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Abstract. The finite element (FE) solution of geotechnical elasticity problems leads to
the solution of a large system of linear equations. For solving the system, we use the precon-
ditioned conjugate gradient (PCG) method with two-level additive Schwarz preconditioner.
The preconditioning is realised in parallel. A coarse space is usually constructed using an
aggregation technique. If the finite element spaces for coarse and fine problems on struc-
tural grids are fully compatible, relations between elements of matrices of the coarse and
fine problems can be derived. By generalization of these formulae, we obtain an overlapping
aggregation technique for the construction of a coarse space with smoothed basis functions.
The numerical tests are presented at the end of the paper.
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1. Introduction

A practical geotechnical elasticity problem is usually characterized by large di-

mensions and strong heterogeneity. The finite element discretization of this problem

on the domain Ω leads to a large sparse symmetric positive definite (SPD) linear

system, Au = f . To solve it, we need an efficient iterative solver. For the SPD

problems, it is very efficient to use the preconditioned conjugate gradient method.

When using parallel computers, it is suitable to use a domain decomposition (DD)

method as a preconditioner (see [4]). The domain decomposition refers to the pro-

cess of subdividing the solution of a large linear system into smaller problems on

subdomains, the solution of which can be used to construct the preconditioner.
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Using the FE discretization, the domain Ω is assumed to be divided into a set of

elements Th(Ω) which defines the finite element space V = Vh,

(1.1) Vh(Ω) = {v ∈ C(Ω̄) ∩ V : v|eh ∈ P1(eh) ∀ eh ∈ Th(Ω)}.

If Th(Ω) is composed of tetrahedra, P1(eh) denotes the set of linear polynomials on

the tetrahedral element eh. If Th(Ω) is composed of hexahedra, P1(eh) denotes the set

of trilinear polynomials on the hexahedral element eh. Furthermore, V is the space

of functions satisfying the homogeneous Dirichlet boundary conditions prescribed on

a part of the boundary ∂Ω.

We use structural grids in our case. The position of each node is given by a triplet

of indices and the corresponding nodal coordinates (x(i, j, k), y(i, j, k), z(i, j, k)). The

general structural grid with nx × ny × nz nodes corresponds to the rectangular uni-

form “index” grid, where the node in position (i, j, k) has coordinates (i, j, k). In this

case, the domain Ω is divided into nz−1 layers of hexahedra with (nx−1)× (ny−1)

hexahedra in each layer. If we use tetrahedral elements, each hexahedron is further

divided into six tetrahedral elements. This decomposition determines the corre-

sponding structure of the set Th(Ω). Note that the nodes numbering is sequential

(row by row, layer by layer), so the serial number of the node in position (i, j, k) is

i+ (j − 1) ∗ nx + (k − 1) ∗ nx ∗ ny.

The two-level Schwarz DD method is used as a preconditioner. On the first level,

we suppose that Ω is decomposed into overlapping subdomains. The decomposition

is only realized in the z direction, initially into nonoverlapping subdomains Ω̂k, which

are subsequently extended to overlapping subdomains Ωk,

(1.2) Ω =

p⋃

k=1

Ωk.

The use of structural grids determines the overlapping as several layers of elements

in z direction. The decomposition of Ω induces the decomposition of the space V ,

(1.3) V = V1 + . . .+ Vp,

where

(1.4) Vk = {v ∈ V : v = 0 in Ω \ Ωk}, k = 1, . . . , p.

Decomposition (1.3) allows to introduce both additive and multiplicative version

of the DD preconditioner (see [12]). In our codes, we use the additive version of

the overlapping Schwarz preconditioner, because the problems on the subdomains
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are then independent, which makes the domain decomposition methods suitable for

parallel computing. Note that the efficiency of the DD preconditioner improves with

the increasing overlap. In the paper, we assume 2h size of the overlap (2 layers)

for all numerical experiments, so the dependence of convergence on the size of the

overlap is not tested.

The second level presents the extension of the FE space V = Vh to the space V

by adding the space V0 for the coarse problem (see [13]),

(1.5) V = V0 + V1 + . . .+ Vp.

The use of the two-level preconditioner is very efficient in the case of an eliptic

problem. The efficiency of the one-level preconditioners based on decomposition (1.3)

decreases with increasing p, see e.g. [13]. The reduction of the global error depends

on the frequency. High frequency components of the error are reduced rapidly, while

low frequency components of the error are reduced only slowly. With increasing

number of subspaces p, the subdomains Ωi become smaller and the smooth part of

the error, which cannot be reduced using the local solvers on the subdomains, grows.

Hence, we need the coarse grid correction of smooth errors.

The other explanation of lower efficiency of the preconditioner based on the one-

level additive DD is the following. For eliptic PDEs, the solution at any point

depends on the right-hand side and the boundary conditions for the entire domain.

However, the information about the right-hand side at one point is conveyed through

to another point only by passing through all the intermediate subdomains, each of

which muddles it up a bit more. Therefore, the solver must have some mechanism for

the global communication of information at each iteration. It is realized by adding

a coarse grid corrector.

One way how to define the coarse problem is to discretize the continuous problem

on the coarse grid, so V0 = VH ,

(1.6) VH(Ω) = {v ∈ C(Ω̄) ∩ V : v|eH ∈ P1(eH) ∀ eH ∈ TH(Ω)}.

Such coarse space is very efficient in the case of nested grids, where the coarse

grid basis functions are obtained by a linear combination from the fine grid basis

functions. The coarse grid space VH (H > h) is then contained in the fine grid space

Vh, VH ⊂ Vh. Then VH and Vh are fully compatible FE spaces and V = V . This

approach corresponds to a geometric multigrid (see [9]).

