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Abstract. We introduce fractional-order Bessel functions (FBFs) to obtain an approxi-
mate solution for various kinds of differential equations. Our main aim is to consider the
new functions based on Bessel polynomials to the fractional calculus. To calculate deriva-
tives and integrals, we use Caputo fractional derivatives and Riemann-Liouville fractional
integral definitions. Then, operational matrices of fractional-order derivatives and inte-
gration for FBFs are derived. Also, we discuss an error estimate between the computed
approximations and the exact solution and apply it in some examples. Applications are
given to three model problems to demonstrate the effectiveness of the proposed method.
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1. Introduction

Fractional derivatives started from a question when L’Hopital asked “what would

be the result of half-differentiating a function.” Then it was followed by Leibniz

(1695) and Heaviside (1871). To learn more about the history of fractional deriva-

tives, we refer to [27]. Recently, fractional derivatives have played a major role

in many areas of science, applied mathematics, engineering, and economics. The

applications are now far too many to list here. We propose only a few of them: col-

ored noise [26], earthquake [15], economics [2], electromagnetism [12], fluid-dynamic

models [14], [28], seepage flow in porous media [14], and continuum and statistical

mechanics [25]. We describe the application of fractional calculus in some of the

implement models.
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⊲ The DC motor is a power actuator which converts direct current electrical energy

into rotational mechanical energy. The armature-controlled DC motor utilizes

a constant field current. This kind of DC motor will be controlled by a noncon-

ventional control technique which is known as a fractional-order control [4].

⊲ A theoretical model of the spatiotemporal behavior of complex liquid-solid in-

terfaces bordered by the contact line formed between the liquid-like particle and

solid-rough substrate is presented by the fractional derivative. This model in-

volves a parameter α, which is the order of the fractional derivative with respect

to time (t) and can be related to the roughness exponent of substrate later [34].

Many researchers have shown great interest in using effective techniques to

deal with various kinds of fractional problems. Therefore, they have presented

many numerical and analytical methods to find a more accurate approximate so-

lution of these problems such as Adomian decomposition method [29], Chebyshev

wavelet method [22], [39], homotopy perturbation method [48], Legendre wavelet

method [16], [17], Laplace transform method [18] and CAS wavelet method [40]

to study more about this topic (see for example [9], [21], [24], [44] and references

therein).

Orthogonal functions and polynomial series have been used when dealing with

various problems of the dynamical systems. The approach in using orthogonal

functions and polynomial series is based on transforming the underlying differen-

tial equation into an integral equation through integration, approximating different

signals involved in the equation by truncated orthogonal functions and polynomial

series and using the operational matrix of integration to eliminate the integral oper-

ations.

In 2013, Kazem et al. [19] introduced the fractional-order Legendre functions by

change of the variable t to xα (0 < α < 1) to get an efficient approach for solving

fractional differential equations. The paper [43] applied this definition and presented

the operational matrix of fractional derivative and integration for such functions

to construct a new Tau method for solving fractional partial differential equations.

Bhrawy et al. [3] defined the fractional-order generalized Laguerre functions based

on the generalized Laguerre polynomials for finding numerical solution of systems of

fractional differential equations. Yuzbasi [46] constructed the truncated fractional

Bernstein series by changing t to tα (0 < α < 1) for solving the fractional Riccati

type differential equations. In addition, the authors in [6] expanded the fractional

Legendre functions to an interval [0, h] and obtained a numerical solution of frac-

tional partial differential equations. Rahimkhani et al. constructed fractional-order

Bernoulli wavelets by using the change of variable t = xα (0 < α < 1) in Bernoulli

wavelets, and solved selected problems [36], [37]. Dehestani et al. [8] introduced
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fractional-order Legendre-Laguerre functions for solving fractional partial differen-

tial equations. More recently, the authors in [10] constructed Genocchi-fractional

Laguerre functions for solving variable-order time-fractional partial differential equa-

tions.

In this paper, we apply fractional-order Bessel functions to solve several prob-

lems of fractional order. In the past, many authors have used Bessel polynomials,

for example Yuzbasi et al. [45], [47] solved linear differential, integral and integro-

differential equations, Parand et al. [33] applied Bessel functions to solving nonlinear

Lane-Emden equations, Tohidi et al. [41] presented the Bessel collocation method

for solving fractional optimal control problems.

1.1. The aim of this work. The aim of this work is to introduce a new function

for approximating the solution of fractional differential equations, fractional delay

differential equations and system of fractional differential equations. Moreover, we

discuss the error bound and the rate of convergence for the proposed method.

The advantages of the proposed method are:

(1) Fractional-order Bessel functions (FBFs) constructed by change of variable t

to tα (0 < α < 1), which approximate the fractional function with more accu-

racy. This feature has made the FBFs more effective than Bessel functions in

solving the fractional problems.

(2) Operational matrix of fractional-order derivatives is a sparse matrix, which

makes a less error in computation.

(3) Since the coefficients in Bessel polynomials are smaller than the coefficients of

Chebyshev, Legendre and Bernoulli polynomials, the computational error in the

current method is less.

The effects of these features are shown in seven numerical examples.

The outline of the current paper is as follows. In the following section, we express

the basic definitions and properties of the fractional calculus theory. In Section 3, we

introduce FBFs and it’s properties. Section 4 is devoted to operational matrices of

fractional derivative and fractional integration of FBFs for solving fractional prob-

lems. In Section 5, we construct an algorithm for solving various kinds of problems

by using the FBFs. Error analysis is given in Section 6. In Section 7, we illus-

trate the accuracy of the proposed scheme by considering numerical examples. Also,

a conclusion is given in Section 8.
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2. Preliminaries

We consider the essential definitions which are used further in this paper.

Definition 2.1. The Riemann-Liouville fractional integral operator of order

α > 0 is defined as (see [1], [5], [30], [31], [35])

Iαf(x) =
1

Γ(α)

∫ x

0

(x− t)α−1f(t) dt, x > 0, α > 0, I0f(x) = f(x).

