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Abstract. Trust region methods are a class of effective iterative schemes in numerical
optimization. In this paper, a new improved nonmonotone adaptive trust region method
for solving unconstrained optimization problems is proposed. We construct an approximate
model where the approximation to Hessian matrix is updated by the scaled memoryless
BFGS update formula, and incorporate a nonmonotone technique with the new proposed
adaptive trust region radius. The new ratio to adjusting the next trust region radius is
different from the ratio in the traditional trust region methods. Under some suitable and
standard assumptions, it is shown that the proposed algorithm possesses global convergence
and superlinear convergence. Numerical results demonstrate that the proposed method is
very promising.
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1. Introduction

In this paper, we consider the unconstrained optimization problem

(1.1) min
x∈Rn

f(x),

where f : R
n → R is a twice continuously differentiable function.

Trust region methods and line search methods are two popular iterative approaches

for solving problem (1.1). Line search methods refer to a procedure that generates
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a search direction, and focus their efforts on finding a suitable stepsize along this

direction, while trust region methods use a different approach. The trust region

methods can be traced back to Marquardt [15] for solving nonlinear least squares

problems. The modern versions of trust region methods were first proposed by

Powell [17] and Winfield [22]. In the trust region methods, the iteration is in the

form of

(1.2) xk+1 = xk + dk, k = 0, 1, . . . ,

where the trial step dk is obtained by solving the subproblem

(1.3) min mk(d) = fk + gTk d+
1

2
dTBkd

s.t. ‖d‖ 6 ∆k,

where fk = f(xk), gk = g(xk) = ∇f(xk), Bk is an approximation of the Hessian

matrix, ‖·‖ denotes the Euclidean norm and ∆k is the TR radius. Trust region

methods can not only replace line search to obtain the global convergence, but also

handle the difficulty caused by ill-conditioned problems and nonsmooth problems,

so they play a crucial role in numerical optimization.

It is well-known that the update strategy of the TR radius affects the number of it-

erations and convergence of the algorithm. It has attracted many researchers [9], [24]

to update the TR radius by using the gradient or the Hessian matrix information.

More recently, Shi and Guo [19] proposed an adaptive TR radius. In their method,

a vector qk is chosen so that it satisfies the angle condition [21], i.e.

(1.4) −
gTk qk

‖gk‖·‖qk‖
> τ,

where τ ∈ (0, 1). Ahamad Kamandi et al. [12] proposed a modification of qk

(1.5) qk =







−gk, if k = 0 or
−(gTk dk−1)

‖gk‖‖dk−1‖
6 τ,

dk−1, otherwise,

where dk−1 is a solution of subproblem (1.3) and τ ∈ (0, 1). Clearly, qk satisfies

condition (1.4). The TR radius is seriously reduced when xk is far from the optimum

and the matrix Bk is close to singular, in order to avoid getting a very small TR

radius, sk is determined by

(1.6) sk =















−
gTk qk

qTk Bkqk
‖qk‖, if k = 0,

max
(

−
gTk qk

qTk Bkqk
‖qk‖, γ∆k−1

)

, otherwise,
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where γ > 1 and qk is computed by (1.5). The TR radius is updated as

(1.7) ∆k = tp min{sk, ∆̄},

where ∆̄ > 0 is a positive constant, t ∈ (0, 1), and p is a nonnegative integer.

Furthermore, computational experiments confirm that iterative algorithms with

suitable nonmonotone technique have better convergence behavior. The earliest

nonmonotone technique is the so called watch-dog technique, which was proposed by

Chamberlain et al. [5] with the purpose of overcoming the Maratos Effect [14]. Later

on, Grippo et al. [11] proposed a nonmonotone technique for Newton’s method,

in which a line search is performed so that the stepsize αk satisfies condition

f(xk + αkdk) 6 fl(k) + βαkg
T
k dk, where β ∈ (0, 1), the nonmonotone term fl(k) is

defined by

(1.8) fl(k) = max
06j6m(k)

{f(xk−j)},

in which m(0) = 0, 0 6 m(k) 6 min{m(k − 1) + 1,M1} for k > 1, and M1 is

a given nonnegative integer. Many authors [20], [23], [7], [18] generalized the Grippo’s

nonmonotone term into the adaptive trust region framework and obtained good

numerical results. Peyghami and Tarzanagh [16] provided a new adaptive trust

region algorithm which incorporates a variant of nonmonotone technique.

In this paper, we use a scaled memoryless BFGS update formula to update Bk

in (1.3), also, apply a nonmonotone techniques into trust region method to present

an improved nonmonotone adaptive trust region method. Under mild conditions, we

analyze the global convergence and superlinear convergence of the proposed method.

