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Abstract. We give a proof of the existence of a solution of reconstruction operators used
in the PNPM DG schemes in one space dimension. Some properties and error estimates of
the projection and reconstruction operators are presented. Then, by applying the PNPM

DG schemes to the linear advection equation, we study their stability obtaining maximal
limits of the Courant numbers for several PNPM DG schemes mostly experimentally. A
numerical study explains how the stencils used in the reconstruction affect the efficiency of
the schemes.
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1. Introduction

A conservation law [6] is a system of hyperbolic PDEs that states that the rate of

change of a physical state or conserved quantity is governed by a flux function. The

initial value problem for a scalar conservation law in one space dimension is given

by

vt(t, x) + f(v(t, x))x = 0 with (t, x) ∈ (0,∞)× R,

v(0, x) = v0(x) for x ∈ R,

where the dependent variable v is the conserved quantity. The differentiable function

f : R → R is the flux function and v0 : R → R describes the initial data of v.

In applications one is interested in systems of such equations in one, two or three

space dimensions. Since generally exact solutions to these systems are not known,

numerical methods are important for solving such initial value problems. The aim of
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this paper is to make some basic comparisons between numerical schemes from a large

class of schemes. For this purpose it suffices to consider special scalar problems in

one space dimension for which the exact solution is known. Therefore, we restrict

ourselves accordingly.

Let M,N ∈ N0 satisfy N 6 M . The PNPM DG schemes are a class of arbitrary

high order schemes originally developed by Dumbser et al. [5] for systems in two and

three space dimensions. These schemes use a reconstruction operator applied to the

DG scheme at each time step to increase the accuracy. By varying the parameters N

and M as well as the stencils for the reconstruction one obtains a very large number

of schemes as M is increased. In this paper these schemes are applied to scalar

conservation laws in one space dimension in order to systematically study some

basic properties of these schemes.

In order to describe these schemes take T > 0 and I = [a, b]. The conserved

functions will be from the function space

L∞([0, T ], L2(I)) =
{
v : [0, T ]× I → R ; ess sup

t∈[0,T ]

‖v(t, ·)‖ < ∞
}
,

where ‖·‖ is the L2 norm on I. For f ∈ L2(I) we have ‖f‖ = (
∫
I
|f(x)|2 dx)1/2.

Let Z ∈ N. We discretize I by equally distant points a = x1/2 < x3/2 < . . . <

xZ+1/2 = b into Z subintervals Ij = [xj−1/2, xj+1/2] for j = 1, . . . , Z with the

constant mesh size h = xj+1/2 − xj−1/2 = (b − a)/Z. We define spaces of the

polynomials

PN,Ij := {p : Ij → R, p is a polynomial of maximal degree N}.

The numerical solutions will be taken from the following space of the piecewise

polynomials:

PN,I,Z := {p : p|Ij ∈ PN,Ij ∀ j = 1, . . . , Z}.
Let Z1 ∈ N. We discretize the time interval [0, T ] by considering the times 0 = t0 <

t1 < . . . < tZ1
= T and define subintervals Tn = [tn, tn+1[ and a constant time step

∆t = tn+1 − tn for n = 0, . . . , Z1 − 1. First we make the projection of the initial

data v0 → u0, where u0 ∈ PN,I,Z is a piecewise polynomial of degree N . Using this

piecewise polynomial we iterate for n ∈ {0, . . . , Z1 − 1} the following steps:
(1) The reconstruction un → wn, where wn ∈ PM,I,Z is a piecewise polynomial of

degree M .

(2) The time evolution wn → Un, where Un ∈ PM,Tn×I,Z is a piecewise polynomial

of degree M in time and space. In this step the local continuous space-time

Galerkin method introduced by Dumbser et al. [5] is used for the time evolution.

The values in time are used to compute the higher order fluxes in the next step.
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(3) The DG scheme of order N + 1 giving Un → un+1 where un+1 ∈ PN,I,Z is

a piecewise polynomial of degree N . It is the new numerical solution after the

time step ∆t.

A central result of this paper is a proof of the unique solvability of the reconstruction

step. Our choices of the stencil sizes for the reconstruction operators always generate

systems of equations with full column rank. Furthermore, the reconstruction opera-

tors give approximations of the data considered, but as a special case they recover

the same data when these originally are polynomials of the same degree.

Courant numbers are important for the stability of explicit schemes for conser-

vation laws. We computationally explore maximal limits of these numbers for the

PNPM DG schemes by applying the von Neumann analysis and using an experimen-

tal procedure. We obtain a wide variety of stability limits, including some unstable

cases for which we have only one value λ = 1 that gives a stable solution. Moreover,

there are some semi-stable cases with a minimal bound on the time step and some

cases with a stability interval larger than ]0, 1]. This study of the stability uses the

application of the PNPM DG schemes to the linear advection equation. It is common

to do this in theory and practice.

In the numerical literature some authors, e.g. Dumbser [5], usually determine

these limits using the linear cases. Then they use a rate 0.8 or 0.7 of these limits

for nonlinear cases. In this manner, one can try to extend the use of our computed

limits of stability to nonlinear cases.

The reconstruction operator needs for its definition stencils related to the dis-

cretization. We study the numerical effect of the size and form of these stencils on

the efficiency of the PNPM DG schemes. A summary of the numerical results is

given in the conclusion.

The paper is arranged as follows. In Section 2 we recall projection operators and

the error estimate for these operators. In Section 3 we introduce the reconstruc-

tion operators in detail and prove the existence of solutions to the reconstruction

problem. This proof is a first general proof of this fact which previously had been

obtained for the special cases M = 2N + 1 only, see [7]. We consider two cases of

the solution, either a unique exact solution or a unique solution obtained by using

the least squares approach in the overdetermined case. Furthermore, some proper-

ties of the reconstruction and an error estimate are given. Then in Section 4, the

continuous Galerkin scheme is recalled. It evolves the data in the time up to the

same order of the space for step 2 above. Then, we display the 3rd step above in

Section 5. Moreover, the PNPM DG schemes are applied to the advection equation

in Section 6. We study the stability and give maximal limits of the Courant numbers.

Finally, numerical results for the effect of the stencils on the efficiency are given.
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2. The projection onto piecewise polynomials

The mutually orthogonal Legendre polynomials of degree i ∈ N0 on the reference

interval J = [−1, 1] can be determined by the Rodrigues formula

Li(s) =
(−1)i

2ii!

di

dsi
{(1− s2)i}

for s ∈ J , see e.g. Stegun [10]. On J they satisfy the orthogonality condition

∫ 1

−1

Lm(s)Ln(s) ds =
2

2n+ 1
δmn

where δmn is the Kronecker delta, and satisfy also

(2.1) Li(−s) = (−1)iLi(s) and Li(1) = 1,

see e.g. Koornwinder et al. [9], Table 18.6.1. For example, the first four polynomials

are 1, s, (3s2 − 1)/2, (5s3 − 3s)/2.

Let Ij for j = 1, . . . , Z be our discrete intervals with constant length h and

midpoints xj . We define linear reference transformations γj : Ij → J by γj(x) :=

2h−1(x − xj) for x ∈ Ij . Using these transformations, we obtain the transformed

piecewise Legendre basis functions Φi,j : I → R by

(2.2) Φi,j(x) =

{
Li(γj(x)), x ∈ Ij ,

0, x ∈ I \ Ij ,
j = 1, . . . , Z, i = 0, . . . , N.

The set BN,Z := {Φi,j; j = 1, . . . , Z, i = 0, . . . , N} is an orthogonal basis of the
solution space PN,I,Z.

Let v ∈ L2(I). Using these basis functions Φi,j the coefficients

(2.3) ûi,j =
2i+ 1

h

∫

Ij

v(x)Φi,j(x) dx

give the L2 projection operator ΠN,Z : L2(I) → PN,I,Z with ΠN,Z(v) = u by the

formula

ΠN,Z(v)(x) = u(x) =
Z∑

j=1

N∑

i=0

ûi,jΦi,j(x) for x ∈ I.

The operatorΠN,Z has the following well-known properties. It is linear, and idempo-

tent, i.e. a projection; this means that ΠN,Z(ΠN,Z(v)) = ΠN,Z(v). This implies that,

for p ∈ PN,I , ΠN,Z(p) = p. It is an orthogonal projection of v on PN,I,Z with respect
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to the L2 scalar product, i.e. 〈v−ΠN,Z(v),Φi,j〉 = 0 for all Φi,j ∈ BN,Z. Also, it is the

best approximation using piecewise polynomials, i.e. it satisfies ‖v−ΠN,Z(v)‖L2(I) 6

‖v − p‖L2(I) for all p ∈ PN,I,Z. Also the following boundedness estimate holds:

‖ΠN,Z(v)‖L2(I) 6 ‖v‖L2(I). Taking ûj := (û0,j , . . . , ûN,j)
⊤ and using the Euclidean

norm ‖·‖e in R
N+1, the solution satisfies the estimates

(2.4)
h

2N + 1
‖ûj‖2e 6 ‖uj‖2L2(Ij)

6 h‖ûj‖2e.

For the projection error estimates we use functions in the Sobolev spaces of order

r ∈ N0, W
r,2(I) = {v ∈ L2(I) : D(r)v ∈ L2(I)}. These spaces are associated with

the norm ‖·‖W r,2(I) and the seminorm | · |W r,2(I) where

(2.5) ‖v‖W r,2(I) =

Ã

r∑

i=0

(‖D(i)v‖L2(I))2, |v|W r,2(I) = ‖D(r)v‖L2(I),

for all v ∈ W r,2(I), see e.g. Adams [1]. For each v ∈ WN+1,2(I), the following error

estimates hold:

(2.6) ‖ΠN,Z(v)− v‖2L2(Ij)
6 C2

2h
2N+2|v|2WN+1,2(Ij)

,

‖ΠN,Z(v) − v‖L2(I) 6 C2h
N+1|v|WN+1,2(I),

‖ΠN,Z(v) − v‖L1(I) 6 C3h
N+1|v|WN+1,2(I).

In a special case, when v is a bounded function with a discontinuity in I and h is

the length of I, we have for all 1 6 p < ∞ the estimate

‖ΠN,Z(v) − v‖Lp(I) 6 C3‖v‖L∞(I)h
1/p.

For the proofs of all these properties and estimates, see [2], Chapter 2.

3. The reconstruction operators

The reconstruction is an approximation by higher degree polynomials obtained

from a set of neighboring lower degree polynomials. This approximation has as

a building block a chosen reconstruction stencil of neighboring elements. With

R,L > 0 and ne := 1 + L + R, we define the stencil SIj ,ne,L =
R⋃

c=−L

Ij+c which

is related to the element Ij . It is constituted of Ij together with L elements to the

left and R elements to the right of Ij , see Figure 1. Using all such stencils, for
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j = 1, . . . , Z, we obtain the corresponding extended interval Iex :=
Z⋃

j=1

SIj ,ne,L. It

has Zex := Z + L+R elements, and I ⊂ Iex.

