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Abstract. For a second-order singularly perturbed ordinary differential equation (ODE)
under the Robin type boundary conditions, we develop an energetic Robin boundary func-
tions method (ERBFM) to find the solution, which automatically satisfies the Robin bound-
ary conditions. For the non-singular ODE the Robin boundary functions consist of polyno-
mials, while the normalized exponential trial functions are used for the singularly perturbed
ODE. The ERBFM is also designed to preserve the energy, which can quickly find accurate
numerical solutions for the highly singularly perturbed problems by a simple collocation
technique.
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1. Introduction

A lot of engineering problems can be described by ordinary differential equations

(ODEs), which are subjected to certain boundary conditions, and resulted to the

boundary value problems (BVPs). It is better that the solution of BVP can satisfy

the boundary conditions exactly, but in the case of Robin type boundary conditions

and singularity appeared in the solution, it might be a difficult task. There are many

computational methods that have been developed for solving the BVPs [4], [5], [6],

[10], [1].

In the paper we propose an energetic Robin boundary functions method for solving

the singularly perturbed ODE under the Robin boundary conditions. The highest
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order derivative term in the ODE is multiplied by a small parameter. When the

boundary conditions are imposed, the resulting BVP is a singularly perturbed BVP

(SPBVP). It is always so that the SPBVP exhibits a boundary layer, which is a nar-

row region, where the solution varies rapidly.

For the SPBVP it is difficult to exactly satisfy the Robin boundary conditions,

unless one designs the algorithm to satisfy the Robin boundary conditions. Inspired

by the works in [17], we solve the second-order ODE with strong singularity by

designing an algorithm to automatically satisfy the Robin boundary conditions and

also preserving the energy via a new concept of energetic Robin boundary functions.

The readers may refer to [14], [2], [19], [22], [12], [16], [11], [7] for the numerical

methods to solve the SPBVPs.

The paper is arranged as follows. In Section 2, we derive the homogenization

function for the Robin boundary conditions and introduce a new variable, for which

the Robin boundary conditions become homogeneous. The idea of polynomial Robin

boundary functions which automatically satisfy the homogeneous Robin boundary

conditions, is introduced, and then the energetic Robin boundary functions are con-

structed in Section 3. In Section 4, we derive a linear system to determine the

expansion coefficients by a simple collocation technique, where the energetic Robin

boundary functions act as the bases of numerical solutions. In Section 5, we introduce

the normalized exponential trial functions supplemented by a second-order polyno-

mial as the bases for the numerical solutions of the SPBVPs. Numerical examples

are given in Section 6. Finally, the conclusions are drawn in the last section.

2. Homogenization and variable transformation

In the paper we propose a new method for the solution of the following second

order boundary value problem (BVP) under the Robin type boundary conditions:

εu′′(x) + p(x)u′(x) + q(x)u(x) = H(x), 0 < x < 1,(1)

a1u(0) + b1u
′(0) = c1, a2u(1) + b2u

′(1) = c2,(2)

where a1, b1 satisfy a
2
1 + b21 > 0, a2, b2 satisfy a

2
2 + b22 > 0, c1, c2 are given constants,

and [0, 1] is an interval of our problem. We suppose that p(x), q(x) and H(x) ∈
C[0, 1]. However, in many applications the independent variable t may be in an

interval [a, b], of which after taking the variable transform x = (t − a)/(b − a) we

have the problem in the interval x ∈ [0, 1] again, and the ODE and the Robin

boundary conditions should be adjusted accordingly. When ε = 1 we have the usual

ODE, while for 0 < ε ≪ 1 we have a singularly perturbed ODE.
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In the construction of the energy method, the first step is the homogenization

technique, such that for the new variable

(3) y(x) = u(x)−B0(x),

the Robin boundary conditions are homogeneous. If c21 + c22 = 0 we can skip the

following processes and go to the next section directly.

We divide the derivations of the homogenization function B0(x) into two parts.

(I) a1 = 0 (hence b1 6= 0); we can derive

B0(x) = a0x+ b0x
ν , ν > 2,(4)

a0 =
c1
b1
,(5)

b0 =
b1c2 − a2c1 − b2c1

b1a2 + b1b2ν
.(6)

There are many values of ν such that a2 + b2ν 6= 0 (hence, b1a2 + b1b2ν 6= 0) and

one can choose it easily.

(II) a1 6= 0; we can derive

B0(x) = a0 + b0x
ν , ν > 2,(7)

a0 =
c1
a1

,(8)

b0 =
a1c2 − a2c1
a1a2 + a1b2ν

.(9)

There are many values of ν such that a2 + b2ν 6= 0 (hence, a1a2 + a1b2ν 6= 0) and

one can choose it easily.