Numerical results show that for the CUTEr library and the test problem collec-

tion given by Andrei [3], the proposed method is superior to the adaptive methods

in [16], [18].

The outline of the paper is as follows. In Section 2, an improved nonmonotone

adaptive trust region method based on a scaled memoryless BFGS update formula is

presented in details. In Section 3, we establish the global and superlinear convergence

property of the new algorithm under some suitable assumptions. Some preliminary

numerical results are given in Section 4. Finally, we end the paper by some concluding

remarks in Section 5.
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2. The structure of the new algorithm

In this section, we develop a new strategy to update Bk in (1.3), apply a nonmono-

tone technique to the frame of the trust region methods and present an improved

nonmonotone adaptive trust region method.

We first establish update strategy of the matrix Bk by using the scaled memoryless

BFGS formula at each iteration. The scaled memoryless BFGS update formula is

defined by

(2.1) Bk+1 = θkI − θk
dkd

T
k

dTk dk
+

yky
T
k

dTk yk
,

where

yk = gk+1 − gk, θk =
dTk yk
‖dk‖2

.

Due to the small memory required and low computational cost, it is widely used to

solve unconstrained optimization problems [4]. Numerical and theoretical superiority

of the scaled memoryless BFGS update methods motivated us to deal with the

matrix Bk update in the trust region methods. Obviously, if d
T
k yk > 0 holds, then

Bk+1 in (2.1) is positive definite. When dTk yk 6 0, in the general trust region

algorithms, the matrix Bk is not updated, i.e.Bk+1 = Bk. It is observed by numerical

experiments that the algorithm is of poor performance. We consider updating the

matrix Bk according to a valid formula instead of taking Bk+1 = Bk. For nonconvex

unconstrained optimization problems, Li and Fukushima [13] proposed a modified

BFGS formula

(2.2) Bk+1 = Bk −
Bkdkd

T
kBk

dTk dk
+

y∗k(y
∗

k)
T

dTk y
∗

k

,

where

y∗k = yk + ‖gk‖
(

1−
dTk yk
‖dk‖2

)

dk.

It is easy to see that Bk+1 in (2.2) is positive definite when d
T
k yk 6 0. Therefore, we

determined Bk+1 by formula (2.2) if d
T
k yk 6 0. In conclusion, Bk+1 is updated by

(2.3) Bk+1 =















θkI − θk
dkd

T
k

dTk dk
+

yky
T
k

dTk yk
, if dTk yk > 0,

Bk −
Bkdkd

T
kBk

dTk dk
+

y∗k(y
∗

k)
T

dTk y
∗

k

, otherwise.

In order to enhance the numerical performance of the algorithm, we introduce

the nonmonotone technique to the trust region algorithm. In [11], Grippo et al.
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proposed nonmonotone technique that contains some drawbacks. For example,

a good function value generated at any iteration may be abandoned; the numerical

performances are seriously dependent on the choice of parameter M1. To cope with

these defects, Ahookhosh and Amini [2] proposed a new nonmonotone scheme which

is a convex combination of the maximum of function value of some prior successful

iterates and the current function value, it is also observed that this nonmonotone

technique was superior to the nonmonotone technique (1.8). The nonmonotone term

in [2] is defined by

(2.4) Rk = ηkfl(k) + (1 − ηk)fk,

where ηk ∈ [ηmin, ηmax]; ηmin ∈ [0, 1) and ηmax ∈ [ηmin, 1] are two prefixed constants,

and fl(k) is defined by (1.8).

In our method, the actual reduction of the objective function value is

(2.5) Aredk = Rk − f(xk + dk),

and the predicted reduction of the objective function value is

(2.6) Predk = mk(0)−mk(dk).

Now, the modified ratio is given by

(2.7) rk =
Aredk
Predk

=
Rk − f(xk + dk)

mk(0)−mk(dk)
,

where Rk is computed by (2.4).

We describe the new algorithm as below:

Algorithm 2.1 AINATR (An improved nonmonotone adaptive trust region method)

Step 0. Let x0 ∈ R
n, a positive definite matrix B0 ∈ R

n×n, τ ∈ (0, 1), ∆̄ > 0,

t ∈ (0, 1), u > 0, γ > 1, ηmin ∈ [0, 1), ηmax ∈ [ηmin, 1], R0 = f(x0), a positive

integer M1 and ε > 0 be given. Set k := 0.

Step 1. If ‖gk‖ 6 ε, then stop.

Step 2. Compute qk according to expression (1.5), sk by (1.6) and set p = 0.

