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Abstract. General circle packings are arrangements of circles on a given surface such
that no two circles overlap except at tangent points. In this paper, we examine the optimal
arrangement of circles centered on concentric annuli, in what we term rings. Our motivation
for this is two-fold: first, certain industrial applications of circle packing naturally allow for
filled rings of circles; second, any packing of circles within a circle admits a ring structure
if one allows for irregular spacing of circles along each ring. As a result, the optimization
problem discussed herein will be extended in a subsequent paper to a more general setting.
With this framework in mind, we present properties of concentric rings that have common
points of tangency, the exact solution for the optimal arrangement of filled rings along
with its symmetry group, and applications to construction of aluminum-conductor steel
reinforced cables.
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1. Introduction

Circle packing in a circle is a two dimensional problem of packing n equal circles

into the smallest possible larger circle. In the cases of n = 7, 19, 37, 61, 91, the optimal

solution (n = 7 and 19, see [2]) or the conjectured optimal solution (n = 37, 61 and 91,

see [3]) contain filled rings of circles as shown in Figure 1. Such an arrangement is

particularly useful when we want to arrange circles into layers. Here we explicitly

study the optimal packing of discs in filled rings with minimal separation.

One may consider minimal separation of rings with either disjoint or tangential

discs and for identical or unequal discs in separate rings. Optimal packing of discs

in rings with such variety of possible arrangements has an array of applications. For

example, optimal construction of submarine communication cables or high voltage
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(a) (b) (c)

Figure 1. The optimal arrangement of circles in a circle contains filled rings of circles for:
(a) n = 19 (see [2]), (b) n = 37 (conjectured) (see [3]), and (c) n = 61 (conjec-
tured) (see [3]).

power cables may require cables composed of fiber optics in rings of tubes, or rings

of strands of steel and aluminum, each having a different radius [10], [11]. A circular

constellation diagram that represents a signal modulated by a digital modulation

scheme [4], [7] may require identifying the centers of disjoint discs that are on mini-

mally separated rings to improve the noise tolerance of the transmission. A sequential

or recursive circle packing problem on circles [8] may be solved as an optimal packing

of rings. Subsequently, the finding of minimally separated rings is an important class

of circle packing problems.

Packing equal circles into an annulus has been studied under packing with circular

prohibited areas [5], [9]. Generally, only the computational optimal solution is found

by using iteration schemes such as the Zoutendijk method, which generates improved

feasible directions at each iteration [12]. In this paper, we formulate the optimization

problem related to minimal separation of filled rings. We show that when the discs in

each ring are externally tangent, the exact solution can be found by solving an integer

optimization problem on a finite set of integers. As an example, we demonstrate

the application of the solution to the design of aluminum conductor steel-reinforced

(ACSR) cables.

1.1. Problem formulation. Define Ring(m, r, s) as the set of m > 3 congruent

discs with circular boundaries of radius r > 0, whose centers are regularly spaced on

a common core circle of radius s > r centered at a point O, and whose interiors are

disjoint; see both part (a) and part (b) of Figure 2. As indicated in part (b) of that

figure, although the interiors of the discs are disjoint, the discs may be externally

tangent to each other on their boundary circles, in which case we say the ring is

filled. In a filled ring, the core circle necessarily has radius r csc(π/m), as indicated

in part (b) of Figure 2, and thus we will write just Ring(m, r) for a filled ring. This

filled case is of primary interest in the current paper; however, certain geometric
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properties which are established in this paper hold for general rings which may not

be filled, and these will find further applications in a subsequent paper.
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(a) (b)

Figure 2. (a) The set of m congruent discs of radius r with centers regularly spaced on
a core circle of radius s centered at O, denoted by Ring(m,r, s); here m = 5.
(b) A filled ring denoted by Ring(m, r), where the radius of the core circle is
r csc(π/m) and consecutive discs are externally tangent to each other; herem = 9.

Because the discs in Ring(m, r, s) have boundary circles and the circles likewise

bound discs, we will at times speak both of the discs of Ring(m, r, s) or the cir-

cles of Ring(m, r, s); if a sharp distinction is needed at any point, we will provide

clarification.

Consider two concentric ringsRing(m, r, s) and Ring(n, ̺, σ) such that the inequal-

ity σ > s holds. With this constraint, the core circle of Ring(n, ̺, σ) lies outside of

the core circle of Ring(m, r, s). We say the two rings are arranged orderly if the

interiors of the discs from the two rings are disjoint, but there exists at least one

point of tangency between discs from the two rings; see Figure 3 which shows both

the general case in part (a) as well as the filled case in part (b).

In this paper we will be primarily interested in a set of filled rings Ring(mi, ri),

i = 1, 2, . . . , p, such that ri+1 csc(π/mi+1) > ri csc(π/mi) for all i = 1, . . . , p− 1, and

where each successive pair Ring(mi, ri) and Ring(mi+1, ri+1) are arranged orderly.

