J

The lemma follows by letting § — 0. O

Lemma 3.4. Assume that the assumptions of Lemma 3.3 hold. Then we have
(3.10) / A(@)V(u—v:)"-V¢dz =0 V¢ e DZI (wr,ws)),
Z£+E(’w1,’w2)

where )
oA
81‘ ]

and Az(f) _ a(|£|)£1

A(f) = (’&ij)v Aij = |€|

Proof. First, we observe that we have for any ¢ € D(Z; ¢ (wy, ws))

g | B (UE v€}>(“(|'§;‘|')w - a(||vvf||)we) Veds

a(|Vul) a(|Vue])
v —
Vul YT TV

= lim Fa(u—ve)<

i—0 Z£+E(w1,w2)

vfug) - VCd = Jim I,
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where

(3.12)
a(|Vul) a(|Voe|)
Is = - e]” F, — Ue
5 /Zk+5(w1 w2)( Tl Vu o] Vv) V(F5(u — v.)¢) da
_ l/ C(cz(|Vu|)vu B a(|Vve|)vv€) V(- v.) dz
0 J 25+ (wy wa)[0<u—ve <5] |Vl |V |
=1} - TI%.

By Lemma 3.3 and (1.2) we have
1 lim I3 = 0.
(3.13) lm 5 =0

Regarding the integral I}, we have from (P)(ii) and the problem (3.2), because
(F5(u—ve)Q) € W()I’A(Z,f“(wl,wg)) and xy =1 a.e. in {u > v.} that

.14 I = a(] Vu-V(F .
(3 ) 0 /Zk+5(w1 wa) |Vu| B ( 5(“ b )C) dr

a(|Vve|) B
/ZHE oy V] Vv, - V(F5(u —v.)¢) dz

/ H(z) V(Fs(u—v:)()dx
z, +E (w1,w2)

+/ () - V(Fs(u —v:)¢)dz = 0.
Zk+5 (w1,w2)

It follows from (3.11)—(3.14) that

a(|Vul) a(|Vve|) _
/Z:+E(w1,w2)X({u>’U€})( |VU| Vu |V’U€| va) VCdx—O

V¢ € D(ZETE (wr, w2)),

which can be written as

(3.15) /Z:ﬁ(wm) {u>v.)) (/01 (i (A(Vur)) dt) VCdz =0

V¢ € D(ZFHE (wr,ws)),
where

A(E) = (A, A2)(¢) = %fs

and wy = tu + (1 — t)v.. Now observe that

(3.16) /01 %(.A(th)) dt = (/0 gAl (th)> V(u—v)=A(z)V(u—v).

Lj i,j=1,2

Hence, we obtain (3.10) from (3.15) and (3.16). O
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Lemma 3.5. We have

(3.17) min(l,ao)@m2 <Ay (2)&€; < max(1,a1) (ZZ) €2 Vz#0VEeR?

Proof. Let z # 0 and & = (£1,&) € R2. Since A € C1(R?\ {(0,0)}), we get by
direct calculation

Ai(z) = m’g;iz)) = GI(Z)ZZB_ alz) zizi + @51]’
Aij(2)6€5 = W(&& + 226)° + @m?

Using (1.1), we obtain

) (a0 - L 4 1) < a6 < 22 (@@ - EEE e,

z

Then, if ag > 1, the left-hand side of inequality (3.17) holds. When ag < 1, we use
the Cauchy-Schwarz inequality |z - &| < |z]|], to conclude. We proceed in the same
way for the right-hand side. O

Lemma 3.6. Assume that the assumptions of Lemma 3.3 hold. Then we have:

If u is not positive in Z,’j“(wl, wa), then v =0 in Zj4..

Proof. Assume that u is not positive in Z} " (w, ws). Then
(to, wo) such that Ty (to, wp) € Z,’j“(wl, wa) and w o T (tg, wo) = 0.
This leads by Theorem 2.2 (ii) to
(3.18) uoTh(t,wo) =0 VYt € [to, thte]-
From Lemmas 3.4 and 3.5 we know that
(3.19) div(A(2)V(u —ve)T) =0 in Z7T (wy, ws).

Moreover, by Lemma 3.5, the matrix A(z) satisfies for all 2 € Z} 1 (wy,ws) and
£ e R?

(3.20) min(1, ap)A(@)|€[2 < A2)E - € < max(1, an)A(w)[€]?

. _ [T a(Vu(2)) _
with )\((E) = /O W dt, wy = tu + (1 — t)’l)g
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Next, we have v. € CV*(Z; 1 (wy,ws) U L), where
L= 8Z,f+5(w1,w2) N {332 =k+ E}.

We also have v. =0 on L and v, > 0 in Z,f“(wl, wa). So v. achieves its minimum
value on the line segment L. By Lemma 3.2 of [12], we must have |Vv,| > 0 along L.
Therefore, for § small enough such that w; + § < we — § there exist two positive
constants cg, ¢; such that

vV EZﬁ*E(wl,wg)ﬁ{k—l—e—é Sap<k+en{w +6 <w< we — 6} szi;&
(3.21) co < |Vue(z)] < 1.