If the fine grid is very complicated, then a fully compatible coarse grid does not ex-

ist. These difficulties motivated the development of the Algebraic Multigrid (AMG)

approach [7], which enables constructing the coarse problem matrix on the basis of

information available from the fine grid matrix.
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The aggregation techniques constitute one of possible approaches to algebraic mul-

tilevel methods. They originally appeared in the context of multigrid methods but

they can be also applied in the multi-level Schwarz domain decomposition methods

(see [14], [3]). The aggregation of unknowns can be easily defined by clustering of

neighbouring nodes. If G is the set of all nh nodes of the fine grid, then the clustering

divides the set G into nH disjoint subsets Gi, i = 1, . . . , nH (aggregation of nodes),

where G =
⋃
Gi, i = 1, . . . , nH , Gi ∩Gj = ∅, i 6= j. We call this type of aggregation

the classical aggregation in this paper. Each of the subsets Gi, i = 1, . . . , nH , de-

termines uniquely a (“fictitious”) node of the coarse problem, nH then presents the

number of nodes of the coarse problem. We say “fictitious” node, because in fact the

coarse grid may not exist explicitly.

To determine the aggregated stiffness matrix KH of the order mH ×mH , where

mH = 3 ∗ nH in 3D elasticity problem, it is necessary to define the corresponding

mh ×mH interpolation matrix R⊤ (mh = 3 ∗ nh, where nh is the number of nodes

of the fine problem) and the restriction matrix R. Then we can write the relation

(1.7) KH = RKhR⊤,

where Kh is the stiffness matrix for the fine grid problem. In the case of the classical

aggregation, the restriction matrix R is the Boolen matrix with only one unity in each

column. In this case, the coarse matrix row corresponding to a “fictitious” coarse

grid node is given by the sum of the fine matrix rows corresponding to the nodes of

the cluster of the neighbouring fine grid nodes. The aggregated basis functions are

then defined as the sum of the fine grid basis functions for each cluster of unknowns

(see [10]). The aggregated basis function has the value 1 in all clustered nodes and

the value 0 in the remaining nodes.

The matrix created using this aggregation technique is too stiff. The difficulty is

the high energy of these aggregated basis functions. This drawback can be avoided

by smoothing the basis functions using the smoothed aggregations (see [15]), which

are based on the smoothing of the partition of unity by smoothing a tentative inter-

polation vector. A newer approach smooths the partition of unity directly [8].

In the paper, we suggest a new smoothed aggregation technique (an overlapping

aggregation technique), where the smoothing of the partition of unity is based on

generalization of the aggregation for the fully compatible FE spaces. In the case of

the fully compatible FE spaces, formulae for the relations between the coarse matrix

elements and the fine matrix elements can be derived. In some problems, the fine

grid is so complicated that the fully compatible coarse grid space does not exist.

Those relations must be then modified.

We use structural grids with corresponding uniform rectangular “index” grids.

If we define the coarse and fine grids FE spaces on these “index” grids, we obtain
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in many cases fully compatible “index” FE spaces even for the original non fully

compatible FE spaces. Consequently, we can modify the relations between the matrix

elements derived for the fully compatible original FE spaces using index coordinates

instead of real coordinates for the determinations of coefficients in the relations. In

the case of noncompatible “index” grids, we use approximation of these coefficients.

The overlapping aggregation technique described in this paper differs from the

“classical” AMG technique mentioned earlier. We have nH groups Gi of nodes,

G =
⋃
Gi, i = 1, . . . , nH , but the intersection of the neighbouring groups is not

empty, Gi ∩Gj 6= ∅. The groups are overlapped. Each group determines a node for

the coarse problem. It means that a fine grid node from the overlapping belongs to

up to four groups Gi in the case of the FE coarse space based on tetrahedra and up

to eight groups in the case of the FE coarse space based on hexahedra for structural

grids. The restriction matrix R can then have 8 nonzero elements in each column.

The column sums equal to 1.

If we write the matrix Kh in a block form, Kh = (Kh
ij), where K

h
ij are 3×3 blocks

in 3D elasticity problem, then in the case of the classical aggregation technique, each

block Kh
ij is added just to one corresponding blockK

H
ij of the coarse problem matrix.

In the overlapping aggregation technique, each block Kh
ij can be redistributed to

several 3 × 3 blocks of coarse matrix rows which correspond to some neighbouring

coarse grid nodes (up to 4 nodes in the case of the FE based on tetrahedra, up to

8 nodes for hexahedra). This redistribution is based on the relations between matrix

blocks of stiffness matrices for the coarse and fine problems of nested grids (see next

section). Note that the overlapping aggregation is very efficient in the case of strong

heterogeneity. Unlike the classical aggregation, it redistributes the information from

the fine grid node to all neighbouring coarse grid nodes.

The aggregation techniques were presented in many papers (see [7], [14], [15], [8]).

In this paper, a different approach was used. The coarse grid matrix was assembled

using a special ordering of fine grid nodes in the case of structural grids and by

modification of relations between blocks of the fine and coarse grid matrices in the

case of nested grids. The construction of the matrix for the coarse grid problem is

the main and only result of the paper.

The paper is organized as follows. The construction of the coarse matrix for

fully compatible grids using only the fine matrix elements is described in Section 2.

Section 3 shows the process of determinating the aggregated matrix using the over-

lapping aggregations. In Section 4, the used solver for solving a system of linear

algebraic equations is described. Finally, Section 5 presents the numerical results.
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2. Construction of the matrix for a coarse grid

Assume that we have an FE model based on tetrahedral elements. Let Ω be

a polytope domain and GH be a coarse structural FE grid on Ω with corresponding

nodes dHi , i = 1, . . . , nH . Let TH(Ω) be a corresponding set of tetrahedral elements.

Note that Ω is firstly decomposed into hexahedral (generally nonrectangular) bricks,

which are further decomposed, each brick into six tetrahedra. Similarly, let Gh be

a fine structural FE grid on Ω with nodes dhi , i = 1, . . . , nh, and Th(Ω) be a corre-

sponding set of tetrahedral elements. VH(Ω), Vh(Ω) are the corresponding FE spaces

(see (1.1), (1.6)).