We say the orderly packing has minimal separation with respect to a fixed initial

radius r1 if the packing minimizes successive radii of the rings Ring(mi, ri), i =

2, . . . , p, over all such orderly packings.

Our problem is therefore to find orderly packings of filled rings that exhibit mini-

mal separation. To this end, the outline of the paper is as follows: In Section 2, we

prove initial geometric properties of concentric orderly packed pairs of rings, both
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Figure 3. (a) An orderly packing of two concentric rings Ring(m, r, s) and Ring(n, ̺, σ).
(b) An orderly packing of two filled rings Ring(m, r) and Ring(n, ̺).

filled and otherwise. In Section 3 we provide an exact solution for the problem of

minimizing the radius of an outer filled ring with respect to a fixed inner filled ring,

and determine the symmetry group of this optimal solution. In Section 4 we im-

plement this solution computationally to generate examples of minimally separated

orderly packed rings, in particular some that are relevant to the construction of high

voltage power line cables.

2. Geometry of concentric rings

In this section we prove several observations of orderly packed concentric rings;

these hold for general rings, not just filled rings, except where noted. All of these

observations in and of themselves are basic, but nevertheless their combined effect

will allow the solution of our optimization problem in Section 3.

Proposition 2.1. Consider two fixed concentric orderly packed rings Ring(m, r, s)

and Ring(n, ̺, σ) centered at a point O. Let C be a circle centered at a point X on

Ring(m, r, s). Then the following four statements are true:

1. No more than two circles from Ring(n, ̺, σ) are tangent to C.

2. If two circles from Ring(n, ̺, σ) are tangent to C, those circles are consecutive

along their ring, and are reflections of each other in the line OX .

3. If any circle from Ring(m, r, s) centered at a point Xi is tangent to a circle from

Ring(n, ̺, σ) centered at a point Yj , then the central ∠XiOYj = θ for a fixed

value θ > 0 that is uniquely determined by r, s, ̺ and σ.
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4. The points of tangency between any circles of the two rings are themselves on

a circle with center O.

P r o o f. The proof is a compass and straight-edge construction in Euclidean ge-

ometry. Fix a circle C centered at a point X on Ring(m, r, s). Then OX is a fixed

value s. If a circle CY centered at a point Y on Ring(n, ̺, σ) is tangent to C at

a point P , then OY is a fixed value of σ and XY is a fixed value, namely r + ̺.

This is shown in Figure 4, where Y must be both on a gray circle cO of fixed radius

centered at O, and on a gray circle cX of fixed radius centered at X . Circles intersect

each other in at most two points, hence there are at most two points where Y can

occur, and these are reflections of each other through the line OX , as indicated by Y

and Y ′ in Figure 4. This establishes item 1.

O
X

cO

cX

Y

P

CY

C

̺

r

Y ′

Figure 4. There are only two points Y and Y ′ which could be centers for the circle tangent
to C, and these are reflections of each other through the line OX.

Next, observe that if both the circle CY centered at Y and the circle CY ′ centered

at Y ′ are tangent to C, with the latter tangent at a point P ′, by the reasoning

in the above paragraph, CY ′ is a reflection of CY through the line OX, and P ′ is

a reflection of P , as indicated by the circle CY ′ in Figure 5. Moreover, these circles

must be consecutive along Ring(n, ̺, σ), and in the case when the rings are filled,

have OX as a common tangent line as indicated in Figure 5. The reason for this is

as follows: if there were an intermediate circle along Ring(n, ̺, σ) between these two

circles, its center would be along the subarc of cO which intersects the disc bounded

by cX . The points along this subarc have distance to X less than r + ̺, and thus

this intermediate circle with radius ̺ would be forced to intersect C at two points,

since the distance from X to C is r; this contradicts the orderly packing of the two

rings. This establishes item 2.
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Figure 5. Two circles tangent to C are reflections of each other through the line OX and
consecutive in their ring.

Finally, nothing special was assumed for C, and the above two paragraphs show

that the construction in Figure 4 is in fact generic for any point of tangency P

between circles on Ring(m, r, s) and circles on Ring(n, ̺, σ), and only depends on

the fixed lengths OX = s, OY = σ, and XY = r + ̺. Thus, any point of tangency

between circles in the two rings will look precisely like that in Figure 4 after some

series of rigid transformations which fix O. As a result, there is only one magnitude

for any resulting central angle ∠XOY , and only one distance from O to points of

tangency P , and this establishes items 3 and 4. �

For a given collection of orderly packed rings, we will denote by S the symmetry

group of the packing, namely the group of isometries of R2 which keep the packing

fixed. Rings are bounded subsets of R2 and can be invariant under reflections and

rotations. Recall that the dihedral group is denoted by Dn, which is the symmetry

group of a regular n-gon, made up of n rotations and n reflections. We thus have

the following basic lemma, whose proof we provide for completeness.

Lemma 2.1. Consider a single ring Ring(m, r, s) centered at a point O.