Step 3. Compute ∆k by (1.7), solve subproblem (1.3) to find the trial step dk and

compute rk by (2.7).

Step 4. If rk < u, then p = p+ 1. Goto Step 3.

Step 5. Set xk+1 = xk + dk.

Step 6. Choose ηk ∈ [ηmin, ηmax] and update Hessian approximation Bk by (2.3).

Set k := k + 1 and goto Step 1.
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In Algorithm 2.1, the loop between Step 3 and Step 4 is called the inner cycle. If

rk < u, it is called an unsuccessful iteration. Note that the parameter u in Step 4

plays an important role in deciding whether the trial step dk would be accepted or

not.

3. Convergence analysis

In this section, we intend to discuss the global convergence property and the

superlinear convergence rate of Algorithm 2.1. In order to verify these properties,

we need to make the following assumptions:

(A1) The level set L0 = {x ∈ R
n ; f(x) 6 f(x0)} is bounded and f is twice contin-

uously differentiable over L0;

(A2) The matrix Bk is uniformly bounded, i.e. there exists a positive constant M

such that ‖Bk‖ 6 M for all k ∈ N ∪ {0}.

To establish the global convergence of Algorithm 2.1, we first prove some useful

lemmas.

Lemma 3.1. Suppose that the sequence {xk} is generated by Algorithm 2.1.

Then we get

(3.1) |fk − f(xk + dk)− Predk| 6 O(‖dk‖
2).

P r o o f. The inequality is obtained by Taylor’s expansion and (A2), the proof can

be found in [5]. �

Lemma 3.2. If (A2) holds and dk is a solution of (1.3), then

(3.2) mk(0)−mk(dk) >
1

2
tpk min

{ 1

M

(−gTk qk
‖qk‖

)2

, ∆̄
(−gTk qk

‖qk‖

)}

,

where t ∈ (0, 1), pk is the smallest nonnegative integer for which rk > u, u ∈ (0, 1).

P r o o f. The proof is similar to the proof of Lemma 3.2 in [12]. �

Lemma 3.3. Let {xk} be the sequence generated by Algorithm 2.1. Then we

have

(3.3) fk 6 Rk, ∀ k ∈ N.
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P r o o f. The proof is similar to the proof of Lemma 3.5 in [2] and the details are

omitted. �

Lemma 3.4. Suppose that the sequence {xk} is generated by Algorithm 2.1.

Then the sequence {fl(k)} is a decreasing sequence.

P r o o f. The proof can be found in Lemma 4 of [2]. �

Lemma 3.5. Step 3 and Step 4 of Algorithm 2.1 are well-defined in the sense

that at each iteration they terminate finitely.

P r o o f. We prove this lemma by contradiction. Suppose that the inner cycle

between Step 3 and Step 4 in Algorithm 2.1 is infinite. We define the cycling index

at iteration k by k(i). Then we have

(3.4) rk(i) < u, i = 1, 2, . . .

Since xk is not the optimum, there is a constant ε > 0 such that ‖gk‖ > ε, which

yields together with (1.4)

(3.5) −
gTk qk
‖qk‖

> τε.

Let dk(i) be the solution of subproblem (1.3) corresponding to pk(i) ∈ {0}∪N. Then

it follows from Lemma 3.1, (3.2), and (3.5) that

(3.6)
∣

∣

∣

fk − f(xk + dk(i))

mk(0)−mk(dk(i))
− 1

∣

∣

∣
=

∣

∣

∣

fk − f(xk + dk(i))− Predk(i)

mk(0)−mk(dk(i))

∣

∣

∣

6
O(‖dk(i)‖

2)

mk(0)−mk(dk(i))

6
O(‖dk(i)‖

2)
1
2 t

pk(i) min{(−gTk qk/‖qk‖)
2/M, ∆̄(−gTk qk/‖qk‖)}

<
O(‖dk(i)‖

2)
1
2 t

pk(i) min{(τε)2/M, ∆̄(τε)}
.

From the assumption that the inner cycle is infinite and from (1.7) we obtain

∆k(i) → 0 with i → ∞. Hence, ‖dk(i)‖ 6 ∆k(i) 6 tp
k(i)sk implies that the right-

hand side of equation (3.6) tends to zero. Therefore, it is obvious that for sufficiently

large i

(3.7) lim
i→∞

fk − f(xk + dk(i))

mk(0)−mk(dk(i))
= 1.
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Combining (2.7) and Lemma 3.3, we obtain

(3.8) rk(i) =
Rk − f(xk + dk(i))

mk(0)−mk(dk(i))
>

fk − f(xk + dk(i))

mk(0)−mk(dk(i))
.