We say that the divisions TH and Th are fully compatible if the elements eh ∈ Th
arise from division of the elements eH ∈ TH ,

(2.1) eH =
⋃

ekh,

where ekh, k = 1, . . . , nh
k , are the tetrahedral elements from Th. In this case, any basis

function NH
i from the space VH corresponding to the coarse grid node dHi can be

written as

(2.2) NH
i =

nh
i∑

k=1

ϕikN
h
k ,

where Nh
k , k = 1, . . . , nh

i , denote the standard basis functions of Vh corresponding to

the fine grid nodes dhk , k = 1, . . . , nh
i , laying inside of the domain given by all coarse

grid elements containing the coarse grid node dHi .

The relations NH
i (xH

j ) = δij , Nh
i (x

h
j ) = δij hold, where xH

j ∈ R
3 and x

h
j ∈ R

3

are the coordinates of the nodes dHj and dhj from GH and Gh, respectively. Hence,

we have the relation ϕik = NH
i (xh

k) for any i = 1, . . . , nH , k = 1, nh
i , which means

that the value of the parameter ϕik equals to the function value of NH
i in the

corresponding fine grid node dhk with the coordinate x
h
k . If i, j, m, p are indices of

the coarse grid nodes in the tetrahedron eH , then the relation

(2.3) NH
i +NH

j +NH
m +NH

p = 1

holds on this tetrahedron. Then also the relation

(2.4) ϕik + ϕjk + ϕmk + ϕpk = 1

holds in each node dhk from this tetrahedron. If the linear function F (x) on the

tetrahedron eH with the node indices i, j, m, p has the nodal values F (xi) = ti,
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F (xj) = tj , F (xm) = tm, F (xp) = tp, then we can express this function in a matrix

form

(2.5) F (x) = [NH
i (x), NH

j (x), NH
m (x), NH

p (x)]t,

where t = (ti, tj , tm, tp). Note that in the case of the hexahedral FE, the relation

(2.4) contains eight coefficients ϕlk.

In 3D elasticitity problems, the displacement of a point with the coordinates x =

(x, y, z) is defined by three displacement components u, v, w in the direction of the

three coordinates x, y, z,

(2.6) u(x) =





u(x)

v(x)

w(x)



 .

Using the FE method, we find the displacement uh ∈ Vh(Ω)
3 (see [16]). We consider

the same space of basis functions Vh(Ω) for each component. The following relations

hold for both fine and coarse grids, so we omit parameters h and H . Here the index e

marks an element both in the fine and coarse grids.

The displacement uh in a tetrahedra element is determined by 12 displacement

components of the corresponding four nodes as

(2.7) a
e =





ai

aj

am

ap





with

(2.8) ai =





ui

vi

wi



 etc.,

where ui, vi, wi are the components of the displacement u, v, w in the node di.

Similarly as in (2.5), we can write the displacement of arbitrary point in the element e

as

(2.9) u(x) = [INe
i (x), IN

e
j (x), IN

e
m(x), INe

p (x)]a
e,

where I is the 3 × 3 identity matrix and Ne
i , N

e
j , N

e
m, N

e
p are the basis functions

corresponding to the nodes of the tetrahedral element e.
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Using the known relations between displacements and deformations from the small

deformation theory, the strain matrix on the element e can be defined as

(2.10) ε =





εx

εy

εz

γxy

γyz

γzx





=





∂u
∂x
∂v
∂y
∂w
∂z

∂u
∂y

+ ∂v
∂x

∂v
∂z

+ ∂w
∂y

∂w
∂x

+ ∂u
∂z





.

Using relation (2.9), the relation for the element e can be written as

(2.11) ε = B
e
a
e = [Be

i ,B
e
j ,B

e
m,Be

p]a
e,

in which

(2.12) B
e
i =




∂Ne
i

∂x
0 0

0
∂Ne

i

∂y
0

0 0
∂Ne

i

∂z
∂Ne

i

∂y

∂Ne
i

∂x
0

0
∂Ne

i

∂z

∂Ne
i

∂y
∂Ne

i

∂z
0

∂Ne
i

∂x




with other submatrices obtained by interchanging subscripts. Note that the basis

functions Ne
i , N

e
j , N

e
m, Ne

p are linear on tetrahedral elements, so the partial deriva-

tives exist inside the elements and are constant. If De is the 6× 6 elasticity matrix

containing appropriate material properties for the element e,

(2.13) D
e =

E(1 − ν)

(1 + ν)(1 − 2ν)




1 ν
1−ν

ν
1−ν

0 0 0
ν

1−ν
1 ν

1−ν
0 0 0

ν
1−ν

ν
1−ν

1 0 0 0

0 0 0 1−2ν
2(1−ν) 0 0

0 0 0 0 1−2ν
2(1−ν) 0

0 0 0 0 0 1−2ν
2(1−ν)




,

where E is the Young’s modulus, ν is the Poisson’s ratio, then the element stiffness

matrix is given by the relation (see [16])

(2.14) K
e =

∫

e

B
e⊤

D
e
B

e d(vol).
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The matricesBe andDe are constant on the element e, so we can write relation (2.14)

as

(2.15) K
e = B

⊤
DBV e,

where V e is the volume of the element e. Note that in the case of the FE based on

hexahedral elements, the basis funcions are trilinear and the matrices Be and De are

not constant. In this case, we can use the numerical integration to determine Ke in

(2.14). If we use the decomposition

(2.16) B
e = [Be

i ,B
e
j ,B

e
m,Be

p],

then the local element matrix can be written in the block form

(2.17) K
e =




K
e
ii K

e
ij K

e
im K

e
ip

K
e
ji K

e
jj K

e
jm K

e
jp

K
e
mi K

e
mj K

e
mm K

e
mp

K
e
pi K

e
pj K

e
pm K

e
pp


 ,

where the rs submatrix is the 3× 3 matrix defined as

(2.18) K
e
rs = (Be

r)
⊤
D

e
B

e
sVe.

Here r, s ∈ {i, j,m, p}.

