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1. Introduction

In this paper we consider the quasilinear free boundary problem studied in [12]

(P)











Find (u, χ) ∈ W 1,A(Ω)× L∞(Ω) such that:

(i) 0 6 u 6 M, 0 6 χ 6 1, u(1− χ) = 0 a.e. in Ω,

(ii) ∆Au = −div(χH(x)) in (W 1,A
0 (Ω))′,

where Ω is an open bounded domain of R2, x = (x1, x2), M is a positive constant,

A(t) =

∫ t

0

a(s) ds, ∆Au = div
(a(|∇u|)

|∇u|
∇u

)

in the distributional sense is the A-Laplacian, a is a C1 function from [0,∞) to [0,∞)

such that a(0) = 0, a(t) > 0 for t > 0, and for some positive constants a0, a1

(1.1) a0 6
ta′(t)

a(t)
6 a1 ∀ t > 0.

As a consequence of (1.1), we have the following monotonicity inequality (see [8]):

(1.2)
(a(|ξ|)

|ξ|
ξ −

a(|ζ|)

|ζ|
ζ
)

· (ξ − ζ) > 0 ∀ ξ, ζ ∈ R
2 \ {0}, ξ 6= ζ.
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For examples of functions a(t), we refer to [13].

Let H = (H1, H2) be a vector function that satisfies for some positive con-

stants h, h̄

|H1| 6 h̄, 0 < h 6 H2 6 h̄ in Ω,(1.3)

H ∈ C0,1(Ω̄),(1.4)

div(H) > 0 a.e. in Ω,(1.5)

div(H) 6 h̄ a.e. in Ω.(1.6)

We refer to [13] for the definition of the Orlicz-Sobolev spaceW 1,A(Ω) and its norm.

In [12], it was shown that the free boundary which is defined as the intersection

of the sets {u = 0} and {u > 0}, is a union of graphs of lower semi-continuous

functions depending only on the vector function H . In this paper, we will show that

these functions are actually continuous and that χ is the characteristic function of

the set {u > 0}.

Problem (P) describes a variety of free boundary problems including the lubrica-

tion problem [1] and the dam problem [16], [15], [2], [6], [3], [10], [18], and [19]. For

a more general framework, we refer to [14], [4], [5], [9], [7], [11], [12] and [20].

Throughout this paper, we will denote by Br(x) or Br(x) the open or closed ball,

respectively, of center x and radius r in R
2.

2. Preliminary results

When H1 = 0 and H2 is a constant function, it is easy to show as in [7] that

χx2
6 0 inD′(Ω) and that the free boundary ∂{u > 0}∩Ω is the graph of a continuous

function x2 = ϕ(x1). When H is not a constant vector, we can show as in [5] that

(2.1) div(χH)− χ({u > 0})div(H) 6 0 in D′(Ω).

Actually (2.1) can be obtained from (P) (ii) by adapting the proof of Lemma 2.4.

As a consequence of this property, the function χ is decreasing along the orbit γ(w)

(see Figure 1) of the following differential equation (see [12]):

(E(w, h))

{

X ′(t, w, h) = H(X(t, w, h)),

X(0, w, h) = (w, h),

where h ∈ πx2
(Ω), w ∈ πx1

(Ω∩{x2 = h}), and where πx1
and πx2

are respectively the

orthogonal projections on the x1 and x2 axes. We will denote byX(·, w) the maximal

solution of E(w, h) defined on the interval (α−(w), α+(w)). We know [5] that the
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limits lim
t→α−(w)+

X(t, w) = X(α−(w), w) ∈ ∂Ω ∩ {x2 < h} and lim
t→α+(w)−

X(t, w) =

X(α+(w), w) ∈ ∂Ω ∩ {x2 > h} both exist.

Ω

x2 = h

γ(w)

X(α
−
(w), w)

X(0, w) = (w, h)

X(α+(w), w)

Figure 1.

Now, we recall for the reader’s convenience a few technical properties and defini-

tions established in [5] and [12]:

⊲ α+ and α− are uniformly bounded.

⊲ For each h ∈ πx2
(Ω), the following mapping is one to one

Th : Dh → Th(Dh),

(t, w) 7→ Th(t, w) = (T 1
h , T

2
h)(t, w) = X(t, w),

where Dh = {(t, w)/w ∈ πx1
(Ω ∩ {x2 = h}), t ∈ (α−(w), α+(w))}.

⊲ Ω =
⋃

h∈πx2
(Ω)

Th(Dh).

⊲ Th and T−1
h are C0,1.

⊲ The determinant Yh(t, w) of the Jacobian matrix of Th satisfies:

(i) Yh(t, w) = −H2(w, h) exp(
∫ t

0
(divH)(X(s, w)) ds) a.e. in Dh.

(ii) h 6 |Yh(t, w)| 6 Ch̄, C > 0, a.e. in Dh.

The following interior regularity, established in [12], will be useful in Section 3.

Theorem 2.1. For any solution (u, χ) of (P) we have u ∈ C0,1
loc (Ω).
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The following monotonicity of χ based on (2.1) (see [5], [12]) is the key point in

parameterizing the free boundary:

(2.2)
∂

∂t
(χ ◦ Th) 6 0 in D′(Dh).

Property (2.2) means that χ decreases along the orbits of the differential equation

(E(w, h)). The consequence of this monotonicity is materialized in the next theorem

(see Figure 2).

Ω

x2 = h

Th(t0, w0) =X0

Th(α−
(w0), w0)

u> 0 in Th(Cε)

Th(α+(w0), w0)

Figure 2.