Ij−L . . . Ij−1 Ij Ij+1 . . . Ij+R

Figure 1. The stencil SIj ,ne,L.

For example, taking ne = 3, we have three stencils SIj ,3,L with L = 0, 1, 2, see

Figure 2. The extended interval Iex has Z+2 elements. Figure 3 shows the extended

interval Iex for the case L = R = 1.

L=0, R=2

Ij Ij+1 Ij+2L=1, R=1

Ij−1 Ij Ij+1L=2, R=0

Ij−2 Ij−1 Ij

Figure 2. The stencils SIj ,3,0, SIj ,3,1, and SIj ,3,2.

I

I1 I2 IZ−1 IZ
Iex

I0 I1 I2 IZ−1 IZ IZ+1

Figure 3. The extended interval Iex for the case L = R = 1.

3.1. Definition of the reconstruction operator. Now, let v ∈ L2(Iex) be any

given function, u = ΠN,Zex
(v) ∈ PN,Iex,Zex

the projection of this function to the

piecewise polynomials of degree N , and let SIj ,ne,L with L ∈ {0, . . . , ne − 1} be the
stencil for the reconstruction. The reconstruction operator ℜN,M,S,Z : PN,Iex,Zex

→
PM,I,Z will be defined to give a piecewise polynomial of degree M > N that has the

form

(3.1) ℜN,M,S,Z(u(x)) = w(x) :=

Z∑

j=1

wj(x) =

Z∑

j=1

M∑

i=0

ŵi,jΦi,j(x).

Only during the reconstruction step, each basis function Φi,j with i = 0, . . . ,M is ex-

tended from Ij over the whole stencil, by ignoring the condition of the definition (2.2)

Φi,j(x) = 0 for x ∈ I \ Ij . We use the notation Φe
i,j for the extended basis functions.

For example, as shown in Figure 4, with the stencil SIj ,3,1, we have

Φ1,j(x) =





2

h
(x− xj), x ∈ Ij ,

0, x ∈ I \ Ij ,
Φe

1,j(x) =





2

h
(x− xj), x ∈ SIj ,ne,L,

0, x ∈ Iex \ SIj ,ne,L.
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Φ1,j

Ij−1 Ij Ij+1

Φ
e
1,j

Ij−1 Ij Ij+1

Figure 4. The basis function Φ1,j (left) and its extension Φ
e
1,j (right) onto the stencil SIj ,3,1.

Let wj := w|Ij be the term of w on Ij , for j = 1, . . . , Z fixed, let SIj ,ne,L be

a stencil of size ne = L + R + 1 with L,R > 0. We set c = −L, . . . , R and consider

Ij+c := [xj−1/2 + ch, xj+1/2 + ch[ to be an element of this stencil. We compute the

coefficients ŵi,j by assuming that the error in L2 norm of computing wj must be

minimal on the stencil. This leads to the normal equations

M∑

l=0

ŵl,j〈Φe
l,j ,Φk,j+c〉j+c =

N∑

i=0

ûi,j+c〈Φi,j+c,Φk,j+c〉j+c.

By orthogonality, this leads to the system of equations

(3.2)

M∑

l=0

ŵl,j〈Φe
l,j ,Φk,j+c〉j+c =

h

2k + 1
ûk,j+c.

This system consists of ne(N + 1) equations with M + 1 unknowns. We neglect the

case of underdetermined systems, i.e., we require the condition

(3.3) ne(N + 1) > (M + 1)

to be satisfied when choosing any stencil. Two examples are shown in Appendix A.

In the underdetermined case one could consider the unique solution of minimal Eu-

clidean norm.

Due to the orthogonality of the Legendre basis functions we obtain the equalities

(3.4) ŵi,j = ûi,j, i = 0, . . . , N, j = 1, . . . , Z.

Then we can write w(x) = u(x) +
Z∑

j=1

M∑
i=N+1

ŵi,jΦi,j(x). We only have to determine

the remaining degrees of freedom ŵN+1,j , . . . , ŵM,j for j = 1, . . . , Z.

IfM = N , the equalities (3.4) cover all ŵi,j for i = 0, . . . ,M and the reconstruction

operator becomes the restriction ℜM,M,S,Z(u) = w = u|I . Then the PNPN DG

schemes are equivalent to the classical DG schemes, see [5].
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3.2. The matrix form. For the left-hand side in (3.2) we define the coefficient

vectors ŵj := (ŵ0,j , . . . , ŵM,j)
⊤ ∈ R

M+1 and the matrices Mj,c as

Mj,c :=




〈Φe
0,j ,Φ0,j+c〉j+c . . . 〈Φe

M,j ,Φ0,j+c〉j+c

...
...

...

〈Φe
0,j ,ΦN,j+c〉j+c . . . 〈Φe

M,j ,ΦN,j+c〉j+c


 ∈ R

(N+1)×(M+1).

For the right-hand side we define the vectors ûj+c := (û0,j+c, . . . , ûN,j+c)
⊤ ∈ R

N+1

and the matrices Aj+c as

Aj+c =




h 0 . . . 0

0
h

3
. . . 0

...
...

...

0 0 . . .
h

2N + 1




∈ R
(N+1)×(N+1).

Then we can write the elemental matrix forms

(3.5) Mj,c · ŵj = Aj+c · ûj+c for c = −L, . . . , R.

Taking yj,c := Aj+c · ûj+c, these forms become Mj,c · ŵj = yj,c for c = −L, . . . , R.

Also defining vectors yj := (yj,−L, . . . ,yj,R)
⊤ ∈ R

ne(N+1) and matrices Mj :=

(Mj,−L, . . . ,Mj,R)
⊤ ∈ R

ne(N+1)×(M+1), we can merge the elemental matrix forms

into the full matrix form

(3.6) Mj · ŵj = yj ,

which is related to the stencil SIj ,ne,L.

Lemma 3.1. Suppose that (pn)n∈N0
is a sequence of orthogonal polynomials on

the interval [a, b] with pn of degree n. Then, for each k ∈ {0, . . . , n}, the polyno-
mial pk has k simple zeros that lie in ]a, b[.

P r o o f. We consider pn with the zeros x
n
1 , . . . , x

n
n ∈ C. We have p0 = c 6= 0 and

0 = 〈p0, pn〉 = c

∫ b

a

(x− xn
1 ) . . . (x − xn

n) dx.

This means that pn must have at least one real zero, e.g. x∗, in ]a, b[, at which

the polynomial pn changes its sign. This zero must have an odd multiplicity. Let
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Ψ = {x ∈ ]a, b[ : x ∈ {xn
1 , . . . , x

n
n} with odd multiplicities}. Then we know that

Ψ 6= ∅, since at least x∗ ∈ Ψ . We set π(x) :=
∏
t∈Ψ

(x − t). The function π has

only simple zeros in ]a, b[, since it is a product of different linear factors. Then the

function pn · π has in ]a, b[ real zeros with even multiplicities only. This implies that

pn · π has no sign change on ]a, b[. Thus we obtain 〈pn, π〉 6= 0. Now we assume

that π ∈ Pl with l < n, i.e. π =
l∑

j=0

ajpj . Then 〈pn, π〉 =
l∑

j=0

aj〈pj , pn〉 = 0. This

is a contradiction to 〈pn, π〉 6= 0. This means that π ∈ span(pn), thus π = λpn, for

some λ ∈ R. Consequently, pn has only simple zeros all of which lie in ]a, b[. �

Corollary 3.1. Suppose that on the interval I = [a, b] we have a set {p0, . . . , pN}
of N + 1 orthogonal polynomials with pk ∈ Pk,I for k = 0, . . . , N . Suppose that

p ∈ PM,I is a polynomial of degree M > N which is orthogonal to all pk. Then it

follows, by a proof analogous to that of Lemma 3.1, that p has at least N+1 different

zeros on ]a, b[.

Now we prove the existence of the solution by depending on the rank of the

matrixMj .

Theorem 3.1. The matrixMj has a full column rank M + 1.

P r o o f. We consider the homogeneous matrix formMj ·ŵj = 0 of (3.6). This sys-

tem means that the coefficient vector of the reconstruction polynomial wj , see (3.1),

satisfies

Mj,c · ŵj =




〈wj ,Φ0,j+c〉j+c

...

〈wj ,ΦN,j+c〉j+c


 = 0.

Therefore, the polynomial wj of degree M is orthogonal to the N + 1 basis func-

tions Φi,j+c on all elements Ij+c of the stencil SIj ,ne,L, with i = 0, . . . , N and

c = −L, . . . , R. According to Corollary 3.1, there are at least N + 1 different zeros

of w on each element Ij+c. This gives ne(N +1) different zeros on the whole stencil.

Also according to the condition (3.3) we find ne(N+1) > (M+1) > M . Therefore, w

is the zero polynomial. This proves the injectivity of the reconstruction and implies

that the matrixMj has the full column rank M + 1. �

3.3. The solution of the reconstruction problem. For c = 0, the equa-

tions (3.2) directly give the equalities (3.4), due to the orthogonality of the ba-

sis functions on Ij . Thus we can ignore the equations related to Ij in the sys-

tem (3.2). We now consider the corresponding reduced system. Defining vec-

tors ŷj : = (yj,−L, . . . ,yj,−1,yj,1, . . . ,yj,R)
⊤ ∈ R

(ne−1)(N+1) and matrices M̃j :=
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(Mj,−L, . . . ,Mj,−1,Mj,1, . . . ,Mj,R)
⊤ ∈ R

(ne−1)(N+1)×(M+1), the reduced system is

given by

M̃j · ŵj = ŷj .

The vector ŵj can be divided into two vectors, ûj := (û0,j, . . . , ûN,j)
⊤ ∈ R

N+1 of the

known coefficients and x̂j := (ŵN+1,j , . . . , ŵM,j)
⊤ ∈ R

M−N of unknown coefficients.

Moreover, the first N + 1 columns in each matrix M̃j are related to the known

coefficients. Thus the matrices M̃j can be divided into two parts, in the form M̃j =

(M̃j,1, M̃j,2) where M̃j,1 ∈ R
(ne−1)(N+1)×(N+1) and M̃j,2 ∈ R

(ne−1)(N+1)×(M−N).

We can rewrite the last system as (M̃j,1, M̃j,2) ·
(
ûj

x̂j

)
= ŷj , or

(3.7) M̃j,2 · x̂j = ŷj − M̃j,1 · ûj .

Since the matrix M̃j,2 is a submatrix fromMj andMj has, according to Theorem 3.1,

the full column rank, M̃j,2 has also the full column rank. Thus we conclude the

following cases:

(1) If ne = (M + 1)/(N + 1), then (ne−1)(N+1) = (M−N), then the matrix M̃j,2

is square and thus it is invertible. Then we get the unique solution

(3.8) x̂j = M̃−1
j,2 · (ŷj − M̃j,1 · ûj).