1. The rotations which fix Ring(m, r, s) are precisely those around O which are

integer multiples of 2π/m.

2. The reflections that fix a filled Ring(m, r) are precisely across those m lines

which contain O as well as either the center of a circle on Ring(m, r) or a point

of tangency between two circles on Ring(m, r).

3. The symmetry group S of a filled Ring(m, r) is Dm, the dihedral group of

order 2m.
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P r o o f. For item 1 we observe that the m circles which comprise Ring(m, r, s)

all have the same radii, and their m centers are regularly spaced along the core

circle of the ring with angular separation 2π/m between successive centers. Thus,

the rotations that take centers of congruent circles to centers of congruent circles,

and hence fix Ring(m, r, s), are precisely those that are integer multiples of 2π/m.

For item 2 we consider two cases, namely when m is even or odd. When m is

even, the line OX , which passes through the center X of a circle on Ring(m, r),

must also extend through O to a diameter of the core circle that intersects an an-

tipodal center X ′ of a circle on Ring(m, r); see part (a) of Figure 6. This line then

divides Ring(m, r) evenly in half and is a line of reflection, and there are m/2 such

distinct lines. Similarly, the line OP which passes through a point of tangency be-

tween two consecutive circles must extend through O to a diameter of the core circle

that intersects an antipodal point of tangency P ′ on the opposite side of the filled

Ring(m, r); see part (b) of Figure 6. This line then divides Ring(m, r) in half and is

a line of reflection, and there are m/2 such distinct lines, yielding a total of m lines

of reflection.

(a) (b) (c)

O
O

O

X

X ′

P P ′

X

P

Figure 6. Lines of reflection for a filled ring Ring(m, r). Parts (a) and (b) are for the case
of m even, and part (c) is for the case of m odd.

When m is odd, the line OX which passes through the center X of a circle on

Ring(m, r) can be extended through O to a diameter which intersects the core circle

halfway between the centers of two circles on Ring(m, r), and hence passes through

a point of tangency P ; see part (c) of Figure 6. A reflection across OXP thus fixes

Ring(m, r), and there are m such lines, one for each center of a circle on Ring(m, r).

Finally, no other lines of reflection exist, as any other line which passes through O

but does not intersect a center or a point of tangency, will intersect some circle in

a non-diameter chord. Reflection across the chord yields two points of intersection of

that circle with its image, hence does not fix the ring. This proves items 2 and 3. �

We now consider the symmetry group for two orderly packed rings.
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Lemma 2.2. Let Ring(m, r, s) and Ring(n, ̺, σ) be two concentric orderly packed

rings centered at a point O. Let S be the symmetry group of the packing, and also

let k = gcd(m,n).

1. S contains as its rotations precisely all rotations about O by integer multiples

of the angle 2π/k, hence exactly k rotations.

2. For filled rings Ring(m, r) and Ring(n, ̺), the reflections in the group S are

precisely through those lines which pass through the centerO, and which contain

either a center of a circle or a point of tangency between circles on Ring(m, r),

as well as either a center of a circle or a point of tangency between circles on

Ring(n, ̺).

3. The symmetry group S for the orderly packing of filled rings Ring(m, r) and

Ring(n, ̺) contains at most k reflections.

P r o o f. For item 1, observe that since k|m and k|n, we have k = m/m′ and

k = n/n′ for some m′, n′ ∈ N. Therefore, 2π/k = m′ · 2π/m = n′ · 2π/n, so by item 1

in Lemma 2.1, a rotation of 2π/k about O fixes both Ring(m, r, s) and Ring(n, ̺, σ).

Thus, the symmetry group S contains all rotations about O by multiples of 2π/k,

hence at least k rotations. Moreover, by Lemma 2.1 item 3 and Lagrange’s theorem

for finite groups, this rotational subgroup of S must be a subgroup of both the m

rotations in Dm and the n rotations in Dn, and thus its order must divide both m

and n. Since k = gcd(m,n), there are at most k rotations in S, and item 1 follows.

For item 2, we observe that by Lemma 2.1 item 2 any line containing O as well as

either a center of a circle or a point of tangency on the filled Ring(m, r), and either

a center of a circle or a point of tangency on the filled Ring(n, ̺), will be a line of

reflection for the packing. Moreover, again by Lemma 2.1 item 2, these are the only

possible lines of reflection. This establishes item 2 of the current lemma.