This inequality implies that for i → ∞, rk(i) > u ∈ (0, 1), which is contradictory to

(3.4). This completes the proof of Lemma 3.5. �

Based on the above lemmas, we prove the global convergence of Algorithm 2.1.

Theorem 3.1. Suppose that (A1) holds and the sequence {xk} is generated by

Algorithm 2.1. Then

(3.9) lim inf
k→∞

‖gk‖ = 0.

P r o o f. By contradiction, suppose there exists a constant δ > 0 such that

(3.10) ‖gk‖ > δ, k ∈ {0} ∪N.

Using (2.7) and rk > u, we conclude that

(3.11) f(xk + dk) 6 Rk − uPredk.

From the definitions of Rk and fl(k) we can get

(3.12) Rk = ηkfl(k) + (1− ηk)fk 6 ηkfl(k) + (1− ηk)fl(k) = fl(k).

Using (3.11) and (3.12), we have

(3.13) uPredk 6 fl(k) − f(xk + dk).

Replacing k with l(k)− 1 and using Lemma 3.2 yield

(3.14)

fl(l(k)−1) − fl(k) > uPredl(k)−1

>
1

2
utpl(k)−1 min

{ 1

M

(−gT
l(k)−1ql(k)−1

‖ql(k)−1‖

)2

, ∆̄
(−gT

l(k)−1ql(k)−1

‖ql(k)−1‖

)}

.

From Lemma 3.4, we know that the sequence {fl(k)} is monotonically nonincreasing.

According to Assumption (A1) that f has a lower bound, we can deduce that {fl(k)}

is convergent. So we have from (3.14)

(3.15)
∞
∑

k=0

tpl(k)−1 min
{ 1

M

(−gTl(k)−1ql(k)−1

‖ql(k)−1‖

)2

, ∆̄
(−gTl(k)−1ql(k)−1

‖ql(k)−1‖

)}

< ∞.
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Inequalities (3.15) and (3.10) imply that there exists an infinite index set T such

that

(3.16) lim
k→∞, k∈T

−gT
l(k)−1ql(k)−1

‖ql(k)−1‖
6= 0,

which implies that

(3.17) lim
k→∞, k∈T

tpl(k)−1 = 0.

From (1.7), ∆l(k)−1 → 0 as k → ∞ and k ∈ T . Without loss of generality, we

assume that for all k ∈ T there are more than one inner cycles performing in the

loop between Steps 3 and 4 at the kth iterate. So, the solution d̄k of the subproblem

(3.18) min mk(d) = fk + gTk d+
1

2
dTBkd

s.t. ‖d‖ 6 ∆k/t, k ∈ T,

is not accepted at the kth iteration for all k ∈ T , which means

(3.19) rk =
Rk − f(xk + d̄k)

mk(0)−mk(d̄k)
< u, k ∈ T.

On the other hand, by Lemma 3.5, we have rk > u for sufficiently large k ∈ T , which

contradicts (3.19). Consequently, (3.9) holds, which completes the proof. �

Under suitable conditions, we analyze the superlinear convergence of Algo-

rithm 2.1. We first make an assumption.

(A3) The matrix Bk is invertible, ‖B
−1
k gk‖ 6 ∆k and Algorithm 2.1 chooses the

step dk = −B−1
k gk for all k.

Theorem 3.2. Suppose that (A1), (A2) and (A3) hold, the sequence {xk} is

generated by Algorithm 2.1 and converges to x∗. Also suppose ∇2f(x) is a Lipschitz

continuous matrix in a neighborhood N(x∗, ε). Moreover, assume that ∇2f(x∗) is

positive definite such that

(3.20) lim
k→∞

‖(Bk −∇2f(x∗))dk‖

‖dk‖
= 0

holds. Then the sequence {xk} converges to x
∗ superlinearly.

P r o o f. The proof is similar to Theorem 4.1 of [1] and here is omitted. �
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4. Numerical results

In this section, the numerical experiments are divided into two groups to show the

effectiveness of the proposed algorithm. In the first group of experiments, we utilize

a set of 80 test functions mainly from [3], the dimension of each problem is set to 100,

they were run on 3.60 GHz CPU processor (Intel(R) Xeon(R) CPU E5-1650), 64 GB

RAM memory and Windows 7 operation system. The second group of experiments

was performed on a set of 109 test problems from the CUTEr library [10] with

dimensions 2 to 1000, the codes were run in Ubuntu 10.04 LTS which is fixed in

VMware Workstation 10.0 installed in Windows 7.