Below, we consider a number of properties for α, β > 0, γ > −1 and constants µ1, µ2,

as

Iα(µ1f(x) + µ1g(x)) = µ1I
αf(x) + µ2I

αg(x), Iαxγ =
Γ(γ + 1)

Γ(α+ γ + 1)
xα+γ .

Definition 2.2. The fractional derivative of f(x) in the Caputo sense is defined

as (see [1], [5], [30], [31], [35])

Dαf(x) = Im−αDmf(x) =
1

Γ(m− α)

∫ x

0

(x− t)m−α−1f (m)(t) dt,

for m− 1 < α 6 m, m ∈ N, x > 0, where D = d/dt. It has the following properties:

DαC = 0, (C is a constant)

Dαxγ =







0, α ∈ N0, γ < α,

Γ(γ + 1)

Γ(γ + 1− α)
xγ−α, otherwise.

Definition 2.3 (Generalized Taylor’s formula). Suppose that Dnαf(x) ∈ C(0, 1]

for n = 0, 1, . . . , N. Then we have (see [36])

f(x) =

N
∑

n=0

xnα

Γ(nα+ 1)
Dnαf(0+) +

xN+1

Γ(Nα+ α+ 1)
D(N+1)αf(ζ),

with 0 < ζ 6 x for all x ∈ (0, 1]. Also, we get

∣

∣

∣

∣

f(x)−

N
∑

n=0

xnα

Γ(nα+ 1)
Dnαf(0+)

∣

∣

∣

∣

6 Mα
xN+1

Γ(Nα+ α+ 1)
,

where Mα > sup
x∈[0,1]

|D(N+1)αf(x)|.
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3. Fractional-order Bessel functions

3.1. Bessel equation. In 1732, Daniel Bernoulli credited the concept of Bessel

functions for the first time, however, the names of these functions are taken from

Friedrich Wilhelm Bessel. The Bessel equation is a special case of the Sturm-Liouville

problem written as (see [13], [32])

(3.1) x2y′′ + xy′ + (x2 − n2)y = 0,

where n is any real number. The solution to the Bessel equation yields Bessel func-

tions of the first and second kind. The Bessel functions of the first kind Jn(x) are

defined as follows:

(3.2) Jn(x) =

∞
∑

k=0

(−1)k

k! Γ(n+ k + 1)

(x

2

)2k+n

.

The Bessel functions of the first kind are orthogonal with respect to the weight

function w(x) = x in the interval [0, 1] with the orthogonality property

(3.3)

∫ 1

0

xJn(λx)Jn(µx) dx = 1
2 [Jn+1(λ)]

2δλµ,

such that in the relation λ, µ are roots of the equation Jn(x) = 0, and δλµ is the

Kronecker function.

3.2. Fractional-order Bessel equation. Consider the fractional Bessel equa-

tion

(3.4) x2αy′′ + xαy′ + α2(x2α − n2)y = 0,

where 0 6 α < 1 and n is any real number. If α = 1, then (3.4) is a classical Bessel

equation. We can investigate solutions by a fractional Frobenius series as follows:

y = B(J̃α)n(x) + C(Yα)n(x),

where (J̃α)n(x) are FBFs of the first kind of order n, so that

(3.5) (J̃α)n(x) =
∞
∑

k=0

(−1)k

k! Γ(n+ k + 1)

(xα

2

)2k+n

.
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The set of FBFs of the first kind (J̃α)n(x) are orthogonal with respect to the weight

function wα(x) = x2α−1 in the interval [0, 1]. Using the change of variables t = xα,

α > 0, we have

(3.6)

∫ 1

0

x2α−1(J̃α)n(λx)(J̃α)n(µx) dx =
1

2α
[Jn+1(λ)]

2δλµ.

We introduce a number of FBFs features in the following, where n is a non-negative

integer number

d

dx
(xnα(J̃α)n(x)) = αxnα(J̃α)n−1(x),

d

dx
((J̃α)n(x)) = α(J̃α)n−1(x) −

nα

xα
(J̃α)n(x),

(J̃α)n−1(x) + (J̃α)n+1(x) =
2n

xα
(J̃α)n(x).

The nth degree truncated FBFs of the first kind are defined by

(3.7) (Jα)n(x) =

[(N−n)/2]
∑

k=0

(−1)k

k! Γ(k + n+ 1)

(xα

2

)2k+n

, 0 6 x < ∞, n ∈ N,

where N is a positive integer such that N > n and n = 0, 1, . . . , N . For N = 2, we

have

(Jα)0(x) = 1−
x2α

4
, (Jα)1(x) =

xα

2
, (Jα)2(x) =

x2α

8
.

Figure 1 illustrates graphs of fractional-order Bessel functions for various values of α

for N = 2.

A function f(x) ∈ L2[0, 1] may be expanded into FBFs as

f(x) =

∞
∑

n=0

an(Jα)n(x).

Also, we can consider the following truncated series for f(x)

f(x) ≃

N
∑

n=0

an(Jα)n(x) = A⊤Jα(x), N > n,

where

(3.8) A =

(
∫ 1

0

f(x)Jα(x) dx

)

Q−1
α , Qα =

∫ 1

0

x2α−1Jα(x)J
⊤
α (x) dx.
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Figure 1. Fractional-order Bessel functions of first kind for N = 2.

4. Operational matrices of fractional derivative and integration

The main purpose of this section is to introduce the operational matrices of frac-

tional derivative and the integration of FBFs.