For item 3, again by Lemma 2.1 item 3 the symmetry group S for the orderly

packing of filled rings Ring(m, r) and Ring(n, ̺) must be a subgroup of both dihedral

groups Dm and Dn, so again by Lagrange’s theorem the order of S must divide both

2m and 2n. We know that gcd(2m, 2n) = 2k, with the result that S can contain at

most 2k elements. By item 1 in the current lemma we know S already has exactly k

rotations; it must then have at most k reflections, and this establishes item 3. �

In the next section we will formulate and solve the optimization problem related

to the orderly arrangement of two concentric filled rings, Ring(m, r) and Ring(n, ̺),

with center O such that ̺ csc(π/n) > r csc(π/m). To do so, by Lemma 2.2 item 1, we

only need to consider the minimization problem over a circular sector with a central

angle of 2π/k. We therefore conclude this section by establishing notation as well as

an initial lemma before formalizing the minimization problem in the next section.
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Referring to Figure 7, we denote the centers of the circles in Ring(m, r) and

Ring(n, ̺) by X0, . . . , Xm−1 and Y0, . . . , Yn−1, respectively, in a cyclic counterclock-

wise ordering along their respective rings. Let X0 and Y0 be the centers of two circles

which share a point of tangency P , with X0 positioned on the polar axis, and Y0

positioned at a central angle θ, which we may assume is non-negative after possibly

reflecting both rings in OX0. We emphasize we are not claiming this is a line of re-

flection for the symmetry group, just that the solution to our minimization problem

will not depend on this initial setup.

O

2π/m

X0

P

Y0

Yn−1

Yn/k

Yn/k−1

θ

Xm/k

Figure 7. The rotationally invariant sector of angle 2π/k.

Consider the half-open infinite circular sector Φ having vertex at the origin and

with central angle 2π/k, which contains all points having polar angles ϕ ∈ [0, 2π/k),

with X0 positioned at ϕ = 0. We then have the following initial lemma.

Lemma 2.3. In the sector Φ described above, we have ∠X0OY0 = θ 6 π/m.

P r o o f. We think of r,m, ̺ and n as all fixed and examine the local configuration

of the circles centered at X0, X1 and Y0; we consider what values of θ can be

geometrically realized for these circles in an orderly packing while maintaining the

point of tangency P between the circles centered at X0 and Y0. To this end we refer

to part (a) of Figure 8 which shows local configuration. The centers X0 and X1

are on their core circle indicated in dashed gray, and by hypothesis we must have
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a point of tangency P between the circle centered at X0 and the gray circle centered

at Y0, at some angle θ which a priori could be as small as zero. In order to maintain

this point of tangency, we require Y0 to be on a dotted black circle c of radius

r + ̺ centered at X0. Thus, any possible increase in θ in this local configuration

is effectively accomplished by rolling the gray circle centered at Y0 counterclockwise

along the circle centered at X0, as indicated in the movement from part (a) to

part (b) in Figure 8, keeping all other aspects of the figure fixed. At θ = π/m the

gray circle centered at Y0 will have its center on the line containing the point of

tangency between the circles centered at X0 and X1, and by the construction in

Proposition 2.1 the gray circle centered at Y0 will then have the second point of

tangency P ′ with the circle centered at X1, as indicated in part (b) of Figure 8.

It is then evident that θ can no longer increase, since doing so would roll the gray

circle further counterclockwise so as to intersect the circle centered at X1 twice, thus

breaking the orderly packing. Hence, θ 6 π/m. �

O X0

X1

c

π/m

θ

Y0

P

(a)

O X0

X1

c

θ = π/m

Y0

P

P ′

(b)

Figure 8. Possible increase of θ while maintaining the point of tangency P .

3. Minimal separation of filled orderly packed rings

Here we formulate and solve the optimization problem related to the orderly ar-

rangement of two filled rings, Ring(m, r) and Ring(n, ̺), with center O such that

̺ csc(π/n) > r csc(π/m). If the rings are arranged orderly, from Proposition 2.1

we have at most min{2m, 2n} tangent points between them. For given r,m and n,

consider the minimization of the objective function f(̺) = ̺ constrained by finitely

many tangent points between the rings. Since f ′(̺) = 1, from the first order nec-

essary conditions (see [6]), any optimal solution is a boundary point. Subsequently,
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the constrained set is given by

(3.1) 0 < |Ring(m, r) ∩ Ring(n, ̺)| 6 min{2m, 2n}

with at least one constraint active (at least one tangent point).

With k = gcd(m,n), as discussed in the end of Section 2 we only need to consider

the minimization problem over the circular sector Φ with a central angle of 2π/k.

Using the notation and positioning described in Figure 7, we then have the following

initial proposition which shows in our minimization problem we will necessarily have

multiple points of tangency between rings within the sector Φ.

Proposition 3.1. If P is the only point of tangency in the circular sector Φ,

then ̺ is not minimized for the orderly packing.

P r o o f. We examine the entire orderly packing under the condition that only one

point of tangency occurs in the circular sector Φ; we do this examination first for fixed

r, m, ̺ and n, and then show that in fact ̺ is not minimized and can be decreased

while maintaining the orderliness of the packing. To this end, by Lemma 2.2 item 1

we know there will be precisely k points of tangency over the entire packing, namely

one each in their own circular sector that is rotationally symmetric to Φ by rotations

that are integer multiples of 2π/k. By Proposition 2.1, all of these points of tangency

must occur on a circle of fixed radius R from O, where R is determined by the

construction in the proof of that proposition, which in turn depends only on the

fixed values r,m, ̺ and n. Furthermore, no circle in the packing has two points of

tangency on it, and if a point of tangency occurs between a circle with center Xi and

a circle of center Yj , then ∠XiOYj = θ.