(2) If ne > (M + 1)/(N + 1), then (ne − 1)(N +1) > (M −N), then according to

the least square solution method1, see e.g. Strang [11], p. 200, we consider M̃⊤
j,2 ·M̃j,2

which is invertible. Moreover, the system (3.7) is over-determined. Now with A =

M̃j,2, x̃ = x̂j , and b = ŷj − M̃j,1 · ûj , the normal equations are

(M̃⊤
j,2M̃j,2)x̂j = M̃⊤

j,2(ŷj − M̃j,1 · ûj),

and the least square solution is given by

(3.9) x̂j = (M̃⊤
j,2 · M̃j,2)

−1 · M̃⊤
j,2 · (ŷj − M̃j,1 · ûj).

(3) If ne < (M + 1)/(N + 1), then (ne−1)(N+1) < (M−N), then the system (3.7)

is underdetermined and we ignore this case in our study.2

1 For an overdetermined problem Ax = b with A ∈ R
m×n, x ∈ R

n, b ∈ R
m, m > n, and

rankA = n, the quadratic minimization problem x̃ = min
x

‖Ax− b‖2e with the Euclidean

norm has a unique solution, provided that the n columns of x are linearly independent,
given by solving the normal equations (A⊤A)x̃ = A⊤b. Moreover, the least-squares

solution is given by x̃ = (A⊤A)−1A⊤b. For details see e.g. Strang [11].
2One could consider the solution of the smallest Euclidean norm which is given by x̂j =

M̃⊤
j,2 · (M̃j,2 · M̃

⊤
j,2)

−1 · (ŷj − M̃j,1 · ûj). For details see Strang [11], p. 405.
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3.4. The solutions as linear combinations. We conclude from the formu-

las (3.8) and (3.9) that for one fixed element Ij each of the coefficients ŵi,j for

i = 0, . . . ,M of the term wj can be written as a linear combination of all coefficients

ûk,j+c with k = 0, . . . , N and c = −L, . . . , R. This means that there are constants

ci,k,j+c ∈ R such that

ŵi,j =

R∑

c=−L

N∑

k=0

ci,k,j+cûk,j+c.

We define the vectors ci ∈ R
ne(N+1) for i = 0, . . . ,M , and ûj,s ∈ R

ne(N+1) for

j = 1, . . . , Z, as follows:

ci := (ci,0,j−L, ci,1,j−L, . . . , ci,N,j−L, ci,0,j−L+1, . . . , ci,N,j−L+1, . . . , ci,N,j+R),

ûj,s := (û0,j−L, û1,j−L, . . . , ûN,j−L, û0,j−L+1, . . . , ûN,j−L+1, . . . , ûN,j+R).

The vectors ci are identical for different j. They only depend on the form of the

stencil. With these vectors we can write ŵi,j = ci · ûj,s. By defining the matrix

C := (c0, . . . , cM )⊤ ∈ R
(M+1)×ne(N+1), we can write

(3.10) ŵj = C · ûj,s.

In the same way as we studied the matrix M̃j,2, we have the following cases:

(1) If (ne − 1)(N + 1) > M −N , then the matrix C⊤C is invertible, it is positive

definite.

(2) If (ne − 1)(N + 1) = M −N , then C is invertible, and thus the product C⊤C

is positive definite.

Whether C is a square matrix or not, the product C⊤C will always be positive

definite. Then by using the Euclidean norm ‖·‖e and the spectral norm3 ‖C‖2 =√
βmax(C⊤C) we have

(3.11) ‖ŵj‖2e 6 ‖C‖22‖ûj,s‖2e = ‖C‖22(‖ûj−L‖2e + . . .+ ‖ûj+R‖2e).

The last inequality is needed for proving the boundedness later.

3.5. Properties of the reconstruction operator. The reconstruction opera-

tor is linear. This means that, for all p, q ∈ PN,Iex,Zex
and ̺ ∈ R, ℜN,M,S,Z(p+ q) =

3 Let Q ∈ R
n×m. The spectral norm of Q is the largest singular value of Q, i.e. the square

root of the largest eigenvalue βmax(Q
⊤Q) of the positive semidefinite matrix Q⊤Q:

‖Q‖2 =
√

βmax(Q⊤Q).
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ℜN,M,S,Z(p)+ℜN,M,S,Z(q) and ℜN,M,S,Z(̺p) = ̺ℜN,M,S,Z(p). Moreover, the recon-

struction operators have the following properties.

3.5.1. Conservativity. The conservation property 〈ℜN,M,S,Z(u), u|I〉= 〈u|I , u|I〉
holds for all u ∈ PN,Iex,Zex

where 〈·, ·〉 is the scalar product on L2(I).

P r o o f. Let w = ℜN,M,S,Z(u) be the reconstructed polynomial. We use the

equalities (3.4) which hold for the terms wj and uj of w and u, respectively, on the

elements Ij . We have by using the orthogonality of the basis functions 〈w, u|I〉 =
Z∑

j=1

〈wj , uj〉j =
Z∑

j=1

〈uj , uj〉j = 〈u|I , u|I〉, where 〈·, ·〉j is the L2 scalar product on the

element Ij . �

3.5.2. Consistency of the reconstruction for p ∈ PM and an identity prop-

erty. We prove that in the special case when the given function v is a polynomial

p ∈ PM = PM,R of degree M , the system (3.6), Mj · ŵj = yj has a consistent

right-hand side.

Theorem 3.2. Let p ∈ PM , u = ΠN,Zex
(p) and w = ℜM,M,S,Z(u). The sys-

tem (3.6) has a consistent right-hand side. This means that for p ∈ PM the least

squares solution is an exact solution of the linear system (3.6) in the overdetermined

case.

P r o o f. Since p ∈ PM and the extended polynomials Φ
e
0,j , . . . ,Φ

e
M,j are a basis

of PM , there exist constants p̂0,j, . . . , p̂M,j ∈ R such that p(x) =
M∑

m=0
p̂m,jΦ

e
m,j(x).

For k = 0, . . . , N and c = −L, . . . , R let us now consider the entries of the system

Aj+c · ûj+c = Mj,c · ŵj defined in (3.5). Using (2.3) as in Section 2 we obtain for

a row of the system

h

2k + 1
ûk,j+c =

∫

Ij+c

Φk,j+c(x)p(x) dx =

M∑

m=0

p̂m,j

∫

Ij+c

Φk,j+c(x)Φ
e
m,j(x) dx

=

M∑

m=0

p̂m,j〈Φk,j+c,Φ
e
m,j〉j+c.

This is the kth row of the equation yj,c = Aj+c · ûj+c = Mj,c · p̂j for p̂j :=

(p̂0,j , . . . , p̂M,j)
⊤. This means that yj,c is in the range ofMj,c for all c = −L, . . . , R.

This holds also for the system (3.6), i.e., the vector yj is in the range of Mj . Thus

the system (3.6) has a consistent right-hand side. �
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Lemma 3.2. Let p ∈ PM . For all N ∈ {0, . . . ,M}, by using any stencil S =

SIj ,ne,L with size ne satisfying ne > (M + 1)/(N + 1), we have

ℜN,M,S,Z(ΠN,Zex
(p)) = p|I .

So ℜN,M,S,Z ◦ ΠN,Zex
is a quasi identity map for polynomials in PM . It uses the

known values of p ∈ PM on the extended interval Iex.

P r o o f. Let u = ΠN,Zex
(p) ∈ PN,Iex,Zex

and w = ℜM,M,S,Z(u) ∈ PM,I,Z .

Since PM may be identified one to one with PM,Iex the polynomial p can be expanded

to Iex piecewise. Then we have

p =

Zex∑

j=1

M∑

i=0

p̂i,jΦi,j , u =

Zex∑

j=1

N∑

k=0

ûk,jΦk,j , w =

Z∑

j=1

M∑

l=0

ŵl,jΦl,j ,

where all ûk,j and p̂i,j are given by (2.3) and the ŵl,j are the solutions of the recon-

struction equations. We have on the extended interval p̂i,j = ûi,j for i = 0, . . . , N

and j = 1, . . . , Zex and on the original interval the reconstruction coefficients sat-

isfy ŵl,j = p̂l,j = ûl,j for l = 0, . . . , N and j = 1, . . . , Z. We want to prove that

ŵl,j = p̂l,j for l = N + 1, . . . ,M and j = 1, . . . , Z. By Theorem 3.1 the solution to

the reconstruction system (3.6) is unique sinceMj has full column rank. This means

that for p ∈ PM we have p̂l,j = ŵl,j for l = N + 1, . . . ,M and j = 1, . . . , Z. �

3.5.3. Further relations between ℜN,M,S,Z and ΠN,Zex
.

Theorem 3.3. Let p, q ∈ PN,Iex,Zex
be such that ℜN,M,S,Z(p) = ℜN,M,S,Z(q).

Then we have p|I = q|I .

P r o o f. Let P = ℜN,M,S,Z(p) = ℜN,M,S,Z(q) = Q. Then we may write

Z∑

j=1

M∑

i=0

P̂i,jΦi,j(x) =

Z∑

j=1

M∑

i=0

Q̂i,jΦi,j(x),

or
Z∑

j=1

M∑
i=0

(P̂i,j − Q̂i,j)Φi,j(x) = 0. Since the piecewise polynomials Φi,j are linearly

independent basis functions in PM,I,Z , we have P̂i,j = Q̂i,j for all i = 0, . . . ,M and

j = 1, . . . , Z. On the other hand, the equalities (3.4) give p̂i,j = P̂i,j and q̂i,j = Q̂i,j

for all i = 0, . . . , N and j = 1, . . . , Z. Thus we find p̂i,j = q̂i,j for i = 0, . . . , N and

j = 1, . . . , Z. Then p|I = q|I . �

611



Theorem 3.4. For any stencil SIj ,ne,L with ne > (M + 1)/(N + 1), we have for

any u ∈ PN,Iex,Zex

ΠN,Z(ℜN,M,S,Z(u)) = u|I .

P r o o f. Let w = ℜN,M,S,Z(u), and q = ΠN,Z(w). We want to prove that

q = u|I . We have

u =

Zex∑

j=1

N∑

i=0

ûi,jΦi,j , w =
Z∑

j=1

M∑

i=0

ŵi,jΦi,j ,

and

q =

Z∑

j=1

N∑

i=0

q̂i,jΦi,j .

For i = 0, . . . , N and j = 1, . . . , Z according to (2.3), we have

q̂i,j =
2i+ 1

h
〈w,Φi,j〉j =

2i+ 1

h

Z∑

j=1

M∑

k=0

ŵk,j〈Φk,j ,Φi,j〉j .

Since the basis functions satisfy

∫

Ij

Φm,j(x)Φn,j′ (x) dx =





h

2m+ 1
δmn, j = j′,

0, j 6= j′,

m, n = 0, . . . , N,

we have

q̂i,j =
2i+ 1

h

(
ŵi,j

h

2i+ 1

)
= ŵi,j .