4.1. Operational matrix of fractional derivatives. The Caputo fractional

derivatives operator of order ν > 0 of the vector Jα(x) can be expressed by

(4.1) DνJα(x) ≃ η(α, ν, x)Jα(x),

where η(α, ν, x) is called the operational matrix of Caputo fractional derivatives of

order ν > 0 for Jα(x). In this case, we apply (3.7) and the properties of the Caputo

fractional derivative to obtain all elements of η(α, ν, x) as follows:

(4.2) Dν(Jα)n(x)

=

s
∑

k=0

(−1)k

k! Γ(k + n+ 1)22k+n
Dν(xα(2k+n))

=
s

∑

k=⌈(ν−nα)/2α⌉

(−1)k

k! Γ(k + n+ 1)22k+n

Γ(2kα+ nα+ 1)

Γ(2kα+ nα− ν + 1)
x2kα+nα−ν

= xnα−ν
s

∑

k=⌈(ν−nα)/2α⌉

cα,νn,kx
2kα, s =

[N − n

2

]

,
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where

cα,νn,k =
(−1)kΓ(2kα+ nα+ 1)

k! Γ(k + n+ 1)22k+nΓ(2kα+ nα− ν + 1)
.

The approximation of x2kα by fractional-order Bessel series yields

x2kα ≃

N
∑

j=0

dα,νk,j (Jα)j(x).

By replacing the above equation in (4.2), we obtain

(4.3) Dν(Jα)n(x)

≃ xnα−ν
s

∑

k=⌈(ν−nα)/2α⌉

cα,νn,k

N
∑

j=0

dα,νk,j (Jα)j(x)

= xnα−ν
N
∑

j=0

( s
∑

k=⌈(ν−nα)/2α⌉

̺α,νn,k,j

)

(Jα)j(x) (where ̺α,νn,k,j = cα,νn,kd
α,ν
k,j )

= xnα−ν
N
∑

j=0

ηα,νn,j (Jα)j(x),

where

(4.4) ηα,νnj =
s

∑

k=⌈(ν−nα)/2α⌉

(−1)k

k! Γ(n+ k + 1)22k+n

Γ(2kα+ nα+ 1)

Γ(2kα+ nα− ν + 1)
dα,νk,j .

The fractional derivatives of FBFs given by (4.4) can be written in the matrix form

as

(4.5) Dν(Jα)n(x) ≃ xnα−ν

[ s
∑

k=⌈(ν−nα)/2α⌉

̺α,νn,k,0,

s
∑

k=⌈(ν−nα)/2α⌉

̺α,νn,k,1, . . . ,
s

∑

k=⌈(ν−nα)/2α⌉

̺α,νn,k,N

]

Jα(x).

4.2. Operational matrix of fractional integration. The Riemann-Liouville

fractional integration of the vector Jα(x) can be obtained as follows

(4.6) IνJα(x) ≃ ξ(α, ν, x)Jα(x),

where ξ(α, ν, x) denotes the operational matrix of fractional integration of order ν > 0

for the FBFs. Due to (3.7) and the properties of the Riemann-Liouville fractional
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integration, we have

(4.7) Iν(Jα)n(x) =
s

∑

k=0

(−1)k

k! Γ(k + n+ 1)22k+n
Iν(xα(2k+n))

=

s
∑

k=0

(−1)k

k! Γ(k + n+ 1)22k+n

Γ(2kα+ nα+ 1)

Γ(2kα+ nα+ ν + 1)
x2kα+nα+ν

= xnα+ν
s

∑

k=0

pα,νn,kx
2kα,

where

pα,νn,k =
(−1)k

k! Γ(k + n+ 1)22k+n

Γ(2kα+ nα+ 1)

Γ(2kα+ nα+ ν + 1)
.

Also, x2kα can be expanded in N + 1 terms of FBFs as

(4.8) x2kα ≃
N
∑

j=0

qα,νk,j (Jα)j(x).

By substituting the above equation in (4.7), we obtain

(4.9) Iν(Jα)n(x) ≃ xnα+ν
s

∑

k=0

pα,νn,k

N
∑

j=0

qα,νk,j (Jα)j(x)

= xnα+ν
N
∑

j=0

( s
∑

k=0

Rα,ν
n,k,j

)

(Jα)j(x)

= xnα+ν
N
∑

j=0

ξα,νn,j (Jα)j(x),

where Rα,ν
n,k,j = pα,νn,kq

α,ν
k,j . Hence, each element of ξ

α,ν
n,j can be expressed as

(4.10) ξα,νn,j =

s
∑

k=0

(−1)k

k! Γ(n+ k + 1)22k+n

Γ(2kα+ nα+ 1)

Γ(2kα+ nα+ ν + 1)
qα,νk,j .

The fractional integration of FBFs given by (4.9) can be written in the matrix form as

(4.11) Iν(Jα)n(x) ≃ xnα+ν

[ s
∑

k=0

Rα,ν
n,k,0,

s
∑

k=0

Rα,ν
n,k,1, . . . ,

s
∑

k=0

Rα,ν
n,k,N

]

Jα(x).
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4.3. Error bound for the operational matrix of fractional integration.

Lemma 4.1. Suppose that H is a Hilbert space and Y is a closed subspace of H

such that dim Y < ∞ and y1, y2, . . . , ym is any basis for Y . Let z be an arbitrary

element in H and y the unique best approximation to z out of Y . Then [20]

‖z − y∗‖22 =
G(z, y1, y2, . . . , ym)

G(y1, y2, . . . , ym)
,

where

G(z, y1, y2, . . . , ym) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

〈z, z〉 〈z, y1〉 . . . 〈z, ym〉

〈y1, z〉 〈y1, y1〉 . . . 〈y1, ym〉
...

...
. . .

...

〈ym, z〉 〈ym, y1〉 . . . 〈ym, ym〉

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Lemma 4.2. Suppose g ∈ L2[0, 1] is approximated by gN as (see [38])

g(x) ≃ gN (x) =

N
∑

n=0

κn(Jα)n(x),

and consider

LN(g) =

∫ 1

0

[g(x)− gN(x)]2 dx.

Then we have

lim
N→∞

LN(g) = 0.

The operational matrix of fractional integration has the error vector

Eν = IνJα − ξα,νJα,

where

Eν = [eνα,n](N+1)×1, n = 0, 1, . . . , N.