We therefore consider how the circle of radius R around O intersects both rings.

We imagine the circles in Ring(n, ̺) as bounding discs colored in light gray, and

the circles in Ring(m, r) as bounding discs colored in darker gray, as in part (a)

of Figure 9; there the points of tangency are indicated by P ’s, and the circle C of

radius R containing these points of tangency is indicated as well. We first consider

the case when θ > 0, which is depicted in Figure 9; once establishing this case, that

of θ = 0 will follow quickly.

In the case of θ > 0, referring back to Figure 8 it is clear we will have that

̺(csc(π/n) − 1) < R < r(1 + csc(π/m)), meaning that the circle C will intersect

Ring(m, r) in m dark gray arcs α1, . . . , αm, one for each disc in Ring(m, r), and C

will intersect Ring(n, ̺) in n light gray arcs β1, . . . , βn, one for each disc in Ring(n, ̺).

These arcs are shown in part (b) of Figure 9, where circle C has been magnified for

ease of visualization. The only places where the arcs are not disjoint are the points of

tangency P , and since no circle has two points of tangency, these points occur at most
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P

P

P

C

(a)

P

P

P
β5

β4

β3

β2

β1

β6

α3

α2

α1

(b)

(c)

Figure 9. Making room to decrease ̺ in the case where only one point of tangency occurs
in each sector.

once for each arc, in particular at most once for the arcs β1, . . . , βn. Furthermore, if

we think of each arc as oriented in the direction of increasing polar angle ϕ, each arc

has a front endpoint at greater ϕ-value, and a back endpoint at lesser ϕ-value. This

has the following consequence: First, recall that if a circle centered at Yj in Ring(n, ̺)

is tangent to a circle centered at Xi in Ring(m, r), then Yj is at greater polar angle

relative toXi. Therefore, the corresponding light gray arc βj will necessarily intersect

the dark gray arc αi at βj ’s back endpoint. Therefore on C, every front endpoint of βj

is disjoint from Ring(m, r), and there exists an ε > 0 such that rotating Ring(n, ̺)

about O for ε radians will induce rotation on βj so as to keep the lengths of all βj

fixed, but rotate them to be entirely disjoint from Ring(m, r); this is indicated in

the movement from part (b) to part (c) in Figure 9. As a result, the new rotated

Ring(n, ̺) will be entirely disjoint from Ring(m, r), since any point of intersection
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between the two rings necessarily includes points on C by construction, with fixed ̺.

With this new rotated Ring(n, ̺) disjoint from Ring(m, r), ̺ can be decreased, along

with the radius ̺ csc(π/n) of the core circle, to obtain a new orderly packing with

smaller ̺.

Finally, when θ = 0, the above argument applies, but where each arc αi and βj is

in fact just a point; as a result there is still room to rotate Ring(n, ̺) forward so as

to make the two rings disjoint, and then decrease ̺. �

We can now formulate the precise minimization problem. Returning to Figure 7,

the polar coordinates of the centers in the sector Φ, which includes all angles in the

closed interval ϕ ∈ [0, 2π/k], are given by

Xi =
(

r csc
π

m
,
2π

m
i
)

, i = 0, 1, 2, . . . ,
m

k
, and

Yj =
(

̺ csc
π

n
,
2π

n
j + θ

)

, j = 0, 1, 2, . . . ,
n

k
− 1.

Since ∠XiOYj = 2πj/n−2πi/m+θ, by applying the cosine rule for △OXiYj , we get

(r + ̺)2 6 r2 csc2
π

m
+ ̺2 csc2

π

n
− 2r̺ csc

π

m
csc

π

n
cos

(2πj

n
−

2πi

m
+ θ(̺)

)

.

For the special case of △OX0Y0 this will in fact be an equality, namely

(r + ̺)2 = r2 csc2
π

m
+ ̺2 csc2

π

n
− 2r̺ csc

π

m
csc

π

n
cos θ(̺).

Then the minimization problem can be formulated as:

minimize f(̺) = ̺,(3.2)

subject to ̺ csc
π

n
> r csc

π

m
,(3.3)

0 6 θ(̺) 6
π

m
, (by Lemma 2.3)(3.4)

(r + ̺)2 = r2 csc2
π

m
+ ̺2 csc2

π

n
− 2r̺ csc

π

m
csc

π

n
cos θ(̺),(3.5)

(r + ̺)2 6 r2 csc2
π

m
+ ̺2 csc2

π

n
r(3.6)

− 2r̺ csc
π

m
csc

π

n
cos

(2πj

n
−

2πi

m
+ θ(̺)

)

,

∀ i = 1, 2, . . . ,
m

k
, j = 0, 1, 2, . . . ,

n

k
− 1.