According to (3.4), we have ŵi,j = ûi,j , then q̂i,j = ûi,j for i = 0, . . . , N and

j = 1, . . . , Z. This implies finally that q = u|I . �

Theorem 3.5. For all w ∈ PM,Iex,Zex
and all N ∈ {0, . . . ,M}, the relation

ℜN,M,S,Z(ΠN,Zex
(w)) = w|I holds.

P r o o f. Follows directly from Lemma 3.2. �

3.5.4. Boundedness of the reconstruction operator.

Theorem 3.6. Let w = ℜN,M,S,Z(u) and let wj and uj be the restrictions to Ij
of w and u, respectively. Then the following inequalities hold:

(3.12) ‖uj‖2L2(Ij)
6 ‖wj‖2L2(Ij)

6 C6

R∑

c=−L

‖uj+c‖2L2(Ij+c)
.
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P r o o f. (1) We start with the first part of the inequality (3.12). From the

conservation property 3.5.1 and from the Cauchy-Schwarz inequality, we have

‖uj‖2L2(Ij)
= 〈uj , uj〉j = 〈wj , uj〉j 6 ‖uj‖L2(Ij)‖wj‖L2(Ij).

If ‖uj‖L2(Ij) = 0 then trivially ‖uj‖2L2(Ij)
6 ‖wj‖2L2(Ij)

. If ‖uj‖L2(Ij) > 0, then

after dividing by ‖uj‖L2(Ij) we get ‖uj‖L2(Ij) 6 ‖wj‖L2(Ij) and hence ‖uj‖2L2(Ij)
6

‖wj‖2L2(Ij)
, thus the first part of (3.12) follows.

(2) By taking ŵj = (ŵ0,j , . . . , ŵM,j)
⊤ and using the Euclidean norm, we have

(3.13)
h

2M + 1
‖ŵj‖2e 6 ‖wj‖2L2(Ij)

6 h‖ŵj‖2e.

On the other hand, according to the formula (3.10), we have ŵj = Cûj,s. From (3.11)

we get

‖ŵj‖2e 6 ‖C‖22‖ûj,s‖2e = ‖C‖22(‖ûj−L‖2e + . . .+ ‖ûj+R‖2e).
From (2.4) for c = −L, . . . , R, ‖ûj+c‖2e 6 (2N + 1)h−1‖uj+c‖2L2(Ij+c)

we have

‖ŵj‖2e 6
(2N + 1)‖C‖22

h
(‖uj−L‖2L2(Ij−L) + . . .+ ‖uj+R‖2L2(Ij+R)).

Substituting into (3.13), we obtain

‖wj‖2L2(Ij)
6 (2N + 1)‖C‖22(‖uj−L‖2L2(Ij−L) + . . .+ ‖uj+R‖2L2(Ij+R)).

Finally, we get C6 = (2N +1)‖C‖22, noting that the coefficients in C only depend on
the basis polynomials and not on vj or wj . Now, we have

‖wj‖2L2(Ij)
6 C6

R∑

c=−L

‖uj+c‖2L2(Ij+c)
,

which is the right inequality. �

3.6. The error estimate of the reconstruction operator.

Theorem 3.7. Suppose that the interval I = [a, b] has a uniform partition of Z

subintervals with constant mesh size h = (b − a)/Z. Let N 6 M , S = SIj ,ne,L be

a stencil with ne > (M + 1)/(N + 1), and Iex =
Z⋃

j=1

SIj ,ne,L be the extended interval.

Then, for each v ∈ WM+1,2(Iex), the following error estimates hold:

(3.14) ‖ℜN,M,S,Z(ΠN,Zex
(v)) − v|I‖L2(I) 6 C7h

M+1|v|WM+1,2(I),

where |·|WM+1,2(I) is the seminorm on WM+1,2(I) given in (2.5).

613



P r o o f. Let Ij be an element, with j = 1, . . . , Z fixed. Using the triangle

inequality, we obtain

(3.15) ‖ℜN,M,S,Z(ΠN,Zex
(v)) − v|I‖2L2(Ij)

6 ‖ℜN,M,S,Z(ΠN,Zex
(v)) −ΠM,Zex

(v)|I‖2L2(Ij)

+ ‖ΠM,Zex
(v)|I − v|I‖2L2(Ij)

.

Due to the identity in Lemma 3.2 and the linearity of the reconstruction operator

we have

‖ℜN,M,S,Z(ΠN,Zex
(v))−ΠM,Zex

(v)|I‖2L2(Ij)

= ‖ℜN,M,S,Z(ΠN,Zex
(v)) −ℜN,M,S,Z(ΠN,Zex

(ΠM,Zex
(v)))‖2L2(Ij)

= ‖ℜN,M,S,Z(ΠN,Zex
(v)−ΠN,Zex

(ΠM,Zex
(v)))‖2L2(Ij)

.

By virtue of inequality (3.12) and the linearity as well as boundedness of the projec-

tion operator we obtain

‖ℜN,M,S,Z(ΠN,Zex
(v)) −ΠM,Zex

(v)|I ||2L2(Ij)

6 C6

R∑

c=−L

‖(ΠN,Zex
(v)−ΠN,Zex

(ΠM,Zex
(v)))|Ij+c‖2L2(Ij+c)

= C6

R∑

c=−L

‖(ΠN,Zex
(v −ΠM,Zex

(v))|Ij+c‖2L2(Ij+c)

= C6

R∑

c=−L

‖(v −ΠM,Zex
(v))|Ij+c‖2L2(Ij+c)

.

Substituting into (3.15) we get

‖ℜN,M,S,Z(ΠN,Zex
(v)) − v|I‖2L2(Ij)

6 C6

R∑

c=−L

‖(v −ΠM,Zex
(v))|Ij+c‖2L2(Ij+c)

+ ‖ΠM,Zex
(v)|I − v|I‖2L2(Ij)

.

Now the error estimate (2.6) gives

‖ℜN,M,S,Z(ΠN,Zex
(v)) − v|I‖2L2(Ij)

6 C6

R∑

c=−L

(C2
2h

2M+2|v|2WM+1,2(Ij+c)
) + C2

2h
2M+2|v|2WM+1,2(Ij)

= (1 + neC6)C
2
2h

2M+2|v|2WM+1,2(Ij)
.
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By taking C7 = C2

√
1 + neC6 and by summating over all j, we get

‖ℜN,M,S,Z(ΠN,Zex
(v))− v|I‖2L2(I) 6 C2

7h
2M+2|v|2WM+1,2(I).

Finally, we take the square root and get the inequality (3.14). �

4. The local space time Galerkin scheme

This scheme evolves the reconstructed polynomials locally in time inside each

element to the same order of accuracy as in space, by using the governing equations.

We follow the procedure of Dumbser et al. [5] for the PNPM DG schemes.

Recall that for Z1 ∈ N we discretize the time interval [0, T ] by the times 0 =

t0 < t1 < . . . < tZ1
= T , subintervals Tn = [tn, tn+1[ and a constant time step

∆t = tn+1 − tn for n = 0, . . . , Z1 − 1. Further, the space of polynomials of degree

M in space and time on Tn × Ij is denoted as PM,Tn×Ij . We use basis functions

θi,j ∈ PM,Tn×Ij . The functions θi,j are nodal functions. This means that we choose

some nodes on Tn×Ij . Then we relate each node to a function such that this function

equals to 1 at this node and equals to 0 at the others. The number of nodes should

equal the number of degrees of freedom of these polynomials. These functions take

their value to be zero outside of Tn × Ij . For an arbitrary degree M , the number

of functions θi,j is denoted by N . It is given by N = (M + 1)(M + 2)/2. Then

we set the basis to be ΘM,j = {θ1,j, . . . , θN ,j}. The first M + 1 functions are taken

to depend on the spatial variable x at t = tn. They could be grouped together in

a subbasis Θ0
M,j. All other basis functions vanish for t = tn and could be grouped

together in a subbasis Θ1
M,j. This means ΘM,j = Θ0

M,j ∪ Θ1
M,j. For an example of

these basis functions see Appendix B.

Let v ∈ L∞([0, T ], L2(I)). The general form of a conservation law is given by

(4.1) vt(t, x) + f(v(t, x))x = 0 for x ∈ I, t ∈ [0, T ].

We multiply the equation by θk,j for k = 1, . . . ,N . Integrating over Tn × Ij , we get

(4.2)

∫

Tn

∫

Ij

θk,j(t, x)
∂

∂t
v(t, x) dxdt+

∫

Tn

∫

Ij

θk,j(t, x)
∂

∂x
f(v(t, x)) dxdt = 0.

We suppose that the solution v and the flux f(v) are approximated on Tn× I by the

formulas

(4.3) v(t, x) := Un(t, x) =
Z∑

j=1

N∑

i=1

Ûn
i,jθi,j(t, x),

f(v(t, x)) := Fn(t, x) =

Z∑

j=1

N∑

i=1

f(Ûn
i,j)θi,j(t, x),
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for (t, x) ∈ Tn × I. Now we introduce the scalar product

(4.4) 〈g, h〉tx =

∫

Tn

∫

Ij

g(t, x)h(t, x) dxdt,

and use these approximations in (4.2) to write

N∑

i=1

〈
θk,j ,

∂

∂t
θi,j

〉
tx
Ûn
i,j +

N∑

i=1

〈
θk,j ,

∂

∂x
θi,j

〉
tx
f(Ûn

i,j) = 0.

We introduce the matrix entries Gki := 〈θk,j , ∂
∂tθi,j〉tx and Hki := 〈θk,j , ∂

∂xθi,j〉tx
for 1 6 i, k 6 N . The values of these entries do not depend on j, since we use

the same shifted basis for each j via a reference transformation. Introducing the

vectors Ûn
j := (Ûn

1,j , . . . , Û
n
N ,j)

⊤ and F̂n
j := (f(Ûn

1,j), . . . , f(Û
n
N ,j))

⊤, we get the ma-

trix form GÛn
j +HF̂n

j = 0. The first M + 1 degrees of freedom are related to the

functions Θ0
M,j. We group them together into the subvector Û

n,0
j ∈ R

M+1. All other

degrees of freedom are grouped together into the subvector Ûn,1
j ∈ R

N−M−1. Anal-

ogously, we define the subvectors F̂n,0
j and F̂

n,1
j . Then the matrix form becomes

G

(
Û

n,0
j

Û
n,1
j

)
+ H

(
F̂

n,0
j

F̂
n,1
j

)
= 0. We write the matrices G and H as block matri-

ces G =

(
G00 G01

G10 G11

)
and H =

(
H00 H01

H10 H11

)
, respectively, where G00,H00 ∈

R
(M+1)×(M+1), G01,H01 ∈ R

(M+1)×(N−M−1), G10,H10 ∈ R
(N−M−1)×(M+1), and

G11,H11 ∈ R
(N−M−1)×(N−M−1). Then we get

(4.5)

(
G00 G01

G10 G11

)(
Û

n,0
j

Û
n,1
j

)
+

(
H00 H01

H10 H11

)(
F̂

n,0
j

F̂
n,1
j

)
= 0.