In the following part, we will distinguish between the coarse and fine grids using

the corresponding indices H and h in the relations desribed above. We must note

here that we assume homogeneous material on the subdomains corresponding to the

individual coarse grid elements, so D
eh = D

eH on this subdomain. Let eH be the

given coarse grid element and let {ekh}, k = 1, . . . , neH , be the corresponding set

of fine grid elements, where eH =
⋃
k

ekh. We cannot use the expression for N
eH
i

from (2.2) directly in (2.12) (and similarly for NeH
j , N

eH
m , N

eH
p ), because the basis

functions Neh
i have not the partial derivatives on the fine grid element faces, but

they exist inside the fine grid elements. Therefore, we rewrite relation (2.14) as

(2.19) K
eH =

∫

eH

(BeH )⊤DeHB
eH d(vol) =

∑

eh⊂eH

∫

eh

(BeH )⊤DeHB
eH d(vol).

Consequently, (2.18) has the form

(2.20) K
eH
rs =

∑

eh⊂eH

(BeH
r )⊤DeHB

eH
s Veh =

∑

eh⊂eH

K
eH
rs |eh.
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Note that the notation KeH
rs |eh denotes the contribution to the global coarse matrix

from the local matrix for the fine grid element eh. Because the derivatives of Nh
i ,

i = 1, . . . , nh, exist inside the element eh, we can substitute NH
i from (2.2) to (2.12),

element by element.

Let the element ekh, e
k
h ⊂ eH , have the nodes with the indices b, c, d, f and let the

element eH have the nodes with the indices i, j,m, p. Then relation (2.2) can be

written as

(2.21) NeH
r |ekh =

∑

l∈{b,c,d,f}

ϕrlN
ekh
l

on ekh, r ∈ {i, j,m, p}. After substituting (2.21) to (2.12) and subsequently to (2.20),

we can write the contribution from this element to the submatrix KeH
rs in (2.20) as

(2.22) K
eH
rs |e

k
h =

∑

g,l∈{b,c,d,f}

ϕrgϕsl(B
eh
g )⊤DehB

eh
l Vek

h
=

∑

g,l∈{b,c,d,f}

ϕrgϕslK
eh
gl ,

where Vek
h
represents the volume of the element ekh. We can write similar relations

for all submatrices KeH
rs |e

k
h, r, s ∈ {i, j,m, p}. We can see from relations (2.22) that

each block K
eH
rs contains a weighted contribution from all blocks K

eh
gl of the fine

grid matrix corresponding to the connections between the nodes b, c, d, f . It means

that for the FE based on tetrahedra, the matrix blocks are redistributed into up to

16 blocks of the coarse grid matrix. In the case of the hexahedral FE, these blocks

can be redistributed even into up to 64 blocks with various weighted coefficients αi,∑
αi = 1.

Relations (2.22) can be written in the matrix form as

(2.23) K
eH |ekh = Rek

h
K

ekhR
⊤
ek
h

,

where

(2.24) Rek
h
=




ϕibI ϕicI ϕidI ϕif I

ϕjbI ϕjcI ϕjdI ϕjf I

ϕmbI ϕmcI ϕmdI ϕmfI

ϕpbI ϕpcI ϕpdI ϕpfI


 .

Here I is the 3 × 3 identity matrix, ϕgl = NeH
g (xh

l ), g ∈ {i, j,m, p}, l ∈ {b, c, d, f},

and

(2.25) K
ekh =




K
ekh
bb K

ekh
bc K

ekh
bd K

ekh
bf

K
ekh
cb K

ekh
cc K

ekh
cd K

ekh
cf

K
ekh
db K

ekh
dc K

ekh
dd K

ekh
df

K
ekh
fb K

ekh
fc K

ekh
fd K

ekh
ff




612



is the local fine grid matrix on the element ehk . In the matrix Rek
h
the sum of the

elements in each column equals to 1 (see (2.4)). Finally,

(2.26) K
eH =

∑
eh⊂eH

K
eH |ekh.

The matrix K
eH is the 12 × 12 local element stiffness matrix. The indices of the

matrix correspond to the global indices of the global stiffness matrix of the order

mH × mH , where mH = 3 ∗ nH is the global number of unknowns for the coarse

problem. For the transformation of the blocks from the local matrix to the global

matrix, we use a transformation matrix. Let SeH be the mH × 12 transformation

matrix corresponding to the element eH . Then we can write

(2.27) KH =
∑

eH∈TH(Ω)

S
eHK

eH
H S

eH⊤ =
∑

eH∈TH(Ω)

S
eH

( ∑

eh⊂eH

Rek
h
K

ekhR
⊤
ek
h

)
S
eH⊤.

Relation (2.27) gives the rule how the 3× 3 blocks of the local matrices Kekh for the

fine grid problem are redistributed to the 3× 3 blocks of the global stiffness matrix

for the coarse grid problem. Consequently, we can rewrite relation (2.27) as

(2.28) K
H = RK

h
R

⊤

with the mH ×mh restriction matrix R, mH = 3∗nH, and mh = 3∗nh. The column

sums of the matrix R are equal to 1. Note that for fully compatible divisions TH
and Th, relation (2.28) gives the aggregated matrix which is identical with the coarse

grid matrix assembled from the local coarse grid matrices if the material is homo-

geneous on the subdomains corresponding to the individual coarse grid elements.

Note that relation (2.28) can be used even when the condition of homogeneity is not

fulfilled.

3. Construction of the overlapping aggregations

The construction of the coarse grid matrix described in Section 2 assumes that

there exists an FE space VH(Ω) such that the divisions TH and Th are fully compat-

ible. But for a general nonrectangular structural grid, a fully compatible coarse FE

space may not exist and relations (2.19)–(2.23) cannot be used. As we mentioned in

Section 1, the general structural grid on Ω corresponds to the rectangular uniform

“index” grid on the corresponding domain Ωindex (Ωindex is a rectangular polytope

domain with dimension 〈1, nx〉×〈1, ny〉×〈1, nz〉). For this “index” grid we can define

a set of elements T (Ωindex) and a corresponding FE space V (Ωindex). Note that the

“index” elements can be tetrahedra or hexahedra.
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Let Ih be a fine “index” grid. We can construct the “index” coarse grid IH in such

a way that the nodes from IH will be identical with some nodes from the “index”

fine grid Ih. The condition to be fulfilled is that all nodes from the coarse grid index

“line” (e.g. nodes {i1, j1, k}, k = 1, nH
z ) have to belong to the same fine grid index

“line” (Figure 1(a)). Note that an “index” coarse grid determines the coarse grid

GH on the real coordinates x, y, z.