The above function B0(x) includes a parameter ν. Let

(10) B0(x) = a0 + b0x,

and through some derivations we can obtain

a0 =
c1b2 + c1a2 − c2b1
a1b2 + a1a2 − a2b1

,(11)

b0 =
a1c2 − a2c1

a1b2 + a1a2 − a2b1
.(12)

In the case with a1b2 + a1a2 − a2b1 = 0, we must employ the above (I) or (II) to set

up the function B0(x).
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Through the variable transformation (3), we obtain a new BVP with the homo-

geneous Robin boundary conditions:

εy′′(x) + p(x)y′(x) + q(x)y(x)(13)

= F (x) = H(x) − εB′′
0 (x)−B′

0(x)p(x) −B0(x)q(x), 0 < x < 1,

a1y(0) + b1y
′(0) = 0, a2y(1) + b2y

′(1) = 0.(14)

3. Energetic Robin boundary functions method

By multiplying both sides of (13) by y(x), integrating it from x = 0 to x = 1, one

can derive

(15)

∫ 1

0

[εy′′(x)y(x) + p(x)y′(x)y(x) + q(x)y2(x)] dx =

∫ 1

0

F (x)y(x) dx.

If there exists an exact solution y(x) of (13) and (14), it must satisfy the above

equation. The resulting equation is an energy equation and we will use it as a math-

ematical tool to solve y(x).

The next step is searching the Robin boundary functions which automatically

satisfy (14). In terms of polynomials we can derive

Bj(x) = 1− a1
b1

x+
a1b2 + a1a2 − a2b1
b1a2 + (j + 1)b1b2

xj+1, j > 1 if b1 6= 0,(16)

Bj(x) = x− a2 + b2
a2 + (j + 1)b2

xj+1, j > 1 if b1 = 0.(17)

For the homogeneous Robin boundary conditions in (14) we may encounter the case

that there exists a positive integer j0 such that a2+(j0+1)b2 = 0, for example, when

a2 = 4, b2 = −1, j0 = 3. With this situation we can skip this j0 in (16) and (17),

and they are modified to

Bj(x) = 1− a1
b1

x+
a1b2 + a1a2 − a2b1
b1a2 + (j + 1)b1b2

xj+1,(18)

j = 1, . . . , j0 − 1, j0 + 1, j0 + 2, . . . , if b1 6= 0,

Bj(x) = x− a2 + b2
a2 + (j + 1)b2

xj+1,(19)

j = 1, . . . , j0 − 1, j0 + 1, j0 + 2, . . . , if b1 = 0.

They are at least second-order polynomial functions which satisfy the following

homogeneous Robin boundary conditions:

(20) a1Bj(0) + b1B
′
j(0) = 0, a2Bj(1) + b2B

′
j(1) = 0, j > 1.
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For a BVP if the boundary conditions make the coefficient preceding xj+1 be zero,

then (16) and (17) are not applicable. For this case we can enrich the boundary

functions by including other type functions.

From (16)–(20) it is obvious that when Bj(x) is a Robin boundary function,

βBj(x), β ∈ R, is also a Robin boundary function, and when Bj(x) and Bk(x)

are Robin boundary functions, Bj(x) + Bk(x) is also a Robin boundary function.

The Robin boundary functions are closed under scalar multiplication and addition.

Therefore, the set of

(21) {Bj(x)}, j > 1,

and the zero element constitute a linear space of the Robin boundary functions,

denoted by B.
The following result can help us in solving (13) and (14).

Theorem 1. In the linear space B there exist Robin boundary functions

(22) Ej(x) = γjBj(x), j > 1, j not summed,

where

e2 =

∫ 1

0

[εB′′
j (x)Bj(x) + p(x)B′

j(x)Bj(x) + q(x)B2
j (x)] dx,(23)

e1 =

∫ 1

0

Bj(x)F (x) dx,

γj =
e1
e2

,(24)

are such that Ej(x) satisfies the following energy integral equation:

(25)

∫ 1

0

[εE′′
j (x)Ej(x) + p(x)E′

j(x)Ej(x) + q(x)E2
j (x)] dx =

∫ 1

0

F (x)Ej(x) dx.