We determine the components of the vector Ûn,0
j by projecting the reconstructed

polynomial wn at time t = tn onto the space spanned by the first nodal func-

tions Θ0
M,j . This gives for k = 1, . . . ,M + 1 the system of equations

∫

Ij

θk,j(tn, x)

N∑

i=1

Ûn
i,jθi,j(tn, x) dx =

∫

Ij

θk,j(tn, x)

M∑

l=0

ŵn
l,jΦl,j(x) dx.

Since θi,j(tn, x) = 0 for i = M + 2, . . . ,N , the sum on the left-hand side reduces to
the first M + 1 terms. Thus we get

M+1∑

i=1

〈θk,j(tn, ·), θi,j(tn, ·)〉jÛn
i,j =

M∑

l=0

〈θk,j(tn, ·),Φl,j(.)〉jŵn
l,j .
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Again, this system can be written in a matrix-vector form. Since the functions θi,j

for i = 1, . . . ,M + 1 belong to the basis, they are linearly independent. This im-

plies the linear independence of the columns of the scalar product matrix. Thus

we have a unique solution and the first M + 1 coefficients Ûn
i,j are known from the

reconstructed coefficients ŵn
i,j .

Since we now have determinedM+1 known degrees of freedom, we no longer need

the upper blocks in (4.5). Therefore, we cancel the first M + 1 rows of this system.

We obtain the smaller system

(G10G11)

(
Û

n,0
j

Û
n,1
j

)
+ (H10H11)

(
F̂

n,0
j

F̂
n,1
j

)
= 0.

In order to determine the vector Ûn,1
j we have to solve the nonlinear equations

G11Û
n,1
j +H11F̂

n,1
j = −H10F̂

n,0
j −G10Û

n,0
j .

The quadratic matrix G11 depends on the mesh size h but not on the time step or

the equations to be solved. For all orders of accuracy, the matrix G11 is invertible,

since its columns are linearly independent. Therefore, after inverting, we obtain

a fixed-point problem for the unknowns Ûn,1
j :

Û
n,1
j = (G11)−1[−H11F̂

n,1
j −H10F̂

n,0
j −G10Û

n,0
j ].

We solve this system using the fixed-point iteration

Û
n,1,i+1
j = (G11)−1[−H11F̂

n,1,i
j −H10F̂

n,0
j −G10Û

n,0
j ].

The superscript i denotes the iteration number. This approach works, since

(G11)−1H11 turns out to be a contraction mapping, see Dumbser et al. [5], p. 8218.

In our practical computations the fixed-point was determined after at most M + 1

iterations.

As suggested in [5] we begin iterating by using a stationary in time solution of (4.1)

as an initial guess value for Ûn,1
j . The stationary equation is vt = 0. The matrix form

is GÛn
j = 0. Then we get the initial guess with i = 0, Ûn,1,0

j = −(G11)−1G10Û
n,0
j .

617



5. The DG schemes

We recall the basic steps leading to the DG schemes. Now we apply the DG

schemes [3], [4] and use numerical fluxes whose arguments are the solutions Un

and Fn of the previous step.

Again we consider a conservation law in one space dimension vt + fx(v) = 0 for

(t, x) ∈ [0, T ] × I. Let Ij be a space element with j = 1, . . . , Z fixed and Tn =

[tn, tn+1[. Now we multiply by an arbitrary smooth function χ ∈ L2(Ij), integrate

over Tn × Ij , and use integration by parts in space to get

∫

Tn

∫

Ij

χ(x)
∂

∂t
v(t, x) dxdt+

∫

Tn

χ(x)f(v(t, x))
∣∣∣
xj+1/2

xj−1/2

dt

−
∫

Tn

∫

Ij

∂χ(x)

∂x
f(v(t, x)) dxdt = 0.

We assume that the numerical solution un is a piecewise polynomial of degree N and

is defined on Tn × I as

un(t, x) =

Z∑

j=1

N∑

l=0

ûn
l,j(t)Φl,j(x),

where ûn
l,j ∈ R are the unknowns and Φl,j are the Legendre basis functions (2.2).

Substituting the numerical solution un for v and replacing the test function χ by the

basis functions Φk,j for k = 0, . . . , N leads to

∫

Tn

∫

Ij

Φk,j(x)
∂

∂t
un(t, x) dxdt+

∫

Tn

Φk,j(x)f(u
n(t, x))

∣∣∣
xj+1/2

xj−1/2

dt

−
∫

Tn

∫

Ij

∂Φk,j(x)

∂x
f(un(t, x)) dxdt = 0.

The sum over the index j in the solution un is reduced only to one term un
j which has

values on Ij and the other terms have value zero on Ij . By the index k = 0, . . . , N

we have N + 1 equations for the N + 1 unknown coefficients ûn
k,j(t). Now with

un
j (t, x) =

N∑
l=0

ûn
l,j(t)Φl,j(x) we have

(5.1)

∫

Tn

∫

Ij

Φk,j(x)
∂

∂t

( N∑

l=0

ûn
l,j(t)Φl,j(x)

)
dxdt

+

∫

Tn

Φk,j(x)f(u
n
j (t, x))

∣∣∣
xj+1/2

xj−1/2

dt−
∫

Tn

∫

Ij

∂Φk,j(x)

∂x
f(un

j (t, x)) dxdt = 0.
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The time derivative and the time integral in the first term are applied to ûn
l,j , since the

functions Φl,j are independent of the time variable. This derivative can be replaced

for x ∈ Ij as follows:

∫

Tn

∂

∂t

( N∑

l=0

ûn
l,j(t)Φl,j(x)

)
dt =

N∑

l=0

(∫

Tn

d

dt
ûn
l,j(t) dt

)
Φl,j(x)

=

N∑

l=0

(ûn+1
l,j − ûn

l,j)Φl,j(x).

Thus for the first term in (5.1) we have
∫
Ij
Φk,j(x)

N∑
l=0

(ûn+1
l,j − ûn

l,j)Φl,j(x) dx. Due

to the orthogonality of the basis functions, this sum reduces to one term with index

k = l and the space integral has the value h/(2k + 1). Thus the first term becomes

(ûn+1
k,j − ûn

k,j)h/(2k + 1).

According to (2.1) we have Φk,j(xj−1/2) = (−1)k and Φk,j(xj+1/2) = 1 for k =

0, . . . , N . Then for the second term in (5.1) we have

∫

Tn

[f(un
j (t, xj+1/2))− (−1)kf(un

j (t, xj−1/2))] dt.

Substituting these first and second terms in (5.1), we obtain the system

(5.2)
h

2k + 1
(ûn+1

k,j − ûn
k,j) +

∫

Tn

[f(un
j (t, xj+1/2))− (−1)kf(un

j (t, xj−1/2))] dt

−
∫

Tn

∫

Ij

∂Φk,j(x)

∂x
f(un

j (t, x)) dxdt = 0.

For the values f(un
j (t, xj+1/2)), we follow Dumbser et al. [5] and use numerical flux

functions whose arguments are the solutions Un
j , see (4.3), of the local Galerkin

scheme, i.e. f(un
j (t, xj+1/2)) ≈ Fn

j+1/2(t) := F(Un
j (t, xj+1/2), U

n
j+1(t, xj+1/2)). For F

we may use any consistent numerical flux function, see the next section. Similarly

f(un
j (t, xj−1/2)) ≈ Fn

j−1/2(t) := F(Un
j−1(t, xj−1/2), U

n
j (t, xj−1/2)). We insert also

these solutions Un
j in the formulas of the flux f(un

j (t, x)) ≈
N∑
i=1

f(Ûn
i,j)θi,j(t, x) for

(t, x) ∈ Tn × Ij .

Substituting into (5.2), we get using (4.3)

h

2k + 1
(ûn+1

k,j − ûn
k,j) +

∫

Tn

Fn
j+1/2(t) dt− (−1)k

∫

Tn

Fn
j−1/2(t) dt

−
∫

Tn

∫

Ij

∂Φk,j(x)

∂x

[ N∑

i=1

f(Ûn
i,j)θi,j(t, x)

]
dxdt = 0.
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The coefficients f(Ûn
i,j) are constants, thus, using the scalar product 〈·, ·〉tx, given

by (4.4), we get

h

2k + 1
(ûn+1

k,j − ûn
k,j) +

∫

Tn

Fn
j+1/2(t) dt− (−1)k

∫

Tn

Fn
j−1/2(t) dt

−
N∑

i=1

f(Ûn
i,j)

〈∂Φk,j

∂x
, θi,j

〉
tx

= 0.

Finally, by rearranging the terms, we get the fully discrete one-step PNPM DG

scheme

(5.3) ûn+1
k,j = ûn

k,j −
2k + 1

h

(∫

Tn

Fn
j+1/2(t) dt− (−1)k

∫

Tn

Fn
j−1/2(t) dt

−
N∑

i=1

f(Ûn
i,j)

〈∂Φk,j

∂x
, θi,j

〉
tx

)
.

These equations give the updates of ûn
k,j from the time tn to tn+1. The numerical

discrete solution updated at the new time tn+1 is u
n+1(x) =

Z∑
j=1

N∑
k=0

ûn+1
k,j Φk,j(x) for

(t, x) ∈ Tn × I.

6. Numerical studies

Starting from this section, for brevity we say only the PNPM schemes.

Let us consider the scalar linear advection equation vt(t, x) + avx(t, x) = 0, for

t ∈ [0, T ] with T > 0, x ∈ I = [ε1, ε2] ⊂ R, and a > 0. Suppose that the initial

solution is v0 = v(0, ·) ∈ L2(I). The exact solution is given by ve(t, x) = v0(x − at).

We apply the PNPM schemes and use the modified Lax-Friedrichs flux given by

Cockburn and Shu [4]. We have

Fn
LF,j+1/2(t) =

1

2
[(a− |a|)Un

j+1(t, xj+1/2) + (a+ |a|)Un
j (t, xj+1/2)] = aUn

j (t, xj+1/2),

or

Fn
LF,j+1/2(t) = aUn

j (t, xj+1/2) = a

N∑

i=1

Ûn
i,jθi,j(t, xj+1/2)

and

Fn
LF,j−1/2(t) = aUn

j−1(t, xj−1/2) = a

N∑

i=1

Ûn
i,j−1θi,j−1(t, xj−1/2).
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Substituting into (5.3) we obtain

ûn+1
k,j = ûn

k,j −
(2k + 1)a

h

N∑

i=1

{
Ûn
i,j

∫

Tn

θi,j(t, xj+1/2) dt

− (−1)kÛn
i,j−1

∫

Tn

θi,j−1(t, xj−1/2) dt− Ûn
i,j

〈∂Φk,j

∂x
, θi,j

〉
tx

}
.