(a) (b)
Figure 1. (a) Position of coarse grid nodes, (b) Triangularization-fully compatible grids.

Let nH
x , n

H
y , n

H
z be the numbers of the coarse grid nodes in the corresponding

directions. If we have the “index” grid Ih, then for the FE space Vh(Ω
index) based

on the hexahedral elements, the fully compatible FE space VH(Ωindex) always ex-

ists. Different situation occurs when the “index” FE space is based on tetrahedral

elements. Here, some necessary conditions have to be fulfilled so that the fully com-

patible “index” FE spaces are obtained. First, every coarse grid hexahedron must be

refined by the same number of fine grid nodes in each direction. We must consider it

during preparation of a fine grid and choose corresponding numbers of the fine grid

nodes in each direction. Second, every hexahedron of the fine grid is decomposed

into six tetrahedral elements. There exist 72 various conform decompositions into

tetrahedra (see [11]). The necessary condition for fully compatible FE spaces is the

same decomposition of all fine grid hexahedra contained in the corresponding coarse

grid hexahedron (see the cross-section in Figure 1(b)).

The idea of the overlapping aggregation technique is the following. If the divisions

TH(Ωindex) and Th(Ωindex) are fully compatible, we can derive a similar relation

between the “index” coarse and the “index” fine matrix blocks as in (2.22) with

different matrix B
eh and with different coefficients ϕrg. This new relation is based

on the relation

(3.1) N index,H
r =

nh
l∑

l=1

ϕ̃rlN
index,h
l ,
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where N index,H
r and N

index,h
l are the basis functions of the spaces VH(Ωindex) and

Vh(Ω
index), respectively. In the overlapping aggregation technique, we use relations

(2.22), but we replace the coefficients ϕrl by ϕ̃rl from relation (3.1) for the “index”

basis functions.

So using the index grid coordinates instead of the real coordinates for the deter-

mination of the coefficients ϕ̃, we modify the relations from Section 2 in such a way

that we replace the coefficients ϕrs by the coefficients ϕ̃rs in all relations. Then we

rewrite relation (2.28) for the stiffness matrix as

(3.2) K
H = R̃K

h
R̃

⊤,

where the matrix elements of R̃ are given by the coefficients ϕ̃rl instead of ϕrl. As an

illustration, we can see the 1D basis functions for the classical aggregation and the

overlapping aggregation in Figures 2(a) and 2(b). Note that these basis functions

serve only for constructing the coarse grid matrix.

The coarse grid GH is “fictitious” in a sense. Therefore, we have to assume some

triangularization of this grid to construct the corresponding function space VH(Ω).

Then the solution of the coarse problem meets the requirements for being an error

corrector.

(a) (b) (c)

Figure 2. 1D basis function for (a) classical aggregation AG1, (b) overlapping aggregation
AG2 based on “index” grid coefficients, (c) overlapping aggregation AG4 based
on distances.

The determination of the matrix R̃ is based on relation (3.1). Relation (3.1) de-

termines an important property of the matrix R̃—the column sums are equal to one.

We must note here that in the case of the structural grids, the stiffness matrix

rows in 3D have maximum 81 nonzero elements, which corresponds to 27 nonzero

blocks for each block row corresponding to one node.

Four types of aggregation techniques used in our codes are presented below.

(a) The “classical” aggregation technique (label AG1).

As we have already mentioned in the Introduction, in the “classical” aggregation

technique the coarse grid matrix row corresponding to the coarse grid node is con-

structed as the sum of all fine grid matrix rows corresponding to the cluster of the

neighbouring fine grid nodes. If we enumerate the nodes in the coarse grid and fine
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grid elements locally in the same way, the coefficients ϕ̃ij in (2.22) fulfill the relation

ϕ̃ij = δij . It means that each block from the fine grid matrix is added to just one

coarse grid matrix block and the matrix R̃ is the Boolean matrix with just one unity

in each column. Other column elements are equal to zero. This type of aggregation

is efficient in the case of homogeneous material on uniform grids.

(b) The overlapping aggregation based on tetrahedra (label AG2).

This type of aggregation is based on relation (3.1) for the fully compatible “index”

FE spaces with tetrahedral elements. For the determination of coefficients we use

the basis functions of the “index” coarse grid FE space VH(Ωindex). Then ϕ̃ij =

N
index,H
i (xindex

j ). As we have mentioned earlier there exist 72 various conformed

decompositions of a hexahedron into 6 tetrahedra. To determine the coefficients ϕ̃ij ,

we must explicitly know the basis functions on individual tetrahedral elements for

every decomposition. It is arduous to construct all these basis functions. Therefore,

we suppose that all “index” coarse grid hexahedra are decomposed into tetrahedra

in the same way (given in advance). This new decomposition generates new basis

functions N index,H
r , N index,h

l , which we use in relation (3.1).

Basis functions for the decomposition presented in Figure 3(b) are the folowing.

Let the unit cube be the “index” coarse grid hexahedron (Figure 3(a)). The nodes

have then the index coordinates:

node 1 = (0, 0, 0), node 2 = (1, 0, 0), node 3 = (0, 1, 0), node 4 = (1, 1, 0),

node 5 = (0, 0, 1), node 6 = (1, 0, 1), node 7 = (0, 1, 1), node 8 = (1, 1, 1).

We suppose the “index” tetrahedron being decomposed into the following 6 tetra-

hedra: 1438, 1837, 1875, 1568, 1248, 1268 (see Figure 3(b)).

(a)

1 2

3 4

5 6

7 8

(b)

Figure 3. (a) Hexahedral “index” element, (b) Division into tetrahedra.

The basis functions for these tetrahedra are presented in Table 1.