Theorem 2.2. Let (u, χ) be a solution of (P) and x0 = Th(t0, w0) ∈ Th(Dh).

(i) If u(x0) = u ◦ Th(t0, w0) > 0, then there exists ε > 0 such that

u ◦ Th(t, w) > 0 ∀ (t, w) ∈ Cε = {(t, w) ∈ Dh/|w − w0| < ε, t < t0 + ε}.

(ii) If u(x0) = u ◦ Th(t0, w0) = 0, then u ◦ Th(t, w0) = 0 for all t > t0.

The proof of Theorem 2.2 is based on the following strong maximum principle

(see [12]):

Lemma 2.1. If u ∈ W 1,A(U)∩C1(U)∩C0(U) satisfies u > 0 and ∆Au 6 0 in U ,

then u ≡ 0 in U or u > 0 in U .
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Thanks to Theorem 2.2, we can define for each h ∈ πx2
(Ω), the following func-

tion ϕh on πx1
(Ω ∩ {x2 = h}) (see [12]):

ϕh(w) =

{

sup{t : (t, w) ∈ Dh, u ◦ Th(t, w) > 0} if this set is not empty,

α−(w) otherwise.

Then we have (see [12]):

Proposition 2.1. For each h ∈ πx2
(Ω), the function ϕh is lower semi-continuous

at each w ∈ πx1
(Ω ∩ {x2 = h}) such that Th(ϕh(w), w) ∈ Ω. Moreover,

(2.3) {u ◦ Th(t, w) > 0} ∩Dh = {t < ϕh(w)}.

The following lemma will be of interest in Section 3.

Lemma 2.2. Let h ∈ πx2
(Ω). For each k ∈ πx2

(Ω) and w ∈ πx1
(Ω ∩ {x2 = h}),

let tk(w) be the unique value of t at which the orbit γ(w) of X(·, w) intersects the

line {x2 = k} if it exists. Then the function S(k, w) = tk(w) is Lipschitz continuous

in its domain. More precisely, we have for some positive constant C:

|S(k, w)− S(k0, w0)| 6 C(|k − k0|+ |w − w0|) ∀ (k, w), (k0, w0) ∈ domain(S).

P r o o f. Let (k, w), (k0, w0) ∈ domain(S). First we have from the differential

equation (E(w, h))

k = h+

∫ tk(w)

0

H2(X(s, w)) ds and k0 = h+

∫ tk0 (w0)

0

H2(X(s, w0)) ds.

If we subtract these two equalities, we obtain

(2.4) k − k0 =

∫ tk(w)

0

H2(X(s, w)) ds−

∫ tk0 (w0)

0

H2(X(s, w0)) ds.

Next, if we assume that tk(w) > tk0
(w0), then we get by (1.3)

(2.5) h(tk(w) − tk0
(w0)) 6

∫ tk(w)

tk0 (w0)

H2(X(s, w)) ds.
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Now, observe that

(2.6)

∫ tk(w)

tk0 (w0)

H2(X(s, w)) ds) =

∫ tk(w)

0

H2(X(s, w)) ds−

∫ tk0 (w0)

0

H2(X(s, w)) ds

=

∫ tk(w)

0

H2(X(s, w)) ds−

∫ tk0 (w0)

0

H2(X(s, w0)) ds

+

∫ tk0 (w0)

0

(H2(X(s, w0))−H2(X(s, w))) ds.

Using (2.4), (2.6) and the fact that H2 ◦X is Lipschitz continuous in Dh, and since

tk0
(w0) is bounded independently of k0 and w0, we obtain from (2.5) for some positive

constant C0

h(tk(w) − tk0
(w0)) 6 k − k0 + C0|w − w0|,

which leads for C = max(1, C0)/h, to

(2.7) tk(w)− tk0
(w0) 6 C(|k − k0|+ |w − w0|).

If tk(w) < tk0
(w0), we get in a similar fashion

(2.8) tk0
(w0)− tk(w) 6 C(|k − k0|+ |w − w0|).

Combining (2.7) and (2.8), the lemma follows. �

R em a r k 2.1. (i) Our main goal is to prove that for each h ∈ πx2
(Ω), the

function ϕh is actually continuous. Due to the local character of this result, we will

confine ourselves to the following situation:

We assume that u = 0 on an open and connected subset Γ of ∂Ω and consider

an open subset U = Th(D
+
h ∩ {w∗ < w < w∗}) of Th(Dh) (see Figure 3), where

D+
h = {(t, w)/w ∈ πx1

(Ω ∩ {x2 = h}), t ∈ (0, α+(w))} so that Th({(α+(w), w), w ∈

(w∗, w
∗)}) ⊂⊂ Γ. Hence, we are led to the following problem:

(P)



























Find (u, χ) ∈ W 1,A(U)× L∞(U) such that: u = 0 on Γ,

0 6 u 6 M, 0 6 χ 6 1, u(1− χ) = 0 a.e. in U,
∫

U

(a(|∇u|)

|∇u|
∇u+ χH(x)

)

· ∇ζ dx 6 0,

∀ ζ ∈ W 1,A(U), ζ > 0 on Γ, ζ = 0 on ∂U \ Γ.