As examples of these solutions we give some formulas in Appendix C.

There are several parameters which control the PNPM schemes.

(1) The orders N and M .

(2) The size ne of any stencil SIj ,ne,L, that must satisfy the condition ne >

(M + 1)/(N + 1).

(3) The index L of the stencil SIj ,ne,L that indicates the form of the stencil.

(4) The mesh size Z which gives the length h of the elements.

(5) The maximal time value T with the time step ∆t 6 T .

(6) The Courant number λ = (|a|∆t)/h which relates the time step ∆t to the mesh

length h, see [3].

In the following we study the stability and efficiency of the PNPM schemes by

studying three of these parameters, namely, the Courant number as well as the size

and form of the stencils.

6.1. Stability analysis. The Courant number is important for the stability of

the schemes. We determine maximal Courant numbers which are limits of the sta-

bility. We study the PNPM schemes applying them to the linear advection equation

vt + vx = 0 with a = 1.

6.1.1. Von Neumann analysis. We apply the von Neumann stability analy-

sis [8] in the special caseN = 0. The computational domain of the Fourier representa-

tions is the region [−z, z]which is discretized into 2Zf mesh elements with equidistant

length element hf = z/Zf and z ∈ R is the period of the initial data. We decompose

the coefficients ûn
0,j inside the element Ij , into a Fourier sum as û

n
0,j =

Zf∑
l=−Zf

An
l e

ijϕl

where An
l is called the amplitude vector at time level tn, i =

√
−1 is the imaginary

unit, and ϕl is the wave number which is given by ϕl = lπ/Zf with l = −Zf , . . . , Zf .

This finite sum splits the time dependence from the spatial one, where the time

evolution is included in the time dependence of the amplitude An
l .

Now we substitute this finite sum into the scheme considered. Then, dividing

by eijϕl , we obtain a relation between the amplitude vectors An
l and An+1

l with
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some space shifts e∓iϕl . This relation can be written as An+1
l = DlAn

l , where Dl is

called the amplification factor for l = −Zf , . . . , Zf .

The stability condition of the von Neumann analysis states that the Euclidean

norm of the amplitude vector An
l for any wave number ϕl does not grow in time.

This condition is written as |Dl| 6 1 for all ϕl.

For the P0P0 scheme, we can obtain the Courant numbers λ = ∆t/h that give

stability exactly. We have 0 < λ 6 1.

For those PNPM schemes withN = 0, we determine the maximal Courant numbers

numerically. The amplification factorDl is a function of two variablesDl = Dl(ϕl, λ).

We take Zf = 3, then l = −3, . . . , 3 and

ϕl ∈ {−π,−2π/3,−π/3, 0, π/3, 2π/3, π},

and define the variable λs = s/10 with 1 6 s 6 30, which covers the interval [1/10, 3].

Then we compute the modulus of Dl at each value of ϕl and of λ, then we get a

7×30 matrix of these values. Each column is related to one value of λs. If all entries

of the column are less than or equal to one then the value λs, to which this column

is associated, gives a stable solution of the scheme.

For example, for the P0P1 scheme with the stencil SIj ,2,0, we obtain the matrix




0.98 0.92 . . . 0.62 1 1.42 1.88 . . .

0.98 0.95 . . . 0.80 1 1.25 1.55 . . .

0.99 0.99 . . . 0.98 1 1.03 1.07 . . .

1 1 . . . 1 1 1 1 . . .

0.99 0.99 . . . 0.98 1 1.03 1.07 . . .

0.98 0.95 . . . 0.80 1 1.25 1.55 . . .

0.98 0.92 . . . 0.62 1 1.42 1.88 . . .

⇑ ⇑ ⇑ ⇑ ⇑
λ1 = 0.1 λ2 = 0.2 λ9 = 0.9 λ10 = 1 λ11 = 1.1




.

Note that, starting from the eleventh column, the entries are larger than one. This

proves that the value λ11 = 1.1 gives an unstable solution. Thus the maximum value

of λs which gives a stable solution is λ10, thus λmax ≈ λ10 = 1. On the other hand,

all columns to the left of the eleventh have entries less than or equal to one, thus

their λs give stable solutions. We obtain that the range of the Courant number for

the P0P1 scheme using the stencil SIj ,2,0 is the interval λ ∈ (0, 1].

Table 1 includes the maximal limits λmax, which are computed numerically

in this way, of the Courant numbers for the P0PM schemes with N = 0 and

various orders M = 1, . . . , 5 with all cases of the stencils SIj ,ne,L with ne =

⌈(M + 1)/(N + 1)⌉, . . . , 6 and L = 0, . . . , ne − 1. The symbol ∗ indicates unstable
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ne L P0P1 P0P2 P0P3 P0P4 P0P5

2 0 (0, 1]

1 (0,2]
3 0 (0, 1] ∗

1 (0, 1] (0, 1]

2 (0, 1] [1,2]
4 0 (0, 1] ∗ ∗

1 (0, 1] (0, 1] (0, 1]

2 (0, 1] (0, 1] (0,2]

3 (0, 1] ∗ [1,2]
5 0 (0, 1] (0.5,1] ∗ ∗

1 (0, 1] (0, 1] (0, 1] ∗
2 (0, 1] (0, 1] (0, 1] (0, 1]

3 (0, 1] (0, 1] (0, 1] [1,2]

4 (0, 1] ∗ ∗ ∗
6 0 (0, 1] (0, 1] ∗ ∗ ∗

1 (0, 1] (0, 1] (0, 1] ∗ ∗
2 (0, 1] (0, 1] (0, 1] (0, 1] (0, 1]

3 (0, 1] (0, 1] (0, 1] (0, 1] (0, 1]

4 (0, 1] (0, 1] (0, 1] (0, 1] ∗
5 (0, 1] (0, 1] ∗ [1,2] ∗

Table 1. The maximal Courant numbers for some PNPM schemes, for N = 0 and M =
1, 2, 3, 4, 5.

cases for which we have only one value λ = 1 that gives a stable solution. The

fact that λ = 1 is stable is an artifact due to the equation vt + vx = 0, because for

λ = 1 the numerical solution of these schemes is the exact solution. Moreover, the

range (0, 1] mostly appears, but there are some semi-stable cases which are written

in boldface. Also, there are two cases with higher stability λ ∈ (0, 2] that are also

highlighted in boldface.

6.1.2. Another experimental procedure. The von Neumann analysis for

higher order PNPM schemes with N > 0 is not possible without the use of computer

algebra and numerical computation, see Dumbser [5], p. 8221. Therefore, we consider

another numerical procedure. We continue in the study of the advection equation

vt + vx = 0 with the initial solution v0(x) = sinx for x ∈ [0, 2π] and periodicity as

the boundary condition. So we have v0(x) = sinx for all x ∈ R. It is well-known

that the exact solution is ve(t, x) = v0(x− t) on [0, T ]× [0, 2π].

We found experimentally appropriate limits of the Courant numbers which guaran-

tee the stability without resorting to von Neumann analysis. We checked the stability
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of the numerical solutions at the final time T = 100π for a mesh with Z = 50. Let

us set λC := 1/(2N + 1). Cockburn [3] considered Runge-Kutta DG schemes and

took for the linear equations λ somewhat smaller than λC as a limit in order to

avoid unstable solutions. We start with this inequality and define variables λs in an

interval around λC as λs = αNλC + 0.001s for s = 0, 1, 2, . . ., where 0 < αN < 1 is

a constant associated to the order N and determines the starting point of the search

algorithm. We use the values α0 = 0.99, α1 = 0.9, α2 = 0.8, α3 = 0.7, α4 = 0.6, and

α5 = 0.5.

Increasing the index s, the variable λs comes closer to the ratio λC and then larger

than λC . For each value λs, we associate the value L
1
s =

∫
I
|ve(T, x) − w(T, x)| dx,

which is the L1 error of the reconstructed polynomial (solution) w computed using

the PNPM scheme at the last time T with time step ∆t = λsh. We compute the

errors L1
s numerically using Gaussian rules of orders large enough. As well, we

compute the differences d1,s = |L1
s − L1

s−1| for s > 0, defining d1,0 = 0. We also set

a condition to stop this algorithm which is d1,s > TOL, where TOL is a tolerance

that we choose large enough, e.g. TOL = 10, to guarantee that the L1 error is large,

and this means that the solution is unstable. For example, we consider the P2P2

scheme. Then we have λC = 0.2, α2 = 0.8 and λs = 0.16 + 0.001s. We arrange the

errors starting from s = 4 in the following table, which leads to the conclusion that

λmax ≈ 0.171.

s 4 5 6 7 8 9 10 11 12
λs 0.164 0.165 0.166 0.167 0.168 0.169 0.170 0.171 0.172

L1
s 0.009 0.040 0.064 0.079 0.005 0.009 0.011 0.018 4× 1074

Note that in the solution plots the solution for λs = 0.170 looks smooth, whereas

for λs = 0.171 small oscillations occur that become stronger for larger λs. In the

following, we give the approximate values of λmax for all PNPM schemes for

M = 0, . . . , 5, N = 0, . . . ,M, ne =
⌈M + 1

N + 1

⌉
, . . . , 6, L = 0, . . . , ne − 1.

Case M = 1. For the P1P1 scheme we obtain λC = 0.333 and λmax ≈ 1/3. For

the P0P1, see Table 2.

ne L 0 1 2 3 4 5

2 1.003 2.006

3 1.005 1.006 1.008

4 1.005 1.006 1.007 1.009

5 1.005 1.005 1.006 1.008 1.007

6 1.006 1.006 1.005 1.008 1.007 1.007

Table 2. The maximal Courant numbers for P0P1 scheme with λC = 1.
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Case M = 2. For the P2P2 scheme we obtain λC = 0.2 and λmax ≈ 0.17. Also,

Table 3 gives the approximations of λmax for the P0P2 and P1P2 schemes.

The P0P2 schemes with λC = 1

ne L 0 1 2 3 4 5

3 1.002 1.01 [1,2]

4 1.013 1.012 1.005 1.011

5 1.003 1.01 1.006 1.005 1.011

6 1.004 1.007 1.006 1.006 1.006 1.01

The P1P2 schemes with λC = 0.333

ne L 0 1 2 3 4 5

2 1/3 *

3 1/3 1/3 *

4 1/3 1/3 * *

5 1/3 1/3 1/3 * *

6 1/3 1/3 1/3 * * 0.305

Table 3. The maximal Courant numbers for P0P2 and P1P2 schemes.

CaseM = 3. For the P2P3 schemes where λC = 0.2 and with all stencils considered

above we obtain λmax ≈ 0.17 and for the P3P3 scheme where λC = 0.143 we find

λmax ≈ 0.103. For the P0P3 and P1P3 schemes, see Table 4.