Due to (4.8) and Lemma 4.1, we get

(4.12)

∥

∥

∥

∥

x2kα −

N
∑

j=0

qα,νk,j (Jα)j(x)

∥

∥

∥

∥

2

=
( G(x2kα, (Jα)0(x), . . . , (Jα)N (x))

G((Jα)0(x), (Jα)1(x), . . . , (Jα)N (x))

)1/2

.
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Therefore, according to the above equations and (4.12), we obtain

(4.13) ‖eνα,n‖2 =

∥

∥

∥

∥

Iν(Jα)n(x)−
s

∑

k=0

pα,νn,k

( N
∑

j=0

qα,νk,j (Jα)j(x)

)∥

∥

∥

∥

2

, n = 0, 1, . . . , N,

6

s
∑

k=0

Γ(2kα+ nα+ 1)

k! Γ(k + n+ 1)22k+nΓ(2kα+ nα+ ν + 1)

×

∥

∥

∥

∥

x2kα −
N
∑

j=0

qα,νk,j (Jα)j(x)

∥

∥

∥

∥

2

6

s
∑

k=0

Γ(2kα+ nα+ 1)

k! Γ(k + n+ 1)22k+nΓ(2kα+ nα+ ν + 1)

×
( G(x2kα, (Jα)0(x), . . . , (Jα)N (x))

G((Jα)0(x), (Jα)1(x), . . . , (Jα)N (x))

)1/2

.

As a result, by considering the above discussion, we can conclude that by increasing

the number of the fractional Bessel bases, the error vector Eν tends to zero.

5. Method of solution

In this section we use the FBFs of the first kind to solve various kinds of fractional-

order differential equations such as

(5.1) Dνy(x) = F (x, y(x), y(τ1x), y(τ2x), . . . , y(τkx)), n− 1 < ν 6 n, n ∈ N,

with initial conditions

y(i)(0) = δi, i = 0, 1, . . . , n− 1,

where τl, l = 1, . . . , k, are constants, y is the unknown function and F is the known

continuous linear or nonlinear function. To solve the problem, we expand the function

y(n)(x) by FBFs as

(5.2) y(n)(x) ≃ A⊤Jα(x).

By using the operational matrix of integration in (4.6), we have

(5.3) y(n−1)(x) ≃ A⊤ξ(α, 1, x)Jα(x) + δn−1,

y(n−2)(x) ≃ A⊤(ξ(α, 1, x))2Jα(x) + xδn−1 + δn−2,

...

y(x) ≃ A⊤(ξ(α, 1, x))nJα(x) +

n−1
∑

i=0

xi

i!
δi.
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Therefore, we have

(5.4) y(τjx) ≃ A⊤(ξ(α, 1, x))nJα(τjx) +

n−1
∑

i=0

(τjx)
i

i!
δi.

On the other hand, by applying the fractional operational matrix of the derivative

and the properties of the Caputo fractional derivative, we obtain

(5.5) Dνy(x) ≃ A⊤(ξ(α, 1, x))nη(α, ν, x)Jα(x) +

n−1
∑

i=0

δi
i!

Γ(i+ 1)

Γ(i+ 1 + ν)
xi−ν .

As a result, by substituting (5.2)–(5.5) in (5.1), we achieve the algebraic equation

with N +1 unknown coefficients. Then we use collocation points (see [9]) defined by

xi =
1

N
i, i = 0, 1, . . . , N.

Consequently, we can obtain the unknown vector A by solving the above system and

using Newton’s iterative method.

6. Error analysis

In this section we examine the upper bound of error for a sufficiently smooth

function, which is expanded in terms of FBFs.

Theorem 6.1. Suppose thatDnαf(x) ∈ C(0, 1] for n = 0, 1, . . . , N , 2α(N+2) > 1

and Y α
N = span{(Jα)0(x), (Jα)1(x), . . . , (Jα)N (x)}. If p∗N = A⊤Jα is the best approx-

imation to f from Y α
N , then the error bound is presented as

(6.1) ‖f(x)− p∗N (x)‖L2
w
[0,1] 6

Mα

Γ(Nα+ α+ 1)

√

1

2α(N + 2)
,

where Mα = sup
x∈[0,1]

|D(N+1)αf(x)|.

P r o o f. Due to the generalized Taylor’s formula introduced in Definition 2.3, we

have

pN (x) =

N
∑

n=0

xnα

Γ(nα+ 1)
Dnαf(0+),

for which we know that

|f(x) − pN(x)| 6
Mαx

(N+1)α

Γ(Nα+ α+ 1)
.
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Since A⊤Jα is the best approximation to f from Y α
N and pNf ∈ Y α

N , one has

‖f(x)− p∗N (x)‖2L2
w
[0,1] 6 ‖f(x)− pN (x)‖2L2

w
[0,1]

=

∫ 1

0

|f(x)− pN (x)|2x2α−1 dx

6
M2

α

Γ(Nα+ α+ 1)2

∫ 1

0

x(2N+2)αx2α−1 dx

=
M2

α

Γ(Nα+ α+ 1)2(2α(N + 2))
.

�

Now by taking the square roots, the theorem can be proved.

This theorem shows the approximate solution computed by the FBFs converges

to the exact solution.

Theorem 6.2. Assume that yN (x) = A⊤Jα(x) is the approximate solution ob-

tained by the method presented in the previous section. If ỹN(x) = Ã⊤J̃α(x) is the

FBFs of the first kind expansion of the exact solution y(x), where

Ã = [ã0, ã1, . . . , ãN ]⊤, J̃α(x) = [(J̃α)0(x), (J̃α)1(x), . . . , (J̃α)N (x)]⊤,

and (J̃α)n(x), n = 0, 1, . . . , N, is the fractional order of Bessel polynomials of the

first kind, which is defined in (3.5), then we obtain the upper bound of the error for

the solution obtained by the present method as

(6.2) ‖y(x)− yN (x)‖L2
w
[0,1]

6
Mα

Γ(Nα+ α+ 1)

√

1

2α(N + 2)
+ Θα,N‖Ã−A‖2 +Υα,N‖A‖2,

where

Θα,N =

[ N
∑

n=0

1

2α
[Jn+1(1)]

2

]1/2

,

Υα,N =

[ N
∑

n=0

∞
∑

k=[(N−n)/2]

1

(k! Γ(k + n+ 1)22k+n)2(4kα+ 2(n+ 1)α)

]1/2

.