We compare the AINATR method with the ANMTR method [18] and the RNATR

method [16]. In the numerical experiments, the following parameters are used in the

AINATR method:

∆̄ = 100, t = 0.3, u = 0.07, γ = 1.9, τ = 10−2, B0 = I, M1 = 15, η0 = 0.5,

we update the parameter ηk by

ηk =

{

1
2η0, k = 1,

1
2 (ηk−1 + ηk−2), k > 2.

In order to maintain consistency, we solve the quadratic subproblem (1.3) by using

the Steihaug-Toint scheme [6] (Page 205) in the considered algorithms. For all meth-

ods, the iteration is terminated if the gradient satisfies ‖gk‖∞ 6 10−6 or the number

of iterations exceeds 50000.

We adopt the performance profiles proposed by Dolan and Moré [8] to display the

performance of the methods. Let P denote the set of np test problems and S be the

set of all algorithms. For each problem p and solver s we define tp,s as computational

time required to solve problem p by solver s, that is, the performance ratio is defined

as

(4.1) rp,s =
tp,s

min{tp,s : s ∈ S}
.

It is obvious that rp,s > 1 for all p and s. For each solver s, the performance profile

is defined as the cumulative distribution function for performance ratio

(4.2) P (τ) =
size{p ∈ P : rp,s 6 τ}

np

,

that is, for each method, in the following figures, we plot the fraction P (τ) of problems

for which the method is within a factor τ of the best time. Obviously, P (1) represents
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Figure 1. Performance profile based on Niter(Pro Andrei).
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Figure 2. Performance profile based on Nf (Pro Andrei).

the percentage of the test problems for which the method is the fastest. The top

curve is the method that solved most problems in a time that was within the factor τ

of the best time. See [8] for more details about the performance profile.
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Figure 3. Performance profile based on Tcpu(Pro Andrei).

1 2 3 4 5 6 7 8 9 10 11
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

P (τ)

AINATR
ANMTR
RNATR

Figure 4. Performance profile based on Niter(CUTEr).

Since the number of iterations and gradient evaluations are the same, the number

of gradient evaluations will be discarded from the discussion below. In Figs. 1–6,
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Figure 5. Performance profile based on Nf (CUTEr).
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Figure 6. Performance profile based on Tcpu(CUTEr).

Niter, Nf and Tcpu represent the number of iterations, the number of function eval-

uations and the CPU time, respectively.

347



In the first group of the numerical experiments, we compare the AINATR method

with the ANMTR method and the RNATR method for 80pro Andrei. The AINATR

method successfully solves 79 problems, while the ANMTR method and the RNATR

method successfully solves 75 and 73 problems, respectively. From Fig. 1, we can

easily see that the AINATR method is the best performing relative to the number

of iterations among the three algorithms considered. In Fig. 2, we observe that

the AINATR method is more effective than the ANMTR method and the RANTR

method relative to the number of function evaluations for the case of τ 6 4. In Fig. 3,

one can see that the AINATR method grows faster than the ANMTR method and

the RNATR method. From Figs. 1, 2 and 3 we could say that the AINATR method

is competitive with the other two related methods in terms of the test questions

given.

In the second group of the numerical experiments, we discuss the performance of

the AINATR method, the ANMTR method and the RNATR method for 109 test

problems from the CUTEr library [10]. In the numerical experiments, the AINATR

method successfully solves 108 test problems, while the ANMTR method successfully

solves 106 problems and the RNATR method successfully solves 100 problems. As

shown in Fig. 4, the AINATR method requires less iterations than the ANMTR

method and the RNATR method. In Fig. 5, we observe that the AINATR method is

more efficient than the ANMTR method and the RNATR method, and it successfully

solves about 62% of test problems with the least number of function evaluations,

while the percentages of solved problems of the ANMTR method and the RNATR

method are 50% and 9%, respectively. Fig. 6 indicates that the AINATR method is

faster than the ANMTR method and the RNATR method. From Figs. 4, 5, and 6 we

can see that the AINATR method outperforms ANMTR and RNATR for the given

test set.

5. Conclusions

In this paper, we propose an improved nonmonotone adaptive trust region method

for solving unconstrained optimization problems. Approximating Hessian matrix by

the scaled memoryless BFGS formula, an approximate model is constructed. Further-

more, the nonmonotone technique is employed in the adaptive trust region method

in order to enhance the effectiveness of the algorithm. From the perspective of the-

oretical analysis, the proposed algorithm inherits the global convergence and the

superlinear convergence rate of traditional trust region algorithms under classical as-

sumptions. Finally, the effectiveness of the new proposed algorithm has been verified

by experiments on two groups of standard test problems set.
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