On the other hand, |Vu| is also bounded in Z,fi;&, since by Theorem 2.1, u €
CON(ZFHe (wy,ws)). Tt follows from (3.20)—(3.21) that we have for two positive con-
stants A\g and A\

o <Az) <A in ZEEE

and therefore, we get from (3.20)
(3.22) min(1,a0)Aol¢> < A(z)€ - € <max(l,a1) M| Vo€ ZiTe ; VEER

Taking into account (3.18), we see that

(3.23) Zpte sn{u=0} #0.
It follows from (3.19), (3.22), (3.23), and the strong maximum principle that
(u—v:)t =01in Z,fij_ 5- Consequently, we obtain u < v, in Z,fij_ 5> and therefore

wo Th(tgte(w),w) = 0 for all w € (wy + 0, wa —§). Since J is arbitrarily small, we get
w0 T (tg4e(w),w) = 0 for all w € (w1, ws). Hence, by Theorem 2.2 (ii) we obtain
u=01in Zgic. O

Lemma 3.7. Let wy € (wy,w*), 9 = Th(to, wo) be such that u(xy) = 0 and for
some 1 > 0, By(Th(to, wo)) CC U. Then there exist two sequences (t,,,w;, ), and
(tF,w}), such that lim (¢, w') = lim (t,,w, ) = (ty,wo) and for all n,

n—oo n—oo
() Tu(ty, wy,) € By(Th(to, wo)) N{w < wo}, woTh(t,,w,) =0,
(i) Th(t),wt) € By(Th(to,wo)) N{w > wo}, uo Th(t, wt) =0.

Proof. First we observe that by Lemma 2.6 the following situations cannot occur
simultaneously:

(a) woTp > 0in By(Th(to, wo)) N{w < wo},
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(b) wo Ty >0 in By(Th(to, wo)) N{w > wo}.

In fact, to prove the lemma, it is enough to show that neither (a) nor (b) hold. So
assume for example that (a) holds. Then by Lemma 2.6 there exists a sequence
(6, w;b ), such that Ty (8, wl) € By (Th(to, wo)) N{w > wo},

woTh(th,wh) =0 and lim (£, w') = (to, wo).
n—oo
Let k = max{T{(to,wo), T7(t,},w;")}. Then since u(zg) = 0 and u is continuous
at xp, we may assume that for n large enough we have

(3.24) wo Th(tp(w),w) < 9.(s) Yw € (wo,w)}).
For € > 0 small enough and n large enough, we may also assume that
(3.25) ZFTE (wo, w)t) cC UL

We observe that because of the sequence (¢}, w;"), and Theorem 2.2 (i), u is not
positive in Z:*'E(wo,w;'{). Then, by using (3.24), (3.25), and Lemma 3.6, we con-
clude that for € > 0 small enough and n large enough we must have u = 0 in
Zire NTh({wo < w < w;f'}). Now since we have assumed that (a) holds, we are in
contradiction with Lemma 2.6.

Similarly, if we assume that (b) holds, we get a contradiction as well. O

We are now ready to prove the main result of this paper.

Theorem 3.1. The function ¢y, is continuous in the interval (w,,w*).

Proof. Let wy € (w«, w*). We will prove that ¢}, is continuous at wg. To this
end, it is enough to show that ¢, is upper semi-continuous at wy.

Let o = Th(pn(wo), wo) = Th(to, wo) and let € > 0. Since u(zp) = 0 and u is
continuous at xp, there exists n € (0,¢) such that

(3.26) u(z) < Ye(e) Vaz e By(zxg) CCU.
By Lemma 3.7, there exists two sequences (t,,

no w;)n and (t:lr’ er{)n such that
lim (¢}, w;

Jim (2, )= nll_{lgo(t”’w”) = (to, wp) and for all n

(i) Th(t;,w;) € BW(Th(t()va)) N {w < w0}7 uo Th(t;,w;) =0,
(i) Th(t),wt) € By(Th(to,wo)) N{w > wo}, uo Tyt , wt) =0

w,
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Let k = max{T?(t,,,wy ), T?(to,wo), T2(t;}, w,})} and let C be the constant in
Lemma 2.2. We observe that we can choose € small enough and n large enough
so that

e’ =¢/2C < h/2h,
(3.27) Z,’j""s/ (w;, ,w;) CC By(zo).

We also observe that because T}, (to, wo) = 0, and by Theorem 2.2 (i), w is not positive
in Z,f“/ (w;, ,w;’). Then, by using (3.26), (3.27), and Lemma 3.6, we see that for n
large enough, we must have

u=0 inT,({w, <w<wi})Nn{zs>k+e}.
Therefore, we obtain
(3.28) on(w) < tppe(w) Yw € (w,,w)).
From Lemma 2.2, we infer that we have for n < £/4C

(3.29) thier (W) <ty (wo) + C(|k + & — @oa| + [w — wol)

<t
Sto+Cn+e +n)=to+2Cn+¢/2
<t0+6/2+6/2:t0+5.
Combining (3.28) and (3.29), we obtain

en(w) < en(wo) +e Yw € (w,,wy),

which is the upper semi-continuity of ¢ at wg. O

Corollary 3.1. We have
X = X{u>0}-

Proof. We observe that by (2.3), it is enough to show that we have for each h
(3.30) X © Th = X{t<pn(w)}-
First, we have by (P) (i) and (2.3)
(3.31) xoT, =1 ae. in {t <pp(w)}.
Next, we have by Lemma 2.5
(3.32) xoTr =0 ae. inInt({uoTy =0})=Int({t = ¢on(w)}).

Now, the set {t = @ (w)} being of measure zero (since ¢}, is continuous at each point
w such that Ty (on(w), w) € ), we conclude that (3.30) follows from (3.31)—(3.32).
(]
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