The P0P3 schemes with λC = 1

ne L 0 1 2 3 4 5

4 1.001 1.005 2.009 [1,2]

5 1.002 1.01 1.006 1.005 1.02

6 1.002 1.011 1.006 1.006 1.006 1.017

The P1P3 schemes with λC = 0.333

ne L 0 1 2 3 4 5

2 0.318 *

3 0.328 0.34 *

4 0.331 0.33 0.338 *

5 0.332 1/3 0.332 * *

6 0.332 0.332 0.316 0.335 * *

Table 4. The maximal Courant numbers for P0P3 and P1P3 schemes.

Case M = 4. For the P3P4 schemes with λC = 0.143 we obtain λmax ≈ 0.103 and

for the P4P4 scheme where λC = 0.111 we find λmax ≈ 0.069. For the P0P4, P1P4,

and P2P4 schemes, see Table 5.
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The P0P4 schemes with λC = 1

ne L 0 1 2 3 4 5

5 1 1.002 1.012 2.02 [1,1.5]

6 1 1.006 1.012 1 1 [1,2]

The P1P4 schemes with λC = 0.333

ne L 0 1 2 3 4 5

3 0.316 0.346 *

4 0.325 0.347 * *

5 0.328 0.338 0.337 * *

6 0.330 0.338 0.337 * 0.312 *

The P2P4 schemes with λC = 0.2

ne L 0 1 2 3 4 5

2 0.166 *

3 0.169 0.176 *

4 0.170 0.173 0.173 *

5 0.170 0.170 0.172 0.170 0.170

6 0.170 0.170 0.172 0.172 0.170 0.170

Table 5. The maximal Courant numbers for P0P4, P1P4, and P2P4 schemes.

Case M = 5. For the P4P5 schemes where λC = 0.111 we obtain λmax ≈ 0.069

and for the P5P5 scheme where λC = 0.091 we find λmax ≈ 0.05. For the P0P5,

P1P5, P2P5, and P3P5 schemes, see Table 6.

6.2. Experimental order of convergence (EOC). We investigate the orders

of the accuracy numerically by calculating the EOC. Let generally X be a linear

space with some norm ‖·‖X and let vh ∈ X be a numerical approximation of a given

function v ∈ X which depends on a parameter h of the discretization. The conver-

gence of vh towards v as h tends to zero can be quantified by ‖vh − v‖X 6 Chκ,

with the order of convergence κ. This gives a possibility to quantify the quality of

a numerical scheme. If we can compute two numerical solutions vh and vh′ , then the

order κ can be estimated experimentally by

κ ≃ EOC(h, h′) =
log(‖vh′ − v‖X/‖vh − v‖X)

log(h′/h)
.

The maximumCourant numbers computed above are quite sharp, since oscillations

occur with slightly larger time steps. We observe that the stability limits depend

strongly on N and not really on M . Therefore, for our further tests, we used the

restrictive bounds on the Courant number given in Table 7.
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The P0P5 schemes with λC = 1

ne L 0 1 2 3 4 5

6 1 1.001 1.005 [1,2] [1,3] 1

The P1P5 schemes with λC = 0.333

ne L 0 1 2 3 4 5

3 * 0.402 *

4 * 0.346 * *

5 * 0.345 0.335 * *

6 0.324 0.344 0.327 0.34 * *

The P2P5 schemes with λC = 0.2

ne L 0 1 2 3 4 5

2 * *

3 0.165 0.176 *

4 0.167 0.176 0.175 *

5 0.168 0.175 0.172 0.174 *

6 0.169 0.172 0.172 0.172 0.172 *

The P3P5 schemes with λC = 0.143

ne L 0 1 2 3 4 5

2 0.1 *

3 0.103 0.106 0.102

4 0.103 0.105 0.104 0.103

5 0.103 0.103 0.104 0.103 0.103

6 0.103 0.103 0.104 0.104 0.103 0.103

Table 6. The maximal Courant numbers for P0P5, P1P5, P2P5, and P3P5 schemes.

The order N 0 1 2 3 4 5

The Courant number λused 1 0.25 0.16 0.08 0.05 0.05

Table 7. The Courant numbers λused for N = 0, . . . , 5.

Now we consider the advection equation vt + vx = 0 with v0(x) = sinx defined on

I = [0, 2π] and its solution at time T = 2π. We apply some PNPM schemes. The

CFL numbers λ are taken from Table 7. The L1 errors are listed in Table 8, where

we always used the stencil SIj ,5,2. The numbers for the EOC were truncated after

the first decimal. Note that we always get the expected order of convergence close

to M +1. Some of the schemes produce a wrong experimental order on the coarsest

meshes. This is not a problem, since the order is an asymptotic property for h → 0.

6.3. The study of the efficiency. We again consider the advection equation

vt + vx = 0 with the initial function v0(x) = sinx defined on I = [0, 2π] and its
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Z L1 EOC L1 EOC L1 EOC L1 EOC L1 EOC
P0P0

10 6.2e−1
20 3.1e−1 0.9
40 1.5e−1 1.0

P0P1 P1P1

10 1.5e−1 1.6e−1
20 2.3e−2 2.6 4.1e−2 2.0
40 4.1e−3 2.4 1.0e−2 2.0

P0P2 P1P2 P2P2

10 1.3e−1 2.6e−2 2.0e−1
20 1.8e−2 2.8 2.1e−3 3.6 9.8e−4 7.6
40 2.2e−3 2.9 2.1e−4 3.3 1.2e−4 3.0

P0P3 P1P3 P2P3 P3P3

10 7.8e−3 2.1e−2 2.0e−1 1.9e−4
20 4.5e−4 4.1 1.3e−3 3.9 2.6e−5 12.8 1.2e−5 3.9
40 2.7e−5 4.0 8.6e−5 3.9 1.2e−6 4.4 7.8e−7 3.9

P0P4 P1P4 P2P4 P3P4 P4P4

10 3.5e−3 1.2e−3 2.0e−1 1.2e−5 1.2e−1
20 1.1e−4 4.8 3.5e−5 5.1 2.1e−5 13.2 2.3e−7 5.7 6.2e−2 1.0
40 3.7e−6 4.9 1.0e−6 5.0 6.7e−7 4.9 5.8e−9 5.3 5.6e−9 23.4
80 1.7e−10 4.9

Table 8. The L1 errors and EOC of some PNPM schemes applied to the advection equation.

solution at time T = 2π. The CFL numbers λ were taken from Table 7. We study

the efficiency of the PNPM schemes by setting the bound for the L
1 errors at time

T = 2π to be 0.01. We measure the speed of the schemes by the computational time

and the number of time steps Z1. Since we consider the linear advection equation,

the time step ∆t is constant and then it is equal to ∆t = T/Z1 = 2π/Z1. Also the

time step is computed using the Courant number λ by ∆t = λh/a. Here we have

a = 1 and h = 2π/Z, then ∆t = λ2π/Z. Thus we obtain 2π/Z1 = λ2π/Z which

implies that Z1 = Z/λ. A further indicator of the cost of the discretization is the

mesh size Z. To explain how we perform these computations we take as an example

the P0P1 scheme using the stencil SIj ,2,1 and take the mesh size Z changing from

Z = 2 to Z = 35. We ended the computation when the L1 error became lower

than 0.01. For brevity, we give only some of these results for Z = 28, . . . , 35. Table 9

shows that, when Z = 33, it is the first case where the L1 error is less than 0.01. In

this case we need 33 iterations and a computational time of 0.049 seconds.

Now we will only give the data for the solution that satisfies the error bound on

the coarsest mesh, which we obtain from a sequence of finer and finer meshes as

explained. The errors will be rounded to 4 decimals.
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L1 0.0132681 0.0123711 0.0115621 0.0108299 0.0101650 0.0095595

time 0.0376 0.0364 0.0399 0.0460 0.0458 0.0490

Z1 28 29 30 31 32 33

Z 28 29 30 31 32 33

Table 9. The computational time and the mesh size for the P0P1 scheme.

6.3.1. The influence of the size ne. We recall that the reconstruction stencil is

given by SIj ,ne,L =
R⋃

c=−L

Ij+c and consists of the interval Ij with L and R elements

to the left and right of Ij , respectively, and its size is given by ne = 1 + L+R with

L ∈ {0, . . . , ne − 1} and R > 0. We used various stencils with different sizes ne and

fixed the index L at the values L = 0 and L = ne − 1, see Table 10.

ne L1 time Z1 Z ne L1 time Z1 Z
P0P1 P0P1

2 0.00955 0.00898 33 33 2 0.00955 0.01030 33 33

3 0.00904 0.01328 45 45 3 0.00904 0.01288 45 45

4 0.00961 0.01471 52 52 4 0.00961 0.01511 52 52

5 0.00903 0.01872 61 61 5 0.00903 0.01741 61 61

6 0.00974 0.01890 65 65 6 0.00974 0.01905 65 65
P1P1 P1P1

1 0.00879 0.01887 116 29 1 0.00879 0.01991 116 29
P0P2 P0P2

3 0.00626 0.00586 19 19 3 0.00626 0.00630 19 19

4 0.00991 0.00657 21 21 4 0.00991 0.00638 21 21

5 0.00802 0.00768 27 27 5 0.00802 0.00826 27 27

6 0.00982 0.00915 29 29 6 0.00982 0.00919 29 29
P1P2 P1P2

2 0.00851 0.01446 56 14 2 unstable

3 0.00537 0.01459 76 19 3 unstable

4 0.00721 0.01534 76 19 4 unstable

5 0.00895 0.01483 76 19 5 unstable

6 0.00914 0.01647 80 20 6 0.00897 0.01508 76 19
P2P2 P2P2

1 0.00203 0.01236 75 12 1 0.00203 0.01313 75 12

Table 10. Numerical computations for some PNPM schemes with M = 1 and M = 2 for
two values of L, L = 0 (left) and L = ne − 1 (right).

For M = 1, we have two schemes, the P0P1 scheme with various stencils and

the P1P1 scheme with the unique stencil SIj ,1,0 = Ij . In all cases N = M we

have ne = 1, since there is no reconstruction needed. Table 10 shows that the P0P1
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scheme is faster than the P1P1 scheme. This is expected, since the piecewise constant

solution P0P1 scheme has only one unknown degree of freedom. But the P1P1 scheme

has a higher accuracy on the same mesh. Also, we find that the computational

time grows when the size of stencil becomes larger; again this is expected, since

the information comes from more cells. Thus the size of the stencil has negative

influence on the efficiency of the scheme, as expected. An important point is that

larger stencils need more grid points to achieve the same accuracy.

For M = 2, we have the P0P2, P1P2, and P2P2 schemes. Table 10 shows that

the P0P2 scheme is faster than the others. Comparing tables we see that whereas

in Table 8 on the same spatial mesh the error decreases from P0P2 to P1P2 to P2P2

schemes, on the other hand, in terms of the actual efficiency using the smallest

possible stencil in Table 10 the order in terms of computational time is reversed.

This is despite the fact that the other schemes need fewer mesh points to achieve the

same accuracy. However, they need more time steps due to their stability restrictions.