Next we show that the solution can be found by solving a linear integer programing

problem.
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Theorem 3.1. The solution for the minimization problem (3.2)–(3.6) with

n,m > 2 is given by (3.5) with θ = π(i0/m− j0/n), where (i0, j0) is the solution to:

minimizei,j
i

m
−

j

n
,

subject to
i

m
−

j

n
> 0, i ∈ 1, 2, . . . ,

m

k
, j ∈ 0, 1, . . . ,

n

k
− 1.

P r o o f. Throughout this proof we utilize the fact that 0 < π/n, π/m < π/2.

Claim 1 : argmin
̺

f(̺) = argmax
̺

θ(̺). Differentiating (3.5) with respect to ̺ gives

dθ

d̺
=

r + ̺− ̺ csc2(π/n) + r csc(π/m) csc(π/n) cos θ

r̺ csc(π/m) csc(π/n) sin θ
.

Suppose dθ/d̺ = 0. Then r+ ̺− ̺ csc2(π/n)+ r csc(π/m) csc(π/n) cos θ = 0 and we

have

(3.7) (r + ̺)2 sin2
π

n
= ̺2 csc2

π

n
+ r2 csc2

π

m
cos2 θ − 2r̺ csc

π

m
csc

π

n
cos θ.

We observe (refer back to Figure 2 part (b)) that all the consecutive tangent points of

Ring(m, r) are on a circle of radius r cot(π/m). If ̺ cot(π/n) = r csc(π/m), Ring(n, ̺)

contains the core circle of Ring(m, r). Then with the rings viewed as collections of

discs, Ring(m, r) ∩Ring(n, ̺) is infinite, which contradicts (3.1). We therefore must

have ̺ cot(π/n) > r csc(π/m). Subtracting equation (3.7) from equation (3.5) and

using the fact that 0 6 π/n 6 π/2 and ̺ cos(π/n) > r csc(π/m) sin(π/n),

sin θ = sin
π

m

(

cos
π

n
+

̺

r
cos

π

n

)

> sin
π

m

(

cos
π

n
+ sin

π

n
csc

π

m

)

> sin
π

m

(

cos
π

n
+ sin

π

n

)

> sin
π

m
.

Since 0 6 θ 6 π/m < π/2 by Lemma 2.3, we have a contradiction. We conclude that

dθ/d̺ 6= 0 in the feasible region.

When θ = 0 and n > 2, we have that r csc(π/m) = ̺ csc(π/n)− r − ̺ and

r + ̺− ̺ csc2
π

n
+ r csc

π

m
csc

π

n
= (r + ̺)

(

1− csc
π

n

)

< 0.

Then lim
θ→0+

dθ/d̺ = −∞. Hence dθ/d̺ < 0 for all 0 < θ 6 π/m, which concludes

the proof of the claim.
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Claim 2 : i/m < j/n or 0 6 θ 6 π(i/m− j/n), with equality holding for at most

one pair of i, j in the feasibility region.

First, we show that for any given parameter set (n,m, r, ̺), at most one of the

set of inequality constraints given by (3.6) is active. That is, we have at most two

tangency points between rings over the circular sector with a central angle of 2π/k.

For any two tangent circles with centers at Xi and Yj , by Proposition 2.1 item 3 we

know that ∠XiOYj = 2πj/n − 2πi/m + θ = ±θ. If 2πj/n − 2πi/m + θ = θ, then

j/i = n/m = (n/k)/(m/k). Since (n/k)/(m/k) is an irreducible fraction, along with

0 6 j < n/k and 0 < i 6 m/k, there is no integer pair (i, j) satisfying the equation.

We can only have

(3.8)
2πj

n
−

2πi

m
+ θ = −θ.

If there are two pairs of integers (i1, j1) and (i2, j2) satisfying (3.8), then (j1 − j2)/

(i1 − i2) = (n/k)/(m/k). The same argument as above shows that there are no such

two pairs. We must have at most one pair (i, j), and hence one active inequality

constraint, satisfying (3.8).

From equation (3.5) and inequalities (3.6) we obtain cos θ > cos(2πj/n−2πi/m+θ)

for all i, j. We know θ ∈ [0, π/2), but the argument in the cosine function on the

right-hand side of this inequality could be positive or negative; as a result we obtain

i

m
6

j

n
or 0 6 θ 6 π

( i

m
−

j

n

)

.

However, i/m 6= j/n, which completes the proof of the claim.

Since ̺ cot(π/n) > r csc(π/m), inequality constraint (3.3) is inactive. Let [0, θ0]

be the feasibility region for θ. Then from Claim 2 and inequality constraint (3.4),

[0, θ0] =
⋂

i/m−j/n>0

[

0,min
{

π

m
i−

π

n
j,

π

m

}]

.

We have max θ = θ0. From Proposition 3.1 we know there are at least two tangency

points between rings over the circular sector with a central angle of 2π/k. Subse-

quently, the feasible region is completely characterized by constraints (3.5)–(3.6).