P r o o f. BecauseBj(x) ∈ B is an element of the linear space B, the multiplication
in (22) renders Ej(x) ∈ B, an element in the linear space B, which satisfies the
homogeneous Robin boundary conditions:

(26) a1Ej(0) + b1E
′
j(0) = 0, a2Ej(1) + b2E

′
j(1) = 0,

due to (20).
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BecauseEj(x) already satisfies the boundary conditions (26), we impose the energy

identity (15) on Ej(x) and derive (25), which is an energy equation in terms of the

Robin boundary function Ej(x) defined in the linear space.

Inserting (22) for Ej(x) and

(27) E′
j(x) = γjB

′
j(x), E′′

j (x) = γjB
′′
j (x)

for E′
j(x) and E

′′
j (x) into (25), one can derive a quadratic equation to determine the

multiplier γj :

(28) e2γ
2
j = e1γj ,

where the coefficients e1 and e2 were defined in (23). Then the solution of γj is

derived in (24). This ends the proof of the theorem. �

The Robin boundary function Ej(x) in (22) endowed with the multiplier γj in (24)

not only satisfies the homogeneous Robin boundary conditions but also preserves the

energy in (25). The multiplier γj is determined by using the energy identity (25).

Hence, Ej(x) is an energetic Robin boundary function, and correspondingly the

numerical method based on Ej(x) is an energetic Robin boundary functions method

(ERBFM).

4. Deriving the linear system by collocation method

The numerical procedure for solving y(x) is given in the following form: to find

the expansion coefficients cj in

(29) y(x) =

n
∑

j=1

cjsjEj(x),
[

u(x) = B0(x) +

n
∑

j=1

cjsjEj(x)
]

,

where Ej(x) acts as the basis in the numerical solution of y(x). It can be seen

that y(x) in (29) automatically satisfies (14), due to (26).

Because the boundary conditions are automatically satisfied by (29), we only need

to guarantee that the governing equation (13) is satisfied. First we set sj = 1.

Inside the interval (0, 1) we can collocate nq points xi = i/(nq +1), i = 1, . . . , nq, to

satisfy (13) by inserting (29) for y(x), so that we have a linear system:

(30) Ac = F,

which can be used to determine the expansion coefficients c := {cj}, whose number
is n. In the above, the components of A and F are given, respectively, by aij =
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εE′′
j (xi) + p(xi)E

′
j(xi) + q(xi)Ej(xi) and Fi = F (xi). The dimension of A is nq ×n,

and (30) is an over-determined system with nq > n.

In general, the norms of the columns of the coefficient matrix A are not equal. If

one asks the norms of the columns of the coefficient matrix of A to be equal, the

multiple-scale sj is determined by [15]

(31) sj =
R0

‖aj‖
,

where aj denotes the jth column of A in (30) and R0 is a parameter. Hence, we

have ‖aj‖ = R0, j = 1, . . . , n.

5. Normalized exponential trial functions

In the strong-form formulation of differential equations it is known that the selec-

tion of trial functions is very important, for which we suppose that the set of trial

functions is complete, linearly independent, and satisfying the boundary conditions

exactly. In general, the polynomial basis in Section 3 is hard to match the singularity

behavior for the SPBVP. We will give a different set of trial functions which are not

used in the literature to treat the second-order singularly perturbed problems

ϕj(x) =
ejx − 1

ej − 1
, ϕj(0) = 0, ϕj(1) = 1,(32)

ϕ0(x) = x, ϕ0(0) = 0, ϕ0(1) = 1.(33)

To avoid the divergence of ejx, we have introduced a normalized factor ej − 1 in

the denominator. Therefore, ϕj(x) is a normalized exponential trial function. Liu et

al. [18] extended the above trial functions in the weak-form formulation of the fourth-

order singular beam equation to find the numerical solution.

In order to let ϕj(x) satisfy the homogeneous Robin boundary conditions we can

derive

Bj(x) = 1− x2

a2 + 2b2

[

a2 −
a1a2(e

j − 1)

jb1
− a1b2e

j

b1

]

− a1(e
j − 1)

jb1
ϕj(x),(34)

j ∈ Z if b1 6= 0,

Bj(x) = x2 − (a2 + 2b2)(e
j − 1)

a2(ej − 1) + jb2ej
ϕj(x), j ∈ Z if b1 = 0.(35)

The special case B0(x) can be obtained by applying the L’Hospital rule to the above

equations.
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Then, by applying Theorem 1 to the above Bj(x), we can derive the trial functions

Ej = γjBj(x). We suppose that the solution y(x) can be expanded by

(36) y(x) =

m2
∑

j=−m1

ajsjEj(x),
[

u(x) = B0(x) +

m2
∑

j=−m1

ajsjEj(x)
]

,

where n = m1 +m2 + 1 and the unknown coefficients aj have to be determined.