Now we can simply determine the coefficients ϕ̃ij . E.g., if a fine grid node has

the local index coordinates xk = (24 ,
3
4 ,

1
4 ), then this node is inside the tetrahedron

1438 and the corresponding coefficients have the values ϕ̃1k = 1
4 , ϕ̃3k = 1

4 , ϕ̃14 = 1
4 ,

ϕ̃18 = 1
4 .
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1438: 1− y x− z y − x z

1837: 1− y x y − z z − x

1875: 1− z x y − x z − y

1568: 1− z z − x x− y y

1248: 1− x x− y y − z z

1268: 1− x x− z z − y y

Table 1. Basis functions for individual tetrahedra.

This type of aggregation requires fulfilment of an important condition. The num-

bers of the fine grid nodes in individual directions must enable constructing the

coarse grid in such a way that every coarse hexahedron contains the same number

of fine grid nodes in all three directions. Then the “index” FE spaces for this new

decomposition are fully compatible. If this condition is not fulfilled, relation (3.1) is

not valid. Nevertheless, we can use the relation ϕ̃ij = N
index,H
i (xindex

j ) to determine

the coefficients ϕ̃ij even in this case .

In this type of aggregation, the matrix R̃ has at most four nonzero elements in

each column and their sum is equal to one. Then each 3 × 3 fine matrix block is

weight-redistributed into at most sixteen 3× 3 coarse matrix blocks. The sum of the

weight coefficients is equal to 1.

(c) The overlapping aggregation based on hexahedra (label AG3).

Despite the fact that the FE space Vh(Ω) can be based on tetrahedra, this type of

aggregation is based on relation (3.1) for trilinear basis functions of the FE spaces

Vh(Ωindex) and VH(Ωindex) based on hexahedra. The advantage of this approach is

that the “index” FE spaces Vh(Ωindex) and VH(Ωindex) are always fully compatible

and we are not dependent on the type of decomposition of a hexahedron into a tetra-

hedra. All “index” hexahedral elements are unit cubes (see Figure 3(a)). The basis

functions corresponding to the individual nodes are presented in Table 2.

N
index,H
1 = (1− x)(1 − y)(1− z)

N
index,H
2 = x(1 − y)(1− z)

N
index,H
3 = (1− x)y(1 − z)

N
index,H
4 = xy(1− z)

N
index,H
5 = (1− x)(1 − y)z

N
index,H
6 = x(1 − y)z

N
index,H
7 = (1− x)yz

N
index,H
8 = xyz

Table 2. Basis functions corresponding to the individual nodes in a hexahedron.
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In this type of aggregation, the matrix R̃ has at most eight nonzero elements in

each column and their sum is equal to one. Then each 3 × 3 fine matrix block is

weight-redistributed into at most sixty four 3 × 3 coarse matrix blocks (see (2.22)).

If we number the nodes in a hexahedron locally by numbers 1–8 (see Figure 3(a)),

then each 3×3 matrix block corresponding to a fine grid node inside the hexahedron

is contributed (with weight coefficient) to the coarse grid matrix blocks KeH
rs , r, s =

1, . . . , 8. The weight coefficients αrs
ij are given by the relation

(3.3) αrs
ij = ϕ̃riϕ̃sj = N index,H

r (xh,index
i )N index,H

s (xh,index
j ).

For instance, the contribution of the fine matrix block aij (the node i with local

coordinates xi = (14 ,
3
5 ,

1
3 ), the node j with local coordinates xj = (24 ,

4
5 ,

2
3 )) to the

coarse matrix block K12 has the weight coefficient which equals to the value

α12
ij = (1− xi)(1 − yi)(1 − zi)xj(1− yj)(1 − zj) = 0.00666.

(d) The overlapping aggregation based on distances between nodes (label AG4).

The aggregation AG2 and AG3 determine the coefficients ϕ̃ij using nodal values

of the “index” coarse grid basis functions N index,H
i . Thus, the “index” coordinates

do not respect the real distances between the nodes. These types of aggregations

are very efficient for uniform grids, but they may not be efficient enough for strongly

nonuniform grids. Therefore, we introduce another type of aggregation which is

based on hexahedra, but the coefficients of which are not determined using the basis

functions. To determine the coefficients, the real distances between the nodes are

used.

Let u, v, w be the functions defined only for the fine grid nodes, other function

values are irrelevant. If the coarse grid hexahedron contains mx × my × mz fine

grid nodes, then for the fine grid node with the local indices (i, j, k), the function

values of the functions u, v, w in the node xijk = (xijk , yijk, zijk) are the following

(see Figure 4—a projection of index xz cross-section with C = xijk , A = xij1,

B

A

C
D

E

Figure 4. Grid for AG4.
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E = xijmz
, B = x1jk , D = xmxjk, in addition F = xi1k is a node on the index xy

cross-section for j = 1 and G = ximyk is a node on the index xy cross-section for

j = my):

u(C) =
dist(C,B)

dist(C,B) + dist(C,D)
,(3.4)

v(C) =
dist(C,F )

dist(C,F ) + dist(C,G)
,(3.5)

w(C) =
dist(C,A)

dist(C,A) + dist(C,B)
.(3.6)

So the basis functions N index,H
i (Table 2) are modified to the functions Fi based on

the distances between the nodes (see Table 3). The 1D basis function is presented

in Figure 2(c).

F1 = (1− u(x, y, z))(1− v(x, y, z))(1− w(x, y, z))

F2 = u(x, y, z)(1− v(x, y, z))(1 − w(x, y, z))

F3 = (1− u(x, y, z))v(x, y, z)(1− w(x, y, z))

F4 = u(x, y, z)v(x, y, z)(1− w(x, y, z))

F5 = (1− u(x, y, z))(1− v(x, y, z))w(x, y, z)

F6 = u(x, y, z)(1− v(x, y, z))w(x, y, z)

F7 = (1− u(x, y, z))v(x, y, z)w(x, y, z)

F8 = u(x, y, z)v(x, y, z)w(x, y, z)

Table 3. Functions based on the distances between the nodes.

Results of numerical tests of these 4 types of aggregation are presented in Section 5.