(ii) We observe that the free boundary (∂{u > 0}) ∩ U is the graph of the lower

semi-continuous function ϕh in (w∗, w
∗). Our objective is to prove the continuity of

the function ϕh, which we will do in Section 3 by showing that it is also upper semi-

continuous. To this end, we need to generalize a few lemmas previously established

for a linear operator in [5]. In the sequel and without notice, we will denote by (u, χ)

a solution of the problem (P).
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Ω

x2 = h

Th(0, w∗) Th(0, w
∗)

U

Th(α+(w∗), w∗)
Th(α+(w

∗), w∗)

Γ (u=0)

Figure 3.

Lemma 2.3. Let w1, w2 ∈ (w∗, w
∗), k ∈ πx2

(U) be such that w1 < w2 and

{x2 = k} ∩ γ(wi) 6= ∅, i = 1, 2. If (see Figure 4)

Zk = Th({(t, w) ∈ Dh, w ∈ (w1, w2), t > tk(w)}) = Th({w1 < w < w2})∩ {x2 > k},

and u ◦ Th(tk(wi), wi) = 0 for i = 1, 2, then we have
∫

Zk

(a(|∇u|)

|∇u|
∇u+ χH(x)

)

· ∇ζ dx 6 0 ∀ ζ ∈ W 1,A(Zk) ∩ C0(Zk),

ζ > 0 on Zk \ {x2 = k}, ζ = 0 on Zk ∩ {x2 = k}.

u=0

u=0

Γ (u=0)

Zk

γ(w1)

γ(w2)

x2 = k

Figure 4.
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The proof of Lemma 2.3 is inspired by the one of a similar lemma in [14] for the

case H(x) = (h(x), 0). Our proof is based on the next lemma.

Lemma 2.4. Under the assumptions of Lemma 2.3, we have

∫

Zk

a(|∇u|)

|∇u|
∇u · ∇ζ dx−

∫

Zk

χ{u>0} div(H)ζ dx 6 0

∀ ζ ∈ W 1,A(Zk) ∩ C0(Zk), ζ > 0 on Zk \ {x2 = k}, ζ = 0 on Zk ∩ {x2 = k}.

P r o o f. Let ζ be as in the lemma, ε > 0, and Fε(u) = min{u+/ε, 1}. Using

χ(Zk)Fε(u)ζ as a test function for (P), we get

∫

Zk

Fε(u)
a(|∇u|)

|∇u|
∇u · ∇ζ dx+

∫

Zk

H(x) · ∇(Fε(u)ζ) dx

6 −

∫

Zk

F ′
ε(u)ζ|∇u|a(|∇u|) dx 6 0.

Integrating by parts, we obtain

(2.9)

∫

Zk

Fε(u)
a(|∇u|)

|∇u|
∇u · ∇ζ dx−

∫

Zk

div(H)Fε(u)ζ dx 6 0.

The lemma follows by letting ε go to 0 in (2.9). �

P r o o f of Lemma 2.3. For ε > 0 small enough, let

αε(w) = min
{

1,
(w − w1)

+

ε
,
(w2 − w)+

ε

}

,

and observe that

(2.10)

∫

Zk

(a(|∇u|)

|∇u|
∇u+ χH(x)

)

· ∇ζ dx

=

∫

Zk

(a(|∇u|)

|∇u|
∇u+ χH(x)

)

· ∇[(αε ◦ T
−1
h )ζ] dx

+

∫

Zk

(a(|∇u|)

|∇u|
∇u+ χH(x)

)

· ∇[(1 − αε ◦ T
−1
h )ζ] dx.

Since χ(Zk)(αε ◦ T
−1
h )ζ is a test function for (P), we have:

(2.11)

∫

Zk

(a(|∇u|)

|∇u|
∇u+ χH(x)

)

· ∇[(αε ◦ T
−1
h )ζ] dx 6 0.
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Applying Lemma 2.4 to the function (1 − αε ◦ T
−1
h )ζ, we get

(2.12)

∫

Zk

a(|∇u|)

|∇u|
∇u·∇[(1−αε◦T

−1
h )ζ] dx 6

∫

Zk

χ{u>0} div(H)(1−αε◦T
−1
h )ζ dx.

Taking into account (2.11)–(2.12), we obtain from (2.10)

(2.13)

∫

Zk

(a(|∇u|)

|∇u|
∇u + χH(x)

)

· ∇ζ dx

6

∫

Zk

χ{u>0} div(H)(1 − αε ◦ T
−1
h )ζ dx

+

∫

Zk

χH(x) · ∇[(1− αε ◦ T
−1
h )ζ] dx.

Using the change of variables x = Th(t, w) and arguing as in the proof of Theorem 2.1

in [5], we obtain

(2.14)

∫

Zk

χH(x) · ∇[(1− αε ◦ T
−1
h )ζ] dx

=

∫

T−1

h
(Zk)

−Yhχ ◦ Th

∂

∂t
[1− αεζ ◦ Th] dt dw

= −

∫

T−1

h
(Zk)

(1− αε)Yhχ ◦ Th

∂

∂t
[ζ ◦ Th] dt dw.

Then we derive from (2.13) and (2.14)

(2.15)

∫

Zk

(a(|∇u|)

|∇u|
∇u+ χH(x)

)

· ∇ζ dx

6

∫

Zk

χ{u>0} div(H)(1− αε ◦ T
−1
h )ζ dx

−

∫

T−1

h
(Zk)

(1 − αε)Yhχ ◦ Th

∂

∂t
[ζ ◦ Th] dt dw.