From Claim 2 and Proposition 3.1, θ0 = π(i/m− j/n) for exactly one positive (i, j)

pair given by the integer optimization problem in the theorem statement. From

Claim 1, the optimal solution for the minimization problem (3.2)–(3.6) is given

by (3.5) with θ = θ0. �

As an immediate consequence we can confirm that this optimal solution for the

orderly packing of two concentric rings has the symmetry of a dihedral group.
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Proposition 3.2. Let Ring(m, r) and Ring(n, ̺) be two concentric filled orderly

packed rings centered at a point O, with minimal separation. Let k = gcd(m,n).

Then the symmetry group S of this minimal packing is Dk, the dihedral group of

order 2k.

P r o o f. By Lemma 2.2 item 1 we already know that S contains precisely k rota-

tions. Furthermore, by Lemma 2.2 item 3 we also know that S contains at most k

reflections. We thus need to show that there are at least k distinct lines of reflection.

To see this, consider the following: From Theorem 3.1 we know that in each

of the k copies of the rotationally invariant sector Φ there are exactly two points

of tangency between Ring(m, r) and Ring(n, ̺), with the first point of tangency

(proceeding counterclockwise) occurring for an angle ∠X0OY0 = θ and the second

occurring for an angle ∠XiOYj = −θ, for some θ > 0. As a result, the ray γ which

extends from O and bisects ∠X0OXi must also bisect ∠Y0OYj ; see Figure 10.

O

γ

γ′

θ

−θθ

Y0

YjY ′

j

X0

XiX ′

i

Figure 10. Identifying rays which lie on lines of reflection.

Since γ bisects ∠X0OXi between the centers of two circles on Ring(m, r), by the

individual rotational symmetry of Ring(m, r) we know that γ must intersect either

a center of a circle or a point of tangency between circles on Ring(m, r), depending

on whether an odd or even number of circles occur along Ring(m, r) between the

circles corresponding to X0 and Xi. Likewise since γ bisects ∠Y0OYj , it must also

intersect either a center of a circle on Ring(n, ̺) or a point of tangency between
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circles on Ring(n, ̺). As a result, by Lemma 2.2 item 2 the ray γ must lie on a line

of reflection for the packing. This gives at least k distinct rays which lie on lines of

reflection for the packing.

We require a bit more to show that there are at least k lines of reflection. We con-

tinue further along both rings, and now consider the sector of the rings which begins

at the ∠XiOYj = −θ described above, and then proceeds further counterclockwise

to the next point of tangency which will be at an angle ∠X ′

iOY ′

j = θ; again refer to

Figure 10. Again, there is now a ray γ′ which extends from O and bisects ∠XiOX ′

i

as well as ∠YjOY ′

j , and thus by the exact same reasoning as in the above paragraph,

γ′ must lie on a line of reflection for the packing. We thus obtain at least 2k distinct

rays which lie on lines of reflection for the packing, hence at least k distinct lines of

reflection, and this concludes the proof of the proposition. �

4. Results and applications

Here we discuss several examples of finding ̺ for the orderly packing with minimal

separation of filled Ring(m, r) and Ring(n, ̺), where m,n ∈ N and r are given. From

equation (3.5), the optimal ̺ is given by the quadratic equation

(4.1) ̺2 cot2
π

n
− 2r̺

(

1 + csc
π

m
csc

π

n
cos θ0

)

+ r2 cot2
π

m
= 0,

where θ0 is the optimal θ given in Theorem 3.1. The larger solution is achieved when

Ring(n, ̺) is outside of Ring(m, r).

In packing problems, the general objective is to obtain a packing of the greatest

possible density, calculated as the ratio of the total area occupied by circles to the

container area. For two orderly packed rings Ring(m, r) and Ring(n, ̺), a higher

number of tangency points between rings results in a more compact packing. In this

example, we numerically demonstrate the local optimality of the density when every

circle in Ring(m, r) has at least one point of tangency with the circles of Ring(n, ̺).

Below we identify two such groups of orderly packed rings with minimal separation.

(1) Suppose n = pm, p ∈ N. Then k = m and the symmetry group of the packing

is Dm. We have i = 1 and j = 0, 1, . . . , p − 1. Angle θ is maximized when

j = p− 1 and θ0 = π/n. The circles with centers X0 and Y0 and the circles with

centers X1 and Yp−1 are tangent (see Figure 7). With rotational symmetry for

every angle 2π/m, every circle in Ring(m, r) has exactly two points of tangency

with the circles of Ring(n, ̺). See Figure 11 for some examples.

(2) Suppose m = 2p and n = (2q+1)p, where p, q ∈ N. Then k = p and the symme-

try group of the packing is Dp. We have i = 1, 2 and j = 0, 1, . . . , 2q. Angle θ
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is maximized when i = 1 and j = q, and the maximum is θ0 = π/[2p(2q + 1)].

Every disk in Ring(m, r) has exactly one point of tangency with the discs of

Ring(n, ̺). See Figure 12 for some examples.