649



P r o o f. To prove (6.2), we write

(6.3) ‖y(x)− yN (x)‖L2
w
[0,1] 6 ‖y(x)− ỹN (x)‖L2

w
[0,1] + ‖ỹN(x) − yN(x)‖L2

w
[0,1].

According to (6.1), we have

(6.4) ‖y(x)− ỹN (x)‖L2
w
[0,1] 6

Mα

Γ(Nα+ α+ 1)

√

1

2α(N + 2)
.

Also, we obtain

‖ỹN (x)− yN (x)‖L2
w
[0,1](6.5)

=

∥

∥

∥

∥

N
∑

n=0

ãn(J̃α)n(x)−

N
∑

n=0

an(Jα)n(x)

∥

∥

∥

∥

L2
w
[0,1]

6

∥

∥

∥

∥

N
∑

n=0

ãn(J̃α)n(x)−

N
∑

n=0

an(J̃α)n(x)

∥

∥

∥

∥

L2
w
[0,1]

+

∥

∥

∥

∥

N
∑

n=0

an(J̃α)n(x) −

N
∑

n=0

an(Jα)n(x)

∥

∥

∥

∥

L2
w
[0,1]

6

∥

∥

∥

∥

N
∑

n=0

[ãn − an](J̃α)n(x)

∥

∥

∥

∥

L2
w
[0,1]

+

∥

∥

∥

∥

N
∑

n=0

an[(J̃α)n(x) − (Jα)n(x)]

∥

∥

∥

∥

L2
w
[0,1]

=

(
∫ 1

0

∣

∣

∣

∣

N
∑

n=0

(ãn − an)(J̃α)n(x)

∣

∣

∣

∣

2

x2α−1 dx

)1/2

+

(
∫ 1

0

∣

∣

∣

∣

N
∑

n=0

an((J̃α)n(x)− (Jα)n(x))

∣

∣

∣

∣

2

x2α−1 dx

)1/2

6

(
∫ 1

0

[ N
∑

n=0

|ãn − an|
2

][ N
∑

n=0

|(J̃α)n(x)|
2

]

x2α−1 dx

)1/2

+

(
∫ 1

0

[ N
∑

n=0

|an|
2

][ N
∑

n=0

|(J̃α)n(x)− (Jα)n(x)|
2

]

x2α−1 dx

)1/2

6 ‖Ã−A‖2

[ N
∑

n=0

∫ 1

0

x2α−1|(J̃α)n(x)|
2 dt

]1/2

+ ‖A‖2

[ N
∑

n=0

∫ 1

0

|(J̃α)n(x)− (Jα)n(x)|
2x2α−1 dx

]1/2

.
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Then, by using the orthogonality property of FBFs of the first kind, we get

‖ỹN(x)− yN (x)‖L2
w
[0,1](6.6)

6 ‖Ã−A‖2

[ N
∑

n=0

1

2α
[Jn+1(1)]

2

]1/2

+ ‖A‖2

[ N
∑

n=0

∫ 1

0

∣

∣

∣

∣

∞
∑

k=[(N−n)/2]

(−1)kx(2k+n)α

k! Γ(k + n+ 1)22k+n

∣

∣

∣

∣

2

x2α−1 dx

]1/2

6 ‖Ã−A‖2

[ N
∑

n=0

1

2α
[Jn+1(1)]

2

]1/2

+ ‖A‖2

[ N
∑

n=0

∫ 1

0

∞
∑

k=[(N−n)/2]

x4kα+2(n+1)α−1

(k! Γ(k + n+ 1)22k+n)2
dx

]1/2

6 ‖Ã−A‖2

[ N
∑

n=0

1

2α
[Jn+1(1)]

2

]1/2

+ ‖A‖2

[ N
∑

n=0

∞
∑

k=[(N−n)/2]

1

(k! Γ(k + n+ 1)22k+n)2(4kα+ 2(n+ 1)α)

]1/2

.

�

By means of (6.3)–(6.6), we determine the upper bound of the error.

According to FBFs properties and the above results, it can be inferred that by

increasing the number of FBFs, the upper bound of error tends to zero.

7. Illustrative examples

In this section we test the performance of the scheme on some examples. The com-

putational results are presented in examples that were performed using MATLAB.

E x am p l e 7.1. Consider the fractional differential equation [36], [33]

Dνy(x) + 3y(x) = 3x3 +
8

Γ(0.5)
x1.5, 1 < ν 6 2, 0 6 x 6 1,

subject to initial conditions

y(0) = 0, y′(0) = 0.

The exact solution of this problem when ν = 3
2 is y(x) = x3. According to the

proposed method, we have

y′′(x) ≃ A⊤Jα(x).
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Then

y′(x) ≃ A⊤ξ(α, 1, x)Jα(x),

and

y(x) ≃ A⊤(ξ(α, 1, x))2Jα(x).

Also, from (5.5) we have

Dνy(x) ≃ A⊤(ξ(α, 1, x))2η(α, ν, x)Jα(x).

Therefore, we get

A⊤(ξ(α, 1, x))2η(α, ν, x)Jα(x) + 3A⊤(ξ(α, 1, x))2Jα(x) = 3x3 +
8

Γ(0.5)
x1.5.