6. Numerical examples

In order to assess the performance of the newly developed ERBFM let us investi-

gate the following examples.

E x am p l e 1. Let us consider the following BVP [13]:

(37) ü(t) +
1

t
u̇(t) +

(

1− 1

4t2

)

u(t) =
√
t cos t, u(1) = 1, u(6) = −0.5.

The exact solution is

(38) u(t) =

(

A0√
t
+

√
t

4

)

cos t+

(

B0√
t
+

t3/2

4

)

sin t,

where

(39) A0 =

√
6

cos 1 sin 6− sin 1 cos 6

[(

1− cos 1 + sin 1

4

)

sin 6√
6

+ sin 1

(

1

2
+

√
6

4
cos 6 +

√
6
3

4
sin 6

)]

≈ 0.0588713,

B0 =

√
6

cos 1 sin 6− sin 1 cos 6

[(

cos 1 + sin 1

4
− 1

)

cos 6√
6

− cos 1

(

1

2
+

√
6

4
cos 6 +

√
6
3

4
sin 6

)]

≈ 0.740071.

With n = 50, nq = 200, and R0 = 1 we apply the ERBFM to find the numerical

solution, which is compared to the exact solution (38), and the numerical error is

shown in Fig. 1 by blue color solid line. While the maximum error is 1.84 × 10−7,

the root-mean-square-error (RMSE) at totally 300 points is 6.37 × 10−8. Under

the same parameter values, the boundary functions method (BFM) leads to the

maximum error being 6.17×10−7, and the RMSE being 2×10−7. In Fig. 1, we show

the numerical errors. The accuracy of the ERBFM is slightly better than the BFM.
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Figure 1. Comparing the numerical solutions obtained by the ERBFM with the exact so-
lution and showing the errors obtained by the ERBFM and BFM.

In Table 1, we investigate the maximum error and the RMSE obtained by the BFM

and the ERBFM with different values of n, the other parameters being nq = 100

and R0 = 1.

n 10 20 30 40 50

BFM (ME) 7.66× 10−7 1.03× 10−7 6.18× 10−8 7.03× 10−8 6.09× 10−8

ERBFM (ME) 7.66× 10−7 1.06× 10−7 5.70× 10−8 6.59× 10−8 7.14× 10−8

BFM (RMSE) 4.00× 10−7 5.43× 10−8 3.08× 10−8 3.43× 10−8 2.90× 10−8

ERBFM (RMSE) 4.00× 10−7 5.54× 10−8 2.63× 10−8 3.51× 10−8 3.17× 10−8

Table 1. For Example 1 comparing the maximum error (ME) and the root-mean-square-
error (RMSE) obtained by the BFM and the ERBFM with different values of n.

From Table 1, we can observe that the ERBFM is convergent stably, while the

BFM at n = 30 is abnormal. For small n, the performances of the BFM and the

ERBFM are the same, but with large n, the performance of the ERBFM is better

than that of the BFM.

E x am p l e 2. We solve

(40) εu′′(x) + u′(x)− u(x) = 0, u(0) = 1, u(1) = 1,

which has been calculated by Reddy and Chakravarthy [20] and Ilicasu and Schultz [8]
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by using different methods, and has a closed-form solution:

(41) u(x) =
1

ep2 − ep1

[(ep2 − 1)ep1x + (1− ep1)ep2x],

where

(42) p1 =
−1 +

√
1 + 4ε

2ε
, p2 =

−1−
√
1 + 4ε

2ε
.

We expand the solution u(x) by (36). Under the parameters ε = 0.01, m1 = 100,

m2 = 1, nq = 200, and R0 = 0.1, we can find that the solution u(x) is very close

to the exact one with the maximum error being 8.09× 10−8 as shown in Fig. 2(a).

Obviously, our maximum error is much smaller than that calculated by Varner and

Choudhury [21], and by Reddy and Chakravarthy [20], who used a smaller stepsize

h = 0.001.
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Figure 2. For (a) Example 2 and (b) Example 3, comparing the numerical solutions obtained
by the ERBFM with the exact solutions and showing the errors.
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E x am p l e 3. We revisit Example 2 again; however, we consider the Robin type

boundary conditions:

εu′′(x) + u′(x) − u(x) = 0,(43)

u(0) + u′(0) = 1 +
1

ep2 − ep1

[p1(e
p2 − 1) + p2(1− ep1)], u(1) = 1,

where p1 and p2 were defined by (42).