4. Solution of linear systems

As we have mentioned in Introduction, for the solution of large linear systems

Au = f arising from the FE analysis of elasticity problems we use the preconditioned

CG method, where the preconditioning is given by the additive overlapping two-level

Schwarz method with the aggregated coarse matrix described in Section 3. The

preconditioning represents an approximate solution of the equation

(4.1) Bgi = (B1 +B2)g
i = b−Aui = ri,

where B1 is a part of the preconditioning for the first level, B2 is a part of the

preconditioning for the second level, ri is the residual in the ith iteration of CG.
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On the first level, the domain Ω is decomposed into overlapping subdomains only

in the z direction and as preconditioning we use the domain decomposition methods

with the additive Schwarz preconditioner,

(4.2) B1 =
∑

R⊤
i A

−1
i Ri.

Here Ri represents the mh ×mh
i restriction matrix, where m

h
i is the number of rows

corresponding to nodes of the subdomain Ωi (see (1.3)). To solve the subproblems,

we must add boundary conditions on new boundaries of the subdomains. We assume

normal zero displacements on these (inner) boundaries. Finite element discretization

of linear elasticity problems leads to a system of linear equations with the stiffness

matrix which has some positive off-diagonal entries. To use an incomplete factoriza-

tion for the solution on subdomains, we need to replace matrices Ai by matrices Ci

obtained after deleting the coupling between the unknowns which correspond to the

nodal displacement in different coordinate directions,

(4.3) B1 =
∑

R⊤
i C

−1
i Ri.

The matrices Ci can be modified to a diagonal form with diagonal blocks given by

the displacement-decomposition approach (DiD-IF—see [2]). Then the incomplete

factorization can be used.

On the second level, we solve the coarse problem using inner iterations,

(4.4) B2 = A−1
0 .

Here the matrix A0 is the aggregated matrix assembled from the matrix A by the

overlapping aggregation technique described in the previous section. The solution

of the coarse problem is realized by the preconditioned CG with the precondition-

ing given by the displacement decomposition—the incomplete factorization technique

(DiD-IF). Generally, the aggregated matrix can disturb some important matrix prop-

erties and the incomplete factorization is not stable. To overcome these problems,

we use the lumping procedure on the diagonal displacement-decomposition blocks

summing all positive offdiagonal elements in the row to the corresponding diagonal

elements. Note that we also use the lumping procedure for the fine grid matrix if it

is necessary.

The efficiency of the two-level Schwarz preconditioner depends on the inner relative

accuracy ε0 of the residuals (Euclidean norm) for solving the coarse grid problem,

which can be relatively low. In this case, we lose the orthogonality of the searched

directions in CG for the fine grid equations. This leads to the idea of improving the
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algorithm by restoring the orthogonality with respect to the last m directions using

the Gram-Schmidt process [5].

Solution of some practical problems of linear elasticity requires the use of the pure

Neumann boundary conditions. The finite element discretization of this problem

leads to the linear system Ahuh = bh with the matrix Ah which is (theoretically)

singular (see [5]). In this case, the null space N(Ah) is not empty and is given

by three independent rigid body translations w1
h, w

2
h, w

3
h and three independent

rigid body rotations w4
h, w

5
h, w

6
h. Due to a not ideal balance between volume and

boundary forces and also due to roundoff errors, the systemAhuh = bh can be slightly

inconsistent. It means that we are interested in the generalization of the solution uh

by solving the equations

(4.5) Ahuh = bh − PN (bh),

where PN (bh) is the orthogonal projection to N(Ah). The projection PN (bh) can be

constructed numerically,

(4.6) PN (bh) =
∑

αiw
i
h,

∑
αi〈w

i
h, w

j
h〉 = 〈bh, w

j
h〉 for j = 1, . . . , 6.

The roundoff errors may cause instability, so we stabilize PCG by projecting all

computed residuals back to the theoretical range R(Ah).

If we simulate a laboratory uniaxial test, the constant normal displacements are

given on two opposite sides of a cube and zero forces are given on other four sides.

In this case, the null space N(Ah) is given by two independet rigid body translations

and one rigid body rotation. The coefficients αi, i = 1, . . . , 3, are computed similarly

as in (4.6).

Note that the stopping criteria for both the fine and the coarse grid problems are

given by relative accuracy ε of the residuals.

5. Numerical tests

For the solution of the linear systems the preconditioned CG method is used,

where the preconditioning is given by the additive overlapping two-level Schwarz

method with the aggregated coarse matrix described in Section 3. In our case, the

domain is divided into m subdomains Ωk only in z direction. The linear system is

solved in parallel and the number of subproblems corresponds to the number of used

processors.

The parallel computations were performed on Super Micro computer (symmet-

ric multiprocessor) with 8× octa-core processor Intel Xeon E7-8837. The parallel

programming used the OpenMP paradigm.
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The efficiency of the suggested aggregation technique was tested on two model

problems (see Figure 5). In both model problems, we used 24 cores. The orthogo-

nality of searched directions was restored with respect to last 3 directions.

(a) (b) (c)

Figure 5. (a) Geocomposite model, (b) Äspö model—the global domain, (c) Detail of the
grid.

(a) The first model (see Figure 5(a)) corresponds to the laboratory uniaxial test

on a geocomposite (see [6]). The constant nonzero normal displacements are pre-

scribed on the upper side of the cube, the zero normal displacements are prescribed

on the bottom side of the cube. On the other sides we have prescribed zero normal

forces. In this case, the null space is not empty and the projection of R(Ah) de-

scribed in the previous section has to be used. To test the efficience of the suggested

aggregations, we used 5 different materials randomly distributed into the hexahedral

elements. The distribution of materials was done algorithmically. In practice, the

material distribution is determined using CT tomography. In our model problem,

each material occupies 20 percents of the domain. We tested three different sets of

material properties: homogeneous material (HOM), heterogeneous material (HET1)

and strongly heterogeneous material (HET2) (see Table 4).

task/mat mat1 mat2 mat3 mat4 mat5

E ν E ν E ν E ν E ν

HOM 19000 0.20 19000 0.20 19000 0.20 19000 0.20 19000 0.20

HET1 19000 0.20 200000 0.30 5000 0.40 100000 0.25 1000 0.42

HET2 60000 0.20 600000 0.20 10000 0.40 200000 0.25 200 0.42

Table 4. Material properties for three different tasks.