Due to the above process and the collocation points, we obtain the numerical re-

sults, which are illustrated in Table 1 and Figure 2. Table 1 shows the absolute errors

x Present Method Method in [36] Method in [33]

N = 3 k = 1, M = 3 N = 7 N = 9

0.1 1.4183× 10−17 2.26837× 10−15 1.67093× 10−10 3.65474× 10−14

0.3 1.4734× 10−17 4.75314× 10−16 1.67093× 10−10 4.21589× 10−14

0.5 2.0193× 10−17 9.43690× 10−16 1.06212× 10−9 9.14555× 10−13

0.7 4.2303× 10−17 1.16573× 10−15 7.03957× 10−10 8.21475× 10−14

0.9 1.0250× 10−16 5.55112× 10−16 1.92731× 10−10 1.32512× 10−13

Table 1. Comparison of the absolute errors obtained by the present method with the meth-
ods in [36], [33] for α = 1

2
, ν = 3

2
for Example 7.1.

Exact

ν =1.15
ν =1.25
ν =1.35
ν =1.45
ν =1.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Figure 2. Approximate solutions for various values of ν with N = 3, α = 0.5 for Exam-
ple 7.1.
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obtained by the fractional-order Bernoulli wavelets method [36], Bessel functions [33]

and the present method. The comparisons in Table 1 show that the present method

is more accurate compared to other methods. Also, Figure 2 shows the approximate

solution obtained for different values of α, ν with N = 3.

E x am p l e 7.2. Consider the initial value problem [17]

Dνy(x)+ y(x) = x4 −
1

2
x3 −

3

Γ(4− ν)
x3−ν +

24

Γ(5− ν)
x4−ν , 0 6 ν 6 1, 0 6 x 6 1,

subject to initial condition

y(0) = 0.

The exact solution of this problem is y(x) = x4 − 1
2x

3. Absolute errors between the

exact solution and the numerical solutions for different values of α and ν are given

in Table 2. Results in Table 2 suggest the present method works well and is more

efficient than the Legendre wavelets method in [17].

Legendre wavelets

Present method Present method method [17]

x N = 12 N = 8 M = 8, k = 1

α = ν = 1
3 α = ν = 1

2 α = ν = 1 α = ν = 1
2 ν = 1

2

0 1.03× 10−16 1.66× 10−17 9.07× 10−16 1.72× 10−16 1.81× 10−12

0.1 4.98× 10−12 7.46× 10−14 8.54× 10−16 1.63× 10−15 3.09× 10−12

0.2 2.52× 10−12 4.04× 10−14 7.50× 10−16 7.25× 10−16 2.07× 10−11

0.3 1.69× 10−12 2.80× 10−14 6.89× 10−16 5.48× 10−16 3.64× 10−11

0.4 1.27× 10−12 2.14× 10−14 6.08× 10−16 3.97× 10−16 8.29× 10−12

0.5 1.02× 10−12 1.72× 10−14 5.64× 10−16 2.89× 10−16 1.34× 10−10

0.6 8.48× 10−13 1.43× 10−14 5.10× 10−16 2.70× 10−16 4.93× 10−10

0.7 7.25× 10−13 1.22× 10−14 4.57× 10−16 2.35× 10−16 1.20× 10−9

0.8 6.32× 10−13 1.06× 10−14 4.16× 10−16 1.11× 10−16 2.41× 10−9

0.9 5.60× 10−13 9.32× 10−15 4.44× 10−16 5.55× 10−17 4.32× 10−9

1.0 5.10× 10−13 1.09× 10−14 3.77× 10−15 8.88× 10−16 7.15× 10−9

Table 2. Absolute errors for different values of N and α, ν for Example 7.2.

E x am p l e 7.3. Consider the fractional Riccati equation [17]

Dνy(x) = −y2(x) + 1, 0 6 ν 6 1, 0 6 x 6 1,

subject to initial condition

y(0) = 0,
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The exact solution of this problem, with ν = 1 is

y(x) =
exp(2x)− 1

exp(2x) + 1
.

The errors of numerical solutions for different values of α and N are given in Table 3.

Also, the absolute errors for various values of ν are presented in Table 4. From this

table, it is clear that with the values of ν approaching 1, the absolute errors decrease.

α N L∞-error L2-error

1 4 3.25× 10−4 6.33× 10−4

6 6.80× 10−6 1.37× 10−5

9 1.19× 10−7 2.69× 10−7

0.5 4 9.43× 10−4 2.43× 10−3

6 1.17× 10−4 2.76× 10−3

9 1.01× 10−4 2.42× 10−4

Table 3. Errors for different values of N and α with ν = 1 for Example 7.3.

x ν = 0.9 ν = 0.99 ν = 0.999 ν = 1

0.1 2.76× 10−2 2.48× 10−3 2.45× 10−4 1.19× 10−7

0.3 4.25× 10−2 4.10× 10−3 4.10× 10−4 1.02× 10−7

0.5 3.53× 10−2 3.68× 10−3 3.69× 10−4 8.76× 10−8

0.7 1.87× 10−2 2.16× 10−3 2.19× 10−4 7.08× 10−8

0.9 5.11× 10−4 3.15× 10−4 3.43× 10−5 5.49× 10−8

CPU 3.6783× 10−2 3.4125× 10−2 3.2087× 10−2 3.2825× 10−2

Table 4. Absolute errors for different values of ν with α = 1 and N = 9 for Example 7.3.

E x am p l e 7.4. Consider the linear pantograph differential equation [23], [11]

Dνy(x) + y(x) −
1

10
y
(x

5

)

=
−1

10
exp

(−x

5

)

, 0 6 ν 6 1, 0 6 x 6 1,

subject to initial condition

y(0) = 1.

The exact solution of this problem, with ν = 1, is y(x) = exp(x). Table 5 displays

the absolute error for different values of N and α = ν = 1 with results in [23], [11].

From Table 5, by increasing the number of FBFs, we see that the absolute error

tends to zero. Also, Table 5 shows that our results are more accurate in comparison

to results obtained by methods in [11], [23]. Figure 3 illustrates the numerical results
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for various values of ν with N = 6 and the exact solution of the problem. Moreover,

according to the upper bound of error in Section 6 for N = 6, we have

α = 0.5 ⇒ ‖y(x)− y6(x)‖L2
w
[0,1] 6 8.2602× 10−2,

and

α = 1 ⇒ ‖y(x)− y6(x)‖L2
w
[0,1] 6 1.3484× 10−4.