Under the parameters ε = 0.01, m1 = 100, m2 = 1, nq = 300, ν = 2, and R0 = 1,

we can find that the solution u(x) is very close to the exact one with the maximum

error being 5.53 × 10−7 as shown in Fig. 2(b). The accuracy is slightly worse than

that in Example 2.

E x am p l e 4. We calculate this example by adding a non-homogeneous term on

the right-hand side, which is subjected to the Robin type boundary conditions:

εu′′(x) + u′(x) = 1 + 2x,(44)

u(0) + u′(0) =
2ε− 1

ε[1− exp(−1/ε)]
+ 1− 2ε,

u(1) + u′(1) = 1 +
(2ε− 1) exp(−1/ε)

ε[1− exp(−1/ε)]
+ 3− 2ε,

whose exact solution is

(45) u(x) =
(2ε− 1)[1− exp(−x/ε)]

1− exp(−1/ε)
+ x(x+ 1− 2ε).

We employ the parameters ε = 0.01, m1 = 110, m2 = 10, nq = 300, ν = 2 and

R0 = 1. From Fig. 3, we can find that the solution u(x) is very close to the exact

one with the maximum error being 2.68× 10−7. The maximum error is smaller than

that in [8], [21], where the Dirichlet boundary conditions u(0) = 0, u(1) = 1 were

considered.

E x am p l e 5. We consider an internal boundary layer case [3]:

(46) εü(t) + 2tu̇(t) + (1 + t2)u(t) = 0, u(−1) = 2, u(1) = 1,

where ε = 0.2.

Upon letting x = (t+ 1)/2 and w(x) = u(t), we have

(47) εw′′(x) + (8x− 4)w′(x) + (16x2 − 16x+ 8)w(x) = 0, w(0) = 2, w(1) = 1.
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Figure 3. For Example 4, comparing the numerical solution obtained by the ERBFM with
the exact solution and showing the error.

For the parameters ε = 0.2, m1 = 15, m2 = 15, nq = 150, and R0 = 1, the numeri-

cal result obtained by the ERBFM is shown in Fig. 4. For the purpose of comparison

we also apply the fourth-order Runge-Kutta (RK4) method to integrate (47) starting

from the initial conditions w(0) = 2 and w′(0) = 4.85305042 and with a step-size

∆x = 0.005, which can match the final value w(1) = 1 with an error 2.644× 10−8.

The maximum difference between the presented numerical solution and the RK4

solution as shown in Fig. 4 is 6.61× 10−2.
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Figure 4. For Example 5, comparing the numerical solution obtained by the ERBFM and
the RK4 and showing the difference.
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E x am p l e 6. Finally, we consider the case with two boundary layers [11]:

(48) −εu′′(x) + (1 + x− x2)u(x) = g(x), u(−1) = 0, u(1) = 0,

where ε = 0.001. The exact solution u(x) and g(x) are given by

u(x) = 1 + (x− 1)e−x/
√
ε − xe(x−1)/

√
ε,(49)

g(x) = 1 + x(1 − x) + [2
√
ε− x2(1− x)]e−x/

√
ε

+ [2
√
ε− x(1− x)2]e(x−1)/

√
ε.

For the parameters m1 = 40, m2 = 40, nq = 200 and R0 = 1, the numerical

result obtained by the ERBFM is shown in Fig. 5, which is very close to the exact

solution (49), whose maximum error is 1.65×10−7. The accuracy is better than that

calculated by Kadalbajoo and Aggarwal [9], and Khuri and Sayfy [11].
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Figure 5. For Example 6, comparing the numerical solution obtained by the ERBFM with
the exact one and showing the error.

7. Conclusions

Owing to the existence of a boundary layer in the singularly perturbed BVP, it is

utmost important to design the numerical method to exactly match the given Robin

boundary conditions. We have developed two types of bases for the polynomials used

in the non-singularly perturbed ODE and the normalized exponential functions used

in the SPBVP. The main contributions of the present paper are the introduction of

a new concept of Robin boundary functions and then deriving an energy identity

691



in terms of the energetic Robin boundary functions, which not only satisfy the ho-

mogeneous Robin boundary conditions, but also preserve the energy. Furthermore,

the energetic Robin boundary functions were adopted as the bases to expand the

numerical solution of the SPBVP, and then we have transformed the highly singular

problem into solving a well-conditioned linear system to determine the expansion

coefficients by a simple collocation technique. Numerical examples showed that the

novel algorithm ERBFM is highly accurate and stable.
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