Hence, the lemma follows by letting ε go to 0 in (2.15). �

Lemma 2.5. Let x0 = Th(t0, w0) ∈ U . If u ◦ Th = 0 in Br(t0, w0), then

u ◦ Th = 0 in Cr and χ ◦ Th = 0 a.e. in Cr,

where Cr = {(t, w) ∈ Dh, |w − w0| < r, t > t0} ∪Br(t0, w0).
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P r o o f. By Theorem 2.2 (ii), we have u ◦ Th = 0 in Cr. Applying Lemma 2.3

with domains Zk = Th({w1 < w < w2}) ∩ {x2 > k} ⊂ Th(Cr), (k ∈ πx2
(U)), and

taking ζ = x2−k, we obtain
∫

Zk
χH2 dx 6 0. Then we deduce from (1.3) that χ = 0

a.e. in Zk. This holds for all domains Zk in Th(Cr). Hence, χ = 0 a.e. in Th(Cr). �

Lemma 2.6. Let x0 = Th(t0, w0) ∈ U such that Br = Br(t0, w0) ⊂ Dh. Then

the following three situations are impossible:

(i)

{

u ◦ Th(t, w0) = 0 ∀ t ∈ (t0 − r, t0 + r),

u ◦ Th(t, w) > 0 ∀ t ∈ (t0 − r, t0 + r), ∀w 6= w0,

(ii)

{

u ◦ Th(t, w) = 0 ∀ (t, w) ∈ Br ∩ {w 6 w0},

u ◦ Th(t, w) > 0 ∀ (t, w) ∈ Br ∩ {w > w0},

(iii)

{

u ◦ Th(t, w) = 0 ∀ (t, w) ∈ Br ∩ {w > w0},

u ◦ Th(t, w) > 0 ∀ (t, w) ∈ Br ∩ {w < w0}.

P r o o f. Assume that (ii) holds. The proofs of (i) and (iii) are based on similar

arguments. Let ζ ∈ D(Th(Br)), ζ > 0. Using the fact that, by Lemma 2.5, χ◦Th = 0

a.e. in Br ∩ {w 6 w0}, we obtain after using the change of variable Th, and taking

into account (1.3) and (1.5),

∫

Th(Br)

a(|∇u|)

|∇u|
∇u · ∇ζ dx =

∫

Br∩{w>w0}

∂

∂t
(−Yh(t, w))ζ ◦ Th dt dw

=

∫

Br∩{w>w0}

H2(w, h)(divH)(X(t, w))ζ ◦ Th dt dw > 0.

This means that △Au 6 0 in D′(Th(Br)). By Lemma 2.1, either u > 0 or u = 0 in

Th(Br), which contradicts the assumption. �

3. Continuity of the free boundary

As pointed out in Section 2, in order to prove the continuity of the function ϕh,

it is enough to show that it is upper semi-continuous. The main idea to do that is

to compare u with a suitable barrier function near a free boundary point. In the

following step, we construct such a function. For this purpose, let ε > 0, w1, w2 ∈

(w∗, w
∗) such that w1 < w2, k ∈ πx2

(U), and assume that ε is small enough to

guarantee that Zk+ε
k (w1, w2) = Th({w1 < w < w2}) ∩ {k < x2 < k + ε} ⊂⊂ U and

ε < h/2h̄.
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The proof of the main result requires a number of lemmas. First, observe that

since a(t) > 0 for t > 0, we deduce from (1.1) that a is one-to-one. Then we consider

the function

vε(x1, x2) = ϑε(k + ε− x2) with ϑε(t) =

∫ t

0

a−1(2h̄ε− h̄s) ds for t ∈ [0, ε],

which satisfies

(3.1) ∆Avε = −h̄ in Zk+ε
k (w1, w2).

Next, let vε be the unique solution in W 1,A(Zk+ε
k (w1, w2)) of the problem

(3.2)

{

∆Avε = −div(H) in Zk+ε
k (w1, w2),

vε = vε on ∂Zk+ε
k (w1, w2).

Then we obtain:

Lemma 3.1. We have

(3.3) 0 6 vε 6 vε in Zk+ε
k (w1, w2).

P r o o f. To simplify the notation, we drop the dependence of Zk+ε
k (w1, w2) on

(w1, w2).

(i) Note that v−ε ∈ W 1,A(Zk+ε
k ) and v−ε = 0 on ∂Zk+ε

k (w1, w2). Therefore, we

obtain from (3.2) and (1.5)

∫

Zk+ε
k

a(|∇vε|)

|∇vε|
∇vε · ∇v−ε dx =

∫

Zk+ε
k

div(H)v−ε dx,

∫

Zk+ε
k

a(|∇v−ε |)

|∇v−ε |
∇v−ε · ∇v−ε dx =

∫

Zk+ε
k

−div(H)v−ε dx,(3.4)

∫

Zk+ε
k

|∇v−ε |a(|∇v−ε |) dx =

∫

Zk+ε
k

−div(H)v−ε dx 6 0.

Taking into account (3.4) and the fact that ta(t) is an increasing function, we deduce

that ∇v−ε = 0 a.e. in Zk+ε
k . Since v−ε = 0 on ∂Zk+ε

k , we must have v−ε = 0 in Zk+ε
k .

Hence, vε > 0 in Zk+ε
k .