Present method Method [23] Method [11]

x N = 4 N = 6 N = 10 N = 12 N = 64

2−1 3.13×10−6 2.12×10−8 2.52×10−14 1.86×10−17 3.33×10−11 3.93×10−14

2−2 1.56×10−5 2.26×10−8 3.04×10−14 3.29×10−17 4.13×10−11 2.16×10−14

2−3 1.02×10−5 2.92×10−8 3.84×10−14 7.80×10−17 4.62×10−11 1.66×10−15

2−4 3.76×10−6 1.48×10−8 3.53×10−14 4.98×10−17 4.89×10−11 6.21×10−15

2−5 1.12×10−6 5.12×10−9 1.69×10−14 6.38×10−17 5.05×10−11 3.86×10−14

2−6 3.05×10−7 1.49×10−9 5.81×10−15 5.33×10−17 4.74×10−11 4.54×10−14

Table 5. Absolute error for different values of N with α = ν = 1 for Example 7.4.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x

α= ν =1

α= ν =0.95

α= ν =0.9

α= ν =0.85

Exact solution

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 3. Approximate solutions for various values of α = ν with N = 6 for Example 7.4.

E x am p l e 7.5. Consider the linear fractional pantograph differential equation

(see [37], [42], [7])

Dνy(x) = −y(x) + 0.1y(45x) + 0.5Dνy(45x) + (0.32x− 0.5) exp(−0.8x) + exp(−x),

0 6 ν 6 1, 0 6 x 6 1,

subject to initial condition

y(0) = 0.

655



The exact solution of this problem, with ν = 1, is y(x) = x exp(−x). Absolute

errors between the exact solution and the numerical solution for different values

of N with α = ν = 1 are given in Table 6. Figure 4(a) displays the comparison

of the approximate solution with the exact solution for various values of α = ν =

0.8, 0.85, 0.9, 0.95, 1, with N = 3. Also, the absolute error between the exact and

approximate solutions for α = ν = 1 with N = 3 is plotted in Figure 4(b). From

Table 6 and Figure 4, it is clear that the approximate solutions converge to the

exact solution. Also, these results show that the present method is more accurate in

comparison to methods in [37], [42], [7].

x Present method Method in [37] Method in [42] Method in [7]

N = 6 N = 9 k = 2,M = 6

0.1 2.6377× 10−7 2.5606× 10−11 1.98× 10−8 4.65× 10−3 1.30× 10−3

0.3 2.7422× 10−7 1.8959× 10−11 7.78× 10−9 2.57× 10−2 2.63× 10−3

0.5 1.9451× 10−7 1.2631× 10−11 6.34× 10−5 4.43× 10−2 2.83× 10−3

0.7 9.2527× 10−8 7.9481× 10−12 4.36× 10−5 5.37× 10−2 2.39× 10−3

0.9 1.0706× 10−7 4.3873× 10−12 2.80× 10−5 5.35× 10−2 1.64× 10−3

Table 6. Comparison of the absolute errors obtained by the present method with the meth-
ods in [37], [42], [7] for α = ν = 1 for Example 7.5.

Exact solution
α= ν =1
α= ν =0.95
α= ν =0.9
α= ν =0.85
α= ν =0.80.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 0.2 0.4 0.6 0.8 1
x(a)

0 0.2 0.4 0.6 0.8 1
x

−0.5×10−3

0

0.5×10−3

1×10−3

1.5×10−3

2×10−3

2.5×10−3

3×10−3

3.5×10−3

α= ν =1

(b)

Figure 4. (a) The comparison of the approximate solution with the exact solution for various
values of α = ν = 0.8, 0.85, 0.9, 0.95, 1, with N = 3 for Example 7.5.
(b) The absolute errors between the exact and approximate solutions for α =
ν = 1, with N = 3 for Example 7.5.

E x am p l e 7.6. Consider the fractional nonlinear pantograph differential equa-

tion [16]

Dνy(x) = 1− 2y2
(x

2

)

, 1 6 ν 6 2, 0 6 x 6 1,
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subject to initial conditions

y(0) = 1, y′(0) = 0.

The exact solution of this problem, with ν = 2, is y(x) = cosx. In Table 7,

we compare the absolute errors obtained by the present method with the modified

Laguerre wavelets method for various values of N with α = ν = 1. Also, the absolute

errors for various values of ν are presented in Table 8. This table illustrates that

with the values of ν approaching 2, the absolute error tends to zero. Figure 5 shows

the behavior of the approximate solutions for various values of ν with N = 8 and

α = 0.5.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x

0.5

0.6

0.7

0.8

0.9

1

Exact solution

ν =2

ν =1.9

ν =1.8

ν =1.7

Figure 5. The comparison of approximate solutions for different values of ν = 2, 1.9, 1.8, 1.7
with N = 8 and α = 0.5 for Example 7.6.

x Present method Modified Laguerre wavelets method [16]

N = 5 N = 7 N = 10 K = 1, N = 20
0 0 0 0 –

0.1 3.35×10−8 6.06×10−11 2.44×10−15 2.11×10−8

0.2 7.56×10−8 1.22×10−10 4.74×10−15 2.09×10−8

0.3 1.06×10−7 1.75×10−10 7.09×10−15 2.09×10−8

0.4 1.35×10−7 2.28×10−10 9.35×10−15 2.08×10−8

0.5 1.63×10−7 2.75×10−10 1.14×10−14 2.06×10−8

0.6 1.88×10−7 3.17×10−10 1.34×10−14 2.04×10−3

0.7 2.06×10−7 3.52×10−10 1.53×10−14 2.03×10−8

0.8 2.21×10−7 3.79×10−10 1.70×10−14 2.00×10−8

0.9 2.33×10−7 3.98×10−10 1.86×10−14 1.99×10−8

1.0 2.39×10−7 4.09×10−10 1.98×10−14 –

Table 7. The comparison of the absolute errors for different values of N and α = ν = 1
with the modified Laguerre wavelets method [16] for Example 7.6.
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x ν = 1.65 ν = 1.75 ν = 1.85 ν = 2
0 0 0 0 0