These three material sets (HOM, HET1, HET2) were tested on three different rect-

angular grids: uniform (UN), nonuniform (NUN1) and strongly nonuniform (NUN2)

(see Figure 6).
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(a) (b) (c)

Figure 6. (a) Uniform grid (UN), (b) Nonuniform grid (NUN1), (c) Nonuniform grid
(NUN2).

All three grids have dimensions of 401× 401× 401 nodes (193 443 603 unknowns).

The corresponding coarse grid has 41×41×41 nodes (206 763 unknowns), so the grids

are not fully compatible. The results of numerical tests are presented in Table 5. The

numbers of outer iterations are in the upper part of the row, the numbers of inner

iterations are in the lower part of the row. This table shows, that the overlapping

aggregations are very efficient, especially in the case of strong nonuniformity of the

grid.
without aggreg AG1 AG2 AG3 AG4

HOM 416 130 38 37 37

UN – 2618 964 748 748
HOM 425 124 34 33 22

NUN1 – 2360 681 550 454
HOM 918 271 79 80 23

NUN2 – 4876 1342 1211 465
HET1 1030 259 68 69 69

UN – 8262 2303 1839 1839
HET1 1314 412 87 87 77

NUN1 – 11013 2168 1755 2089
HET1 3723 1113 245 244 160

NUN2 – 33663 6720 5304 4046
HET2 1163 292 77 77 77

UN – 9878 2639 2048 1839
HET2 1703 511 108 108 94

NUN1 – 14829 2560 2174 2549
HET2 4520 1328 274 269 184

NUN2 – 34723 5948 4954 4547

CPU time(s) 226877 79383 17936 16828 15782

CPU time/1 it 50.20 59.78 65.46 62.56 85.78

Table 5. Number of outer and inner iterations for various types of aggregation and the CPU
time for the HET2-NUN2 task (geocomposite).
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The iterations for the tasks with strongly anisotropic material (HET2) and with

different nonuniformity of grids are presented in Figure 7. We can see that the

aggregations AG2, AG3 and AG4 give similar convergence. Only in the case of

the strong nonuniformity, the aggregation AG4 gives perceptibly better convergence.

However, in all three cases, the convergence is significantly better than in the case

of the classical aggregation AG1.
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Figure 7. (a) HET2-UN task, (b) HET2-NUN1 task, (c) HET2-NUN2 task for geocomposite
problem.

Similarly, we compared the graphs for the tasks with strong nonuniformity for

different level of heterogeneity (see Figure 8). The results are similar to the results

presented in Figure 7, but in this case the aggregation AG4 gives perceptibly better

convergence in all three cases.
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Figure 8. (a) HOM-NUN2 task, (b) HET1-NUN2 task, (c) HET2-NUN2 task for geocom-
posite problem.

(b) The second model problem comes from the Äspö Pillar Stability Experi-

ment ([1]). The domain contains a long tunnel with two large holes (see Figure 5 (b))

in homogeneous rock (E = 55 000MPa, ν = 0.25). The constant pressure is pre-

scribed on the upper side of the domain, the normal zero displacements are pre-

scribed on the other sides. The grid is more complicated (see Figure 5(c)) with the

detail around the holes) and contains 295× 313× 291 nodes (80 608 455 unknowns).

We tested two coarse grids—31× 31× 31 nodes (89 373 unknowns) and 61× 61× 61

nodes (680 943 unknowns). For the coarse grid 31× 31× 31 we tested two variants—

variant A with relative accuracy of the residuals for the inner iterations ε = 0.001,

variant B with ε = 0.1. The results of numerical tests are presented in Table 6.
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The number of outer iterations is in the upper part of the row, the number of inner

iterations is in the lower part of the row.

coarse grid without aggreg AG1 AG2 AG3 AG4
31× 31× 31 3501 1260 1028 1028 962

variant A – 67608 52364 191629 181573
31× 31× 31 3501 1287 1124 1066 984

variant B – 5352 5671 23958 20186
61× 61× 61 3501 926 739 736 718

– 67814 87954 246010 251942

Table 6. Number of outer and inner iterations for various types of aggregation (Äspö prob-
lem).

The corresponding graphs are presented in Figure 9.

The results show that the efficiency of the overlapping aggregation technique is not

so good as in the case of rectangular grids in the geocomposite problem. Äspö model

contains a long horizontal tunnel and two vertical holes. Using the structural grid

for this problem generates elements that are not optimal. The stiffness matrix is ill-

conditioned. The aggregated matrix is also ill-conditioned and the condition number

depends on the type of aggregation (see Table 6—the numbers of inner iterations for

AG2 and AG3).

6. Conclusion

We present the smoothed overlapping aggregation technique, where the smooth-

ing is based on a generalization of the aggregation for fully compatible FE spaces

formed on structural grids. The numerical tests show that the overlapping aggre-

gations give good results in the case of rectangular grids, where both the original

and the index grids are similar (and rectangular). This type of grids is typical in

modelling of geocomposites, where the grids are prepared using computer tomog-

raphy. For FE modelling of an area with tunnels, the use of structural grids gives

very complicated grids and corresponding stiffness matrices are ill-conditioned. In

this case, the index grid does not sufficiently correspond to the original grid. The

grids are qualitatively quite different. The numerical tests show better results for

the overlapping aggregations than for the classical aggregation technique. However,

the improvement is not significant enough. The required improvement of conver-

gence even under strong heterogeneity using the overlapping aggregation technique

on structural grids is achieved if the grids are rectangular or close to rectangular.
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Figure 9. (a) Variant A with inner relative accuracy ε = 0.001, (b) Variant A with inner
relative accuracy ε = 0.1, (c) Variant B with inner relative accuracy ε = 0.001
for the Äspö problem.
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