(ii) Similarly, we observe that (vε − vε)
+ ∈ W 1,A(Zk+ε

k ) and (vε − vε)
+ = 0 on

∂Zk+ε
k . Therefore, we obtain from (3.1) and (3.2)

∫

Zk+ε
k

a(|∇vε|)

|∇vε|
∇vε · ∇(vε − vε)

+ dx =

∫

Zk+ε
k

div(H)(vε − vε)
+ dx,(3.5)

∫

Zk+ε
k

a(|∇vε|)

|∇vε|
∇vε · ∇(vε − vε)

+ dx =

∫

Zk+ε
k

h̄(vε − vε)
+ dx.(3.6)
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Subtracting (3.6) from (3.5), and using (1.6), we get

(3.7)

∫

Zk+ε
k

(a(|∇vε|)

|∇vε|
∇vε −

a(|∇vε|)

|∇vε|
∇vε

)

· ∇(vε − vε)
+ dx

=

∫

Zk+ε
k

(div(H)− h̄)(vε − vε)
+ dx 6 0.

Taking into account (3.7) and (1.2), we obtain ∇(vε − vε)
+ = 0 a.e. in Zk+ε

k . Since

(vε−vε)
+ = 0 on ∂Zk+ε

k , we get (vε−vε)
+ = 0 in Zk+ε

k . Hence, vε 6 vε in Z
k+ε
k . �

Lemma 3.2. After extending vε by 0 to Zk+ε, we obtain
∫

Zk

(a(|∇vε|)

|∇vε|
∇vε + χ([vε > 0])H(x)

)

· ∇ζ dx > 0

∀ ζ ∈ W 1,A(Zk), ζ > 0, ζ = 0 on ∂Zk ∩ U.

P r o o f. First we have ∆Avε = −divH 6 0 in Zk+ε
k (w1, w2), and by (3.3), vε > 0

in Zk+ε
k (w1, w2). By Lemma 2.1 we obtain vε > 0 in Zk+ε

k (w1, w2).

Let us point out that vε = 0 on L = ∂Zk+ε
k (w1, w2) ∩ {x2 = k + ε} and

vε ∈ C1,α
loc (Z

k+ε
k (w1, w2) ∪ L) for some α ∈ (0, 1) (see [17]). Moreover, we have

(3.8) |∇vε(x)| 6 a−1(2h̄ε) ∀x ∈ L.

Indeed, from Lemma 3.1 we have vε 6 vε in Zk+ε
k (w1, w2), and since vε = vε = 0

on L and vε, vε > 0, we obtain

∀ (x1, x2) ∈ Zk+ε
k (w1, w2)

∣

∣

∣

vε(x1, x2)− vε(x1, k + ε)

x2 − k − ε

∣

∣

∣
6

∣

∣

∣

vε(x1, x2)− vε(x1, k + ε)

x2 − k − ε

∣

∣

∣
.

Letting x2 go to k + ε, we get |vεx2
(x1, k + ε)| 6 |vεx2

(x1, k + ε)| on L, which is

equivalent to |∇vε(x1, k + ε)| 6 |∇vε(x1, k + ε)| on L, since vε = vε = 0 on L.

Given that |∇vε| = ϑ′
ε(k + ε− x2) 6 ϑ′

ε(0) = a−1(2h̄ε), (3.8) holds.

Now since the outward unit normal vector to L is ν = e2 = (0, 1), we get by (1.3)

and (3.8), since ε ∈ (0, h/2h̄)

(3.9)
a(|∇vε|)

|∇vε|
∇vε · ν +H(x) · ν =

a(|∇vε|)

|∇vε|
∇vε · e2 +H2(x) > −a(|∇vε|) + h

> − 2h̄ε+ h > 0 on L.

Finally, for ζ ∈ W 1,A(Zk), ζ > 0, ζ = 0 on ∂Zk ∩ U , we obtain from (3.2) and (3.9)
∫

Zk

(a(|∇vε|)

|∇vε|
∇vε + χ({vε > 0})H(x)

)

· ∇ζ dx

=

∫

L

(a(|∇vε|)

|∇vε|
∇vε · ν +H(x) · ν

)

ζ dσ > 0.

�
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Lemma 3.3. Assume that

u ◦ Th(tk(w1), w1) = u ◦ Th(tk(w2), w2) = 0,

u ◦ Th(tk(w), w) 6 ϑε(ε) = vε(tk(w), w) ∀w ∈ (w1, w2).

Then we have

lim
δ→0

1

δ

∫

Zk+ε
k

(w1,w2)∩{0<u−vε<δ}

(a(|∇u|)

|∇u|
∇u−

a(|∇vε|)

|∇vε|
∇vε

)

· ∇(u− vε) dx = 0.

P r o o f. For δ, η > 0, let Fδ(s) be as in the proof of Lemma 2.4, dη(x2) =

Fη(x2 − k) and k = k + ε. By applying Lemma 2.3 and Lemma 3.2 respectively

for ζ = Fδ(u− vε) + dη(1 − Fδ(u)) and ζ = Fδ(u− vε), we get

∫

Zk

(a(|∇u|)

|∇u|
∇u+ χH(x)

)

· ∇(Fδ(u− vε)) dx

6 −

∫

Zk

(a(|∇u|)

|∇u|
∇u+ χH(x)

)

· ∇(dη(1− Fδ(u))) dx

−

∫

Zk

(a(|∇vε|)

|∇vε|
∇vε + χ({vε > 0})H(x)

)

· ∇(Fδ(u− vε)) dx 6 0.

Adding these inequalities, we get since dη = 0 in {vε > 0}

∫

Zk∩{vε>0}

F ′
δ(u− vε)

(a(|∇u|)

|∇u|
∇u−

a(|∇vε|)

|∇vε|
∇vε

)

· ∇(u− vε) dx

6 −

∫

Zk∩{vε=0}

(1 − dη)
(a(|∇u|)

|∇u|
∇u+ χH(x)

)

· ∇(Fδ(u)) dx

−

∫

Zk∩{vε=0}

(1 − Fδ(u))
(a(|∇u|)

|∇u|
∇u+ χH(x)

)

· ∇ dη dx = Iδη1 + Iδη2 .