0.1 7.97× 10−3 4.86× 10−3 2.51× 10−3 1.20× 10−12

0.3 4.12× 10−2 2.69× 10−2 1.47× 10−2 3.46× 10−12

0.5 7.34× 10−2 5.02× 10−2 2.87× 10−2 5.43× 10−12

0.7 9.12× 10−2 6.60× 10−2 3.92× 10−4 6.94× 10−12

0.9 8.92× 10−2 6.83× 10−2 4.28× 10−2 7.87× 10−12

1 7.83× 10−2 6.31× 10−2 4.11× 10−2 8.05× 10−12

Table 8. Absolute errors for different values of ν with α = 1 and N = 8 for Example 7.6.

E x am p l e 7.7. Consider the system of fractional differential equations (see [36])

{

Dν1y1(x) = y1(x) + y2(x), 0 < ν1 6 1, 0 6 x 6 1,

Dν2y2(x) = −y1(x) + y2(x), 0 < ν2 6 1,

subject to the initial conditions

y1(0) = 0, y2(0) = 1.

The exact solution of this system when ν1 = ν2 = 1 is y1(x) = expx sinx and

y2(x) = expx cos x.We present the results for various values of N in Tables 9 and 10

and see that as the terms of FBFs N increase the absolute error tends to zero. Also,

Figure 6 shows the curves of approximate solutions for various values of α, ν with

N = 6. From this graph it is seen that the approximate solutions converge to the

exact solution.

x N = 5 N = 7 N = 9

0.1 2.3853× 10−6 2.1173× 10−8 1.0318× 10−10

0.3 2.3087× 10−5 3.2095× 10−8 9.6528× 10−11

0.5 4.4635× 10−5 4.9916× 10−8 9.3743× 10−11

0.7 8.2236× 10−5 7.2857× 10−8 7.9913× 10−11

0.9 1.4631× 10−4 8.9388× 10−8 2.3875× 10−11

Table 9. Absolute errors of y1(x) for different values of N with α = ν = 1 for Example 7.7.

x N = 5 N = 7 N = 9

0.1 5.7927× 10−5 3.9640× 10−8 5.7870× 10−11

0.3 8.4909× 10−5 3.6275× 10−8 8.4769× 10−11

0.5 1.0162× 10−4 3.8998× 10−8 1.2399× 10−10

0.7 9.8213× 10−8 4.2169× 10−8 1.6991× 10−10

0.9 3.4325× 10−3 2.7364× 10−8 1.8095× 10−10

Table 10. Absolute errors of y2(x) for different values of N with α = ν = 1 for Example 7.7.
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Figure 6. (a) The comparison of y1(x) with the exact solution for various values of α =
ν1 = ν2 with N = 6 for Example 7.7.
(b) The comparison of y2(x) with the exact solution for various values of α =
ν1 = ν2, with N = 6 for Example 7.7.

8. Conclusion

In the present work we introduced new functions called fractional-order Bessel

functions of the first kind. First, we presented the fractional Bessel functions op-

erational matrices of the Caputo fractional derivative and the Riemann-Liouville

fractional integration. Then, we used these functions and their operational matri-

ces to approximate the solutions of fractional-order differential equations, fractional

pantograph differential equations and systems of fractional differential equations.

Numerical examples show the validity and efficiency of the method. Also, it is

demonstrated that the present method in comparison to other methods works well

and achieves good accuracy.
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[46] Ş. Yüzbaşi: Numerical solutions of fractional Riccati type differential equations by means
of the Bernstein polynomials. Appl. Math. Comput. 219 (2013), 6328–6343. zbl MR doi

661

https://zbmath.org/?q=an:0789.26002
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1219954
https://zbmath.org/?q=an:1217.65174
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2770523
http://dx.doi.org/10.1016/j.camwa.2010.12.072
https://zbmath.org/?q=an:1063.65055
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2113975
http://dx.doi.org/10.1016/j.amc.2004.03.014
https://zbmath.org/?q=an:1119.65127
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2332951
http://dx.doi.org/10.1016/j.cam.2006.07.015
https://zbmath.org/?q=an:0292.26011
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0361633
http://dx.doi.org/10.1016/S0076-5392(09)60219-8
https://zbmath.org/?q=an:06992772
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR3233834
http://dx.doi.org/10.1016/j.apm.2014.02.001
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR3061372
http://dx.doi.org/10.1007/s10569-013-9477-8
https://zbmath.org/?q=an:0924.34008
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1658022
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR3529681
http://dx.doi.org/10.1016/j.apm.2016.04.026
https://zbmath.org/?q=an:06626265
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR3539800
http://dx.doi.org/10.1016/j.cam.2016.06.005
https://zbmath.org/?q=an:0489.41001
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0634509
https://zbmath.org/?q=an:1410.65286
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR3351623
http://dx.doi.org/10.1016/j.amc.2015.04.113
https://zbmath.org/?q=an:1221.65354
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2736623
http://dx.doi.org/10.1016/j.cnsns.2010.05.036
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR3282588
http://dx.doi.org/10.1016/j.apm.2014.06.003
https://zbmath.org/?q=an:1193.34156
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2385784
http://dx.doi.org/10.1016/j.amc.2007.03.064
https://zbmath.org/?q=an:1291.65310
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR3129359
http://dx.doi.org/10.1155/2013/562140
https://zbmath.org/?q=an:1193.65114
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2647099
http://dx.doi.org/10.1016/j.amc.2010.03.063
https://zbmath.org/?q=an:1280.65075
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR3018474
http://dx.doi.org/10.1016/j.amc.2012.12.006
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