(a)

−5 0 5

−5

0

5

(b)

−5 0 5

−5

0

5

(c)

−5 0 5

−5

0

5

Figure 11. Minimally separated orderly packed rings, Ring(m, r) and Ring(n, ̺), with (a)
m = 5, n = 5, r = 1 and ̺ = 3.217, (b) m = 5, n = 10, r = 1 and ̺ = 1.1415,
and (c) m = 5, n = 15, r = 1 and ̺ = 0.6895.
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(c)

Figure 12. Minimally separated orderly packed rings, Ring(m, r) and Ring(n, ̺), with (a)
m = 6, n = 9, r = 1 and ̺ = 1.5312, (b) m = 6, n = 15, r = 1, and ̺ = 0.7813
and (c) m = 6, n = 21, r = 1 and ̺ = 0.5232.

Figure 13 illustrates the highest density of two orderly packed rings, Ring(m, 1)

and Ring(n, ̺), in an annulus of inner and outer radius csc(π/m) − 1 and ̺×

(csc(π/n) + 1), respectively. The peaks in each plot represent local maxima and

occur when n/m = p/2, p = 2, 3, 4, . . .

Orderly packed rings are useful in high voltage power cable designs. Aluminum

conductor steel-reinforced (ACSR) cable is a high-capacity, high-strength stranded

conductor used in overhead power lines. The outer strands are aluminum, chosen for

its high conductivity, and the center strands are steel, chosen to increase the strength
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Figure 13. Ratio n/m versus density for two orderly packed rings with minimal separation,
Ring(m, 1) and Ring(n, ̺), for (a) m = 4, 6, 8, 10 (the lowest curve corresponds
to m = 4), (b) m = 12, 14, 16, 18, 20, and (c) m = 22, 24, 26, 28, 30.

of the cable. Each strand has a circular cross section. High strand packing density

is achieved by placing the wires in rings (see Figure 14).

Figure 14. Strands in high voltage power cables. Steel strands are shown in black and
aluminum strands are shown in light gray.

Strand conductor rings are often compressed to reduce the diameter. After com-

pression, the aluminum strands no longer have precisely circular cross sections. In

practice, it is appropriate to choose a radius that is slightly smaller than the opti-

mal radius for aluminum strands to allow for compression. For orderly packed rings

Ring(m, 1) and Ring(m+6, ̺), the inner radius of the outer ring is at most the outer

radius of the inner ring, with the result

(4.2) ̺ 6
csc(π/m) + 1

csc(π/(m+ 6))− 1
,
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the right-hand side is monotone decreasing for m > 1. From Theorem 3.1 we can

obtain the optimal ̺ as 1 for m = 6. Combined with inequality (4.2), we obtain

1 6 ̺ 6 1.04 for minimal separation given m > 6.

In ACSR cables, a sequence of orderly packed rings, Ring(m + 6i, ̺i), i =

1, . . . , N , can be effectively constructed using equal radius aluminum strands. Since

r csc(π/6) = 2r, we can orderly pack Ring(6, 1) on a disk with radius 1. Subsequently,

1, 7, or 19 equal radius steel strands for the steel core, combined with 20 (7 and 13

orderly packed rings with minimal separation), 24 (9 and 15), 26 (10 and 16), 30 (12

and 18), or 45 (9, 15, and 21) equal radius aluminum strands in two or three rings,

are all appropriate configurations. Most of these configurations are already used in

commercial designs of ACSR cables. See [1] for technical data on AcuTechTM ACSR

conductors. We can expand this list to many other configurations. Note that among

all possible sequences of rings, two sequences, 6, 12, 18, 24, . . . and 9, 15, 21, 27, . . .,

have the highest number of tangent points when minimally separated and possibly

provide the most compact configurations for the aluminum rings. Figure 15 illus-

trates possible configurations along with the density. Upon request, the authors can

provide a set of MATLAB programs to find the optimal ̺ and θ0 and to plot the

orderly packed rings with minimal separation.
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tari who had great interest in tiling problems. The authors are thankful for many
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Figure 15. Minimally separated rings useful in ACSR cable designs. Possible steel strands
are in gray and aluminum strands are in white.
(a) A configuration with 7 steel and 20 aluminum strands. The packing density
is 0.7727. Industrial realization is available with approximately 9/4 ratio for
aluminum to steel diameter [1].
(b) A configuration with 19 steel and 30 aluminum strands. The packing density
is 0.8120. Industrial realization is available with approximately 5/3 aluminum
to steel diameter [1].
(c) A configuration with 7 steel and 45 aluminum strands. The packing density
is 0.7834. Industrial realization is available with approximately 3/2 aluminum
to steel diameter [1].
(d) A possible configuration with 7 steel and 18 aluminum strands. The packing
density is 0.8050.
(e) A possible configuration with 19 steel and 36 aluminum strands. The packing
density is 0.7887.
(f) A possible configuration with 7 steel and 48 aluminum strands. The packing
density is 0.7816.
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