Since

|Iδη1 | 6

∫

D
k∩{k<x2<k+η}

(a(|∇u|) + |H(x)|)|∇(Fδ(u))| dx,

we obtain lim
η→0

Iδη1 = 0. As for Iδη2 , we have

Iδη2 = −

∫

Zk∩[u=vε=0]

χH(x) · ∇ dη dx

−

∫

Zk∩[u>vε=0]

(1− Fδ(u))
(a(|∇u|)

|∇u|
∇u +H(x)

)

· ∇ dη dx

6 −

∫

Zk∩[u>vε=0]

(1− Fδ(u))
(a(|∇u|)

|∇u|
∇u +H(x)

)

· ∇ dη dx = Iδη3 ,
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since we have by (1.3) χH(x) · ∇ dη = χH2(x)∂x2
dη = η−1χH2(x)χ{k<x2<k+η} > 0

in Zk ∩ {u = vε = 0}.

Let J = {w ∈ (w1, w2)/ϕh(w) > tk(w)}. Then given that u ∈ C0,1
loc (U), one has

for some positive constant C

|Iδη3 | 6
C

η

∫

Zk∩{u>vε=0}∩{k<x2<k+η}

(1− Fδ(u)) dx

=
C

η

∫

J

∫ min(ϕh(w),t
k+η

(w))

t
k
(w)

(1 − Fδ(u ◦ Th))(t, w) · (−Yh(t, w)) dt dw

6 Ch̄

∫

J

(

1

η

∫ t
k
(w)+η

t
k
(w)

(1− Fδ(u ◦ Th)) dt

)

dw.

Since the function t 7→ 1− Fδ(u ◦ Th(t, w)) is continuous, we obtain

lim sup
η→0

|Iδη3 | 6 Ch̄

∫

J

(1− Fδ(u ◦ Th(tk(w), w))) dw.

Hence,

∫

Zk+ε
k

(w1,w2)∩{0<u−vε<δ}

1

δ

(a(|∇u|)

|∇u|
∇u−

a(|∇vε|)

|∇vε|
∇vε

)

· ∇(u − vε)
+ dx

6 C

∫

J

(1− Fδ(u ◦ Th(tk(w), w))) dw.

The lemma follows by letting δ → 0. �

Lemma 3.4. Assume that the assumptions of Lemma 3.3 hold. Then we have

(3.10)

∫

Zk+ε
k

(w1,w2)

A(x)∇(u − vε)
+ · ∇ζ dx = 0 ∀ ζ ∈ D(Zk+ε

k (w1, w2)),

where

A(ξ) = (Aij), Aij =
∂Ai

∂xj

and Ai(ξ) =
a(|ξ|)

|ξ|
ξi.

P r o o f. First, we observe that we have for any ζ ∈ D(Zk+ε
k (w1, w2))

(3.11)

∫

Zk+ε
k

(w1,w2)

χ({u > vε})
(a(|∇u|)

|∇u|
∇u −

a(|∇vε|)

|∇vε|
∇vε

)

· ∇ζ dx

= lim
δ→0

∫

Zk+ε
k

(w1,w2)

Fδ(u− vε)
(a(|∇u|)

|∇u|
∇u−

a(|∇vε|)

|∇vε|
∇vε

)

· ∇ζ dx = lim
δ→0

Iδ,
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where

(3.12)

Iδ =

∫

Zk+ε
k

(w1,w2)

(a(|∇u|)

|∇u|
∇u−

a(|∇vε|)

|∇vε|
∇vε

)

· ∇(Fδ(u − vε)ζ) dx

−
1

δ

∫

Zk+ε
k

(w1,w2)∩[0<u−vε<δ]

ζ
(a(|∇u|)

|∇u|
∇u−

a(|∇vε|)

|∇vε|
∇vε

)

· ∇(u − vε) dx

= I1δ − I2δ .

By Lemma 3.3 and (1.2) we have

(3.13) lim
δ→0

I2δ = 0.

Regarding the integral I1δ , we have from (P) (ii) and the problem (3.2), because

(Fδ(u− vε)ζ) ∈ W 1,A
0 (Zk+ε

k (w1, w2)) and χ = 1 a.e. in {u > vε} that

(3.14) I1δ =

∫

Zk+ε
k

(w1,w2)

a(|∇u|)

|∇u|
∇u · ∇(Fδ(u− vε)ζ) dx

−

∫

Zk+ε
k

(w1,w2)

a(|∇vε|)

|∇vε|
∇vε · ∇(Fδ(u− vε)ζ) dx

= −

∫

Zk+ε
k

(w1,w2)

χH(x) · ∇(Fδ(u− vε)ζ) dx

+

∫

Zk+ε
k

(w1,w2)

H(x) · ∇(Fδ(u− vε)ζ) dx = 0.

It follows from (3.11)–(3.14) that
∫

Zk+ε
k

(w1,w2)

χ({u > vε})
(a(|∇u|)

|∇u|
∇u−

a(|∇vε|)

|∇vε|
∇vε

)

· ∇ζ dx = 0

∀ ζ ∈ D(Zk+ε
k (w1, w2)),

which can be written as

(3.15)

∫

Zk+ε
k

(w1,w2)

χ({u > vε})

(
∫ 1

0

d

dt
(A(∇wt)) dt

)

· ∇ζ dx = 0

∀ ζ ∈ D(Zk+ε
k (w1, w2)),

where

A(ξ) = (A1,A2)(ξ) =
a(|ξ|)

|ξ|
ξ

and wt = tu+ (1− t)vε. Now observe that

(3.16)

∫ 1

0

d

dt
(A(∇wt)) dt =

(
∫ 1

0

∂Ai

∂xj

(∇wt)

)

i,j=1,2

∇(u− v) = A(x)∇(u − v).