Note also that there is no real difference between choosing the larger stencils in an

upwind L = ne − 1 or a downwind L = 0 manner.

In Table 11 we now compare the case L = 0 taking the smallest stencil for the

different mesh sizes. The computational time of the P0P2 scheme is the smallest

using different meshes comparing with the P1P2 and P2P2 schemes. Again we see

that the stability is crucial for the comparison since severer stability limits lead to

a larger number of time steps.

L = 0

P0P2 with ne = 3 P1P2 with ne = 2 P2P2

Z L1 time Z1 L1 time Z1 L1 time Z1

10 0.04172 0.01471 10 0.02313 0.01881 40 0.08998 0.02117 63

11 0.99828 0.00517 12 0.25449 0.00995 45 0.04117 0.01186 69

12 0.02444 0.00462 12 0.23295 0.01008 49 0.00203 0.01282 75

13 0.84816 0.00503 14 0.01062 0.01122 52 0.10307 0.01438 82

14 0.01550 0.00806 14 0.00851 0.01421 56 0.06386 0.01830 88

15 0.73693 0.00530 16 0.18595 0.01169 61 0.02988 0.01558 94

Table 11. Numerical computations for some PNPM schemes with M = 2 using the smallest
possible stencil.

6.3.2. The influence of varying L. We now use stencils of the same size ne but

with different type for the values L = 0, . . . , ne − 1. We choose M = 3 and ne = 5.

We note in Table 12 that the symmetric stencil with L = 2 is the best choice as

concerns to the computational time and the spatial discretization. On the other hand,

the one side stencils with L = 0 and L = 4 require slightly longer computational

time. The difference in the choice of the stencil is not very pronounced. Moreover,
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for the finite volume scheme P0P3, the number of iterations relates to the type of

the stencil, whereas with N > 0 this number seems to be constant. This is seen also

in Table 10.

L L1 time Z1 Z L L1 time Z1 Z

P0P3 P2P3

0 0.00676 0.00714 16 16 0 0.00491 0.01139 50 8

1 0.00784 0.00540 12 12 1 0.00405 0.01156 50 8

2 0.00940 0.00421 8 8 2 0.00097 0.01165 50 8

3 0.00784 0.00485 12 12 3 0.00350 0.01178 50 8

4 0.00676 0.00632 16 16 4 0.00440 0.01220 50 8
P1P3 P3P3

0 0.00772 0.01277 56 14 0 0.00009 0.02086 125 10

1 0.00661 0.01146 40 10

2 0.00931 0.01017 40 10

3 unstable

4 unstable

Table 12. The computational time and the mesh size of some PNPM schemes for M = 3
with different types of the stencils of the size ne = 5.

Furthermore, when N = 0, the number of iterations Z1 is equal to the mesh size Z,

whereas for N > 0, this number is larger than Z by a factor due to the stability

restriction. This indeed means that with larger N the cost of the computations is

larger, but this improves the accuracy. This agrees with the results in Table 8 where

we find for example that for Z = 40 the P3P3 scheme is more accurate than the P2P3

scheme which is in turn more accurate than the P1P3 and P0P3 schemes.

In Table 13 we again compare the computational time for some PNPM schemes

with M = 3 using the smallest stencil for different mesh sizes. The computational

P0P3 P0P3 P1P3 P2P3

with ne = 4 with ne = 4 with ne = 2 with ne = 2

and L = 1 and L = 2 and L = 0 and L = 0

Z L1 time L1 time L1 time L1 time
10 0.00705 0.00375 0.00705 0.00360 0.00405 0.00986 0.08842 0.01253

11 0.99794 0.00443 0.99940 0.00436 0.25015 0.00963 0.04004 0.01684

12 0.00345 0.00458 0.00345 0.00428 0.22991 0.01044 0.00038 0.01435

13 0.84801 0.00522 0.84866 0.00480 0.00141 0.01166 0.10254 0.01487

14 0.00188 0.00502 0.00188 0.00478 0.00104 0.01117 0.06345 0.01571

15 0.73685 0.00664 0.73718 0.00604 0.18474 0.01339 0.02956 0.01866

Table 13. Numerical computations for some PNPM schemes with M = 3 using the smallest
possible stencil.
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time of the P0P3 scheme is the smallest using the different meshes comparing with

the P1P2 and P2P2 schemes. Again we see that the stability is crucial to the com-

parison since severer stability limits lead to a larger number of time steps.

7. Conclusions

We have considered the PNPM DG schemes with N 6 M introduced by Dumbser

et al. [5] for N,M = 0, 1, 2, 3, 4, 5, and the simplest advection equation. Depending

on the quotient (M + 1)/(N + 1) we took into account where ever possible different

stencils for the reconstruction.

All the allowed combinations 0 6 N 6 M 6 5 had some stencils with stability for

all CFL numbers between 0 and a maximal CFL number. We found a wide range

of maximal stability limits being CFL numbers between 0.103 and 2. Some stencils

have a strange semi-stability behaviour since they are stable for CFL numbers in an

interval bounded away from 0. Also some stencils lead to unstable schemes. The

stability limits depend on the parameter N and not on M .

Using the stability limits that we obtained, we checked the experimental order of

convergence (EOC). We report only the cases 0 6 N 6 M 6 4 for the stencil SIj ,5,2.

We always obtain an expected EOC close to M + 1, also in other cases we did not

put into the paper.

Based on the stability limits of the various schemes we also studied the efficiency

of the schemes. We found that for a given M the P0PM schemes are faster than the

others withM > N > 0. Also, we found that the computational time grows when the

size of the stencil becomes larger and there was no real difference between choosing

the larger stencils in an upwind L = ne − 1 or a downwind L = 0 manner. We noted

that the symmetric stencil, i.e. with ne > 1 odd and L = ne/2 − 1, achieves the

required accuracy on a coarser mesh leading to a faster computation in comparison

to the asymmetric stencils of the same size.

Appendix A: Examples of computing the coefficients ŵn
i,j

7.1. Example with ne(N + 1) = (M + 1). Let N = 0, M = 2, L = 1, R = 1.

Then we have ne = 1 + L + R = 3. The stencil is SIj ,3,1 of three elements. The

system of normal equations is

c = −1 → hŵn
0,j − 2hŵn

1,j + 6hŵn
2,j = hûn

0,j−1,

c = 0 → hŵn
0,j = hûn

0,j,
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c = 1 → hŵn
0,j + 2hŵn

1,j + 6hŵn
2,j = hûn

0,j+1

⇒





ŵn
0,j = ûn

0,j,(−2 6

2 6

)(
ŵn

1,j

ŵn
2,j

)
=

(
ûn
0,j−1 − ûn

0,j

ûn
0,j+1 − ûn

0,j

)
.

The coefficients matrix is invertible. The solution is unique:

ŵ1,j =
1

4
(û0,j+1 − û0,j−1), ŵ2,j =

1

12
(û0,j+1 − 2û0,j + û0,j−1).

7.2. Example with ne(N + 1) > (M + 1). Let N = 1, M = 2, L = 1, R = 1.

The system of normal equations is

c = −1





hŵn
0,j − 2hŵn

1,j + 6hŵn
2,j = hûn

0,j−1,

1

3
hŵn

1,j − 2hŵn
2,j =

1

3
hûn

1,j−1,

c = 0





hŵn
0,j = hûn

0,j,

1

3
hŵn

1,j =
1

3
hûn

1,j,

c = 1





hŵn
0,j + 2hŵn

1,j + 6hŵn
2,j = hûn

0,j+1,

1

3
hŵn

1,j + 2hŵn
2,j =

1

3
hûn

1,j+1,





ŵn
0,j = ûn

0,j , ŵn
1,j = ûn

1,j,



6

−2

6

2


 (ŵn

2,j) =




ûn
0,j−1 − ûn

0,j + 2ûn
1,j,

1
3 û

n
1,j−1 − 1

3 û
n
1,j

ûn
0,j+1 − ûn

0,j − 2ûn
1,j

1
3 û

n
1,j+1 − 1

3 û
n
1,j


 .

The solution is non-unique. The least squares solution is

ŵ2,j =
1

120
(9û0,j+1 + û1,j+1 − 18û0,j + 9û0,j−1 − û1,j−1).

Appendix B: The local space time basis functions

For M = 2 we have N = (M + 1)(M + 2)/2 = 6. The nodes are taken as

β1 = (tn, xj−1/2) β2 = (tn, xj) β3 = (tn, xj+1/2)

β4 = (tn+1/2, xj−1/2) β5 = (tn+1/2, xj+1/2) β6 = (tn+1, xj).
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For x ∈ Ij and t ∈ Tn and by using ς = 2(x− xj)/h and ζ = (t− tn)/k, the nodal

basis functions are given by

θ1,j(ζ(t), ς(x)) = − 1
2 ς +

1
2 ς

2 − 2ζ + ςζ + 2ζ2, θ2,j(ζ(t), ς(x)) = 1− ς2 + ζ − 2ζ2,

θ3,j(ζ(t), ς(x)) =
1
2 ς +

1
2 ς

2 − 2ζ − ζς + 2ζ2, θ4,j(ζ(t), ς(x)) = 2ζ − ζς − 2ζ2,

θ5,j(ζ(t), ς(x)) = 2ζ + ζς − 2ζ2, θ6,j(ζ(t), ς(x)) = −ζ + 2ζ.

They satisfy θi,j(βk) = δik for i, k = 1, . . . , 6. We set the basis to be Θ2,j =

{θ1,j, θ2,j , θ3,j , θ4,j, θ5,j , θ6,j}. Note that at t = tn we have θ4,j(tn, x) = θ5,j(tn, x) =

θ6,j(tn, x) = 0 for all x ∈ Ij . The other functions θ1,j , θ2,j , and θ3,j depend on the

spatial points at t = tn.

Appendix C: Some formulas of the PNPM DG solutions

Let ∆t be the time step and h the mesh size. We will use the notation λ = a∆t/h.

P0P0 DG scheme

ûn+1
0,j = ûn

0,j + λ(ûn
0,j−1 − ûn

0,j),

P1P1 DG scheme

ûn+1
0,j = ûn

0,j + λ(ûn
0,j−1 − ûn

0,j + ûn
1,j−1 − ûn

1,j)− λ2(ûn
1,j−1 − ûn

1,j),

ûn+1
1,j = ûn

1,j − 3λ(ûn
0,j−1 − ûn

0,j + ûn
1,j−1 + ûn

1,j) + 3λ2(ûn
1,j−1 − ûn

1,j),

P0P1 DG scheme with the stencil SIj ,2,1 = Ij−1 ∪ Ij

ûn+1
0,j = ûn

0,j −
1

2
λ(ûn

0,j−2 − 4ûn
0,j−1 + 3ûn

0,j) +
1

2
λ2(ûn

0,j−2 − 2ûn
0,j−1 + ûn

0,j).
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