Hence, we obtain (3.10) from (3.15) and (3.16). �
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Lemma 3.5. We have

(3.17) min(1, a0)
a(z)

z
|ξ|2 6 Aij(z)ξiξj 6 max(1, a1)

a(z)

z
|ξ|2 ∀ z 6= 0 ∀ ξ ∈ R

2.

P r o o f. Let z 6= 0 and ξ = (ξ1, ξ2) ∈ R
2. Since A ∈ C1(R2 \ {(0, 0)}), we get by

direct calculation

Aij(z) =
∂(Ai(z))

∂zj
=

a′(z)z − a(z)

z3
zizj +

a(z)

z
δij

Aij(z)ξiξj =
a′(z)z − a(z)

z3
(z1ξ1 + z2ξ2)

2 +
a(z)

z
|ξ|2.

Using (1.1), we obtain

a(z)

z

(

(a0 − 1)
|z · ξ|2

z2
+ |ξ|2

)

6 Aij(z)ξiξj 6
a(z)

z

(

(a1 − 1)
|z · ξ|2

z2
+ |ξ|2

)

.

Then, if a0 > 1, the left-hand side of inequality (3.17) holds. When a0 < 1, we use

the Cauchy-Schwarz inequality |z · ξ| 6 |z||ξ|, to conclude. We proceed in the same

way for the right-hand side. �

Lemma 3.6. Assume that the assumptions of Lemma 3.3 hold. Then we have:

If u is not positive in Zk+ε
k (w1, w2), then u = 0 in Zk+ε.

P r o o f. Assume that u is not positive in Zk+ε
k (w1, w2). Then

∃(t0, w0) such that Th(t0, w0) ∈ Zk+ε
k (w1, w2) and u ◦ Th(t0, w0) = 0.

This leads by Theorem 2.2 (ii) to

(3.18) u ◦ Th(t, w0) = 0 ∀ t ∈ [t0, tk+ε].

From Lemmas 3.4 and 3.5 we know that

(3.19) div(A(x)∇(u − vε)
+) = 0 in Zk+ε

k (w1, w2).

Moreover, by Lemma 3.5, the matrix A(x) satisfies for all x ∈ Zk+ε
k (w1, w2) and

ξ ∈ R
2

(3.20) min(1, a0)λ(x)|ξ|
2
6 A(x)ξ · ξ 6 max(1, a1)λ(x)|ξ|

2

with λ(x) =

∫ 1

0

a(|∇wt(x)|)

|∇wt(x)|
dt, wt = tu+ (1 − t)vε.
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Next, we have vε ∈ C1,α(Zk+ε
k (w1, w2) ∪ L), where

L = ∂Zk+ε
k (w1, w2) ∩ {x2 = k + ε}.

We also have vε = 0 on L and vε > 0 in Zk+ε
k (w1, w2). So vε achieves its minimum

value on the line segment L. By Lemma 3.2 of [12], we must have |∇vε| > 0 along L.

Therefore, for δ small enough such that w1 + δ < w2 − δ there exist two positive

constants c0, c1 such that

∀x ∈ Zk+ε
k (w1, w2) ∩ {k + ε− δ 6 x2 6 k + ε} ∩ {w1 + δ 6 w 6 w2 − δ} = Zk+ε

k+ε−δ

c0 6 |∇vε(x)| 6 c1.(3.21)

On the other hand, |∇u| is also bounded in Zk+ε
k+ε−δ, since by Theorem 2.1, u ∈

C0,1(Zk+ε
k (w1, w2)). It follows from (3.20)–(3.21) that we have for two positive con-

stants λ0 and λ1

λ0 6 λ(x) 6 λ1 in Zk+ε
k+ε−δ

and therefore, we get from (3.20)

(3.22) min(1, a0)λ0|ξ|
2
6 A(x)ξ · ξ 6 max(1, a1)λ1|ξ|

2 ∀x ∈ Zk+ε
k+ε−δ ∀ ξ ∈ R

2.

Taking into account (3.18), we see that

(3.23) Zk+ε
k+ε−δ ∩ {u = 0} 6= ∅.

It follows from (3.19), (3.22), (3.23), and the strong maximum principle that

(u− vε)
+ ≡ 0 in Zk+ε

k+ε−δ. Consequently, we obtain u 6 vε in Zk+ε
k+ε−δ, and therefore

u◦Th(tk+ε(w), w) = 0 for all w ∈ (w1+ δ, w2− δ). Since δ is arbitrarily small, we get

u ◦ Th(tk+ε(w), w) = 0 for all w ∈ (w1, w2). Hence, by Theorem 2.2 (ii) we obtain

u = 0 in Zk+ε. �

Lemma 3.7. Let w0 ∈ (w∗, w
∗), x0 = Th(t0, w0) be such that u(x0) = 0 and for

some η > 0, Bη(Th(t0, w0)) ⊂⊂ U . Then there exist two sequences (t−n , w
−
n )n and

(t+n , w
+
n )n such that lim

n→∞
(t+n , w

+
n ) = lim

n→∞
(t−n , w

−
n ) = (t0, w0) and for all n,

(i) Th(t
−
n , w

−
n ) ∈ Bη(Th(t0, w0)) ∩ {w < w0}, u ◦ Th(t

−
n , w

−
n ) = 0,

(ii) Th(t
+
n , w

+
n ) ∈ Bη(Th(t0, w0)) ∩ {w > w0}, u ◦ Th(t

+
n , w

+
n ) = 0.

P r o o f. First we observe that by Lemma 2.6 the following situations cannot occur

simultaneously:

(a) u ◦ Th > 0 in Bη(Th(t0, w0)) ∩ {w < w0},
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(b) u ◦ Th > 0 in Bη(Th(t0, w0)) ∩ {w > w0}.

In fact, to prove the lemma, it is enough to show that neither (a) nor (b) hold. So

assume for example that (a) holds. Then by Lemma 2.6 there exists a sequence

(t+n , w
+
n )n such that Th(t

+
n , w

+
n ) ∈ Bη(Th(t0, w0)) ∩ {w > w0},

u ◦ Th(t
+
n , w

+
n ) = 0 and lim

n→∞
(t+n , w

+
n ) = (t0, w0).

Let k = max{T 2
h(t0, w0), T

2
h(t

+
n , w

+
n )}. Then since u(x0) = 0 and u is continuous

at x0, we may assume that for n large enough we have

(3.24) u ◦ Th(tk(w), w) 6 ϑε(ε) ∀w ∈ (w0, w
+
n ).

For ε > 0 small enough and n large enough, we may also assume that

(3.25) Zk+ε
k (w0, w

+
n ) ⊂⊂ U.

We observe that because of the sequence (t+n , w
+
n )n and Theorem 2.2 (i), u is not

positive in Zk+ε
k (w0, w

+
n ). Then, by using (3.24), (3.25), and Lemma 3.6, we con-

clude that for ε > 0 small enough and n large enough we must have u = 0 in

Zk+ε ∩ Th({w0 < w < w+
n }). Now since we have assumed that (a) holds, we are in

contradiction with Lemma 2.6.

Similarly, if we assume that (b) holds, we get a contradiction as well. �

We are now ready to prove the main result of this paper.

Theorem 3.1. The function ϕh is continuous in the interval (w∗, w
∗).

P r o o f. Let w0 ∈ (w∗, w
∗). We will prove that ϕh is continuous at w0. To this

end, it is enough to show that ϕh is upper semi-continuous at w0.

Let x0 = Th(ϕh(w0), w0) = Th(t0, w0) and let ε > 0. Since u(x0) = 0 and u is

continuous at x0, there exists η ∈ (0, ε) such that

(3.26) u(x) 6 ϑε(ε) ∀x ∈ Bη(x0) ⊂⊂ U.

By Lemma 3.7, there exists two sequences (t−n , w
−
n )n and (t+n , w

+
n )n such that

lim
n→∞

(t+n , w
+
n ) = lim

n→∞
(t−n , w

−
n ) = (t0, w0) and for all n

(i) Th(t
−
n , w

−
n ) ∈ Bη(Th(t0, w0)) ∩ {w < w0}, u ◦ Th(t

−
n , w

−
n ) = 0,

(ii) Th(t
+
n , w

+
n ) ∈ Bη(Th(t0, w0)) ∩ {w > w0}, u ◦ Th(t

+
n , w

+
n ) = 0.
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Let k = max{T 2
h(t

−
n , w

−
n ), T

2
h(t0, w0), T

2
h (t

+
n , w

+
n )} and let C be the constant in

Lemma 2.2. We observe that we can choose ε small enough and n large enough

so that

ε′ = ε/2C < h/2h̄,

Zk+ε′

k (w−
n , w

+
n ) ⊂⊂ Bη(x0).(3.27)

We also observe that because Th(t0, w0) = 0, and by Theorem 2.2 (i), u is not positive

in Zk+ε′

k (w−
n , w

+
n ). Then, by using (3.26), (3.27), and Lemma 3.6, we see that for n

large enough, we must have

u = 0 in Th({w
−
n < w < w+

n }) ∩ {x2 > k + ε′}.

Therefore, we obtain

(3.28) ϕh(w) 6 tk+ε′(w) ∀w ∈ (w−
n , w

+
n ).

From Lemma 2.2, we infer that we have for η < ε/4C

(3.29) tk+ε′ (w) 6 tx02
(w0) + C(|k + ε′ − x02|+ |w − w0|)

6 t0 + C(η + ε′ + η) = t0 + 2Cη + ε/2

6 t0 + ε/2 + ε/2 = t0 + ε.

Combining (3.28) and (3.29), we obtain

ϕh(w) 6 ϕh(w0) + ε ∀w ∈ (w−
n , w

+
n ),

which is the upper semi-continuity of ϕh at w0. �

Corollary 3.1. We have

χ = χ{u>0}.

P r o o f. We observe that by (2.3), it is enough to show that we have for each h

(3.30) χ ◦ Th = χ{t<ϕh(w)}.

First, we have by (P) (i) and (2.3)

(3.31) χ ◦ Th = 1 a.e. in {t < ϕh(w)}.

Next, we have by Lemma 2.5

(3.32) χ ◦ Th = 0 a.e. in Int({u ◦ Th = 0}) = Int({t > ϕh(w)}).

Now, the set {t = ϕh(w)} being of measure zero (since ϕh is continuous at each point

w such that Th(ϕh(w), w) ∈ Ω), we conclude that (3.30) follows from (3.31)–(3.32).

�
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