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Abstract. The paper deals with two mathematical models of predator-prey type where
a transmissible disease spreads among the predator species only. The proposed models are
analyzed and compared in order to assess the influence of hidden and explicit alternative
resource for predator. The analysis shows boundedness as well as local stability and trans-
critical bifurcations for equilibria of systems. Numerical simulations support our theoretical
analysis.
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1. Introduction

Ecology is an area of biology that seeks to understand the relationships existing

between living beings in a given environment and to ensure the maintenance of

ecological balance. To protect species from extinction it is fundamental to understand

the interaction dynamics between different populations, usually related through food

links [11], [2], [9], [15]. Important tools used to investigate the dynamics among

populations are mathematical models that seek to describe this type of interaction.

As an instance we can cite the dynamics of predator-prey type biological systems [10],

[16], [6], whose scientific foundations provide solid results that allow the expansion

of research in the area [5], [14], [17], [1].
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In this work we extend the results of earlier investigations on predators feeding

on a main resource and on an additional prey, when the latter is implicitly and

explicitly modeled in the system [3]. For this case, two mathematical models were

proposed and analyzed to elucidate the influence on a generalist predator of its

hidden and explicit resources. Boundedness of the system’s trajectories, feasibility,

local and global stabilities of the equilibria for both models were established, as well

as possible local bifurcations. The findings indicated that the relevant behaviour of

the system, including switching of stability, extinction and persistence of the involved

populations, depends mainly on the reproduction rate of the favorite prey. To achieve

full ecosystem survival some balance between the respective grazing pressures exerted

by the predator on the prey populations needs to be maintained, while higher grazing

pressure just on one species always leads to its extinction.

In addition, we investigated also when the prey is subject to a transmissible dis-

ease [4]. In the same way, two mathematical models of predator-prey systems where

a transmissible disease spreads only among the prey species were proposed, analyzed

and compared in order to assess the influence of hidden or explicit resources for the

predator. The predator is assumed to be a generalist one in the first model and

a specialist one on two prey species in the second one. Existence and boundedness

of the solutions of the models were established, as well as local and global stability

and bifurcations. Comparison between the results of these models showed that the

relevant ecosystem behaviour, including stability switching, extinction and persis-

tence for any species depends on four important parameters, viz the reproduction

rate and the infection rate of the main prey, the mortality rate of infected prey and

the reproduction rate of the alternative prey. Again two models are here proposed to

investigate a similar situation. However, now the epidemics affects the predators, as

in [7], [8]. We investigate the dynamics between predator and prey in two different

scenarios. In the first one, we consider a generalist predator that has two different

prey for its own survival, the main prey and an alternative one which is not explicitly

built in as a model variable. In the second scenario, the predator becomes a type

of specialist with only two explicit preys. The results of [3] show that the grazing

pressure on the preferred prey and carrying capacity of the predator determine the

stable coexistence of prey and predator when the alternative resource is implicit.

The paper is organized as follows: the mathematical models are formulated in

Section 2. The boundedness of both systems is discussed in Section 3. The existence

of equilibria and the stability are examined in Section 4 and the theoretical results

for bifurcations are discussed in Section 5. The numerical simulations of Section 6

give detailed results about the onset of bifurcations. In Sections 7 and 8 we compare

the models and their results, respectively. Transcritical bifurcations present in both

models are illustrated with help of numerical examples.
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2. Basic assumptions and models formulation

This ecoepidemic model considers the following three populations: the prey X ,

the healthy predator population Z and the infected predators W . The model with

the alternative food supply, in which the prey population is represented by Y , is

denoted [ep hp], where “ep” denotes ecoepidemic in predator and “hp” denotes the

hidden prey that substitutes resource not explicitly modeled in the equations [3]; it

is well known in the literature, see Chapter 3 of [12]:

(2.1)
dX

dt
= rX

(

1−
X

K

)

− aZX − gXW,

dZ

dt
= uZ

(

1−
Z +W

L

)

+ eX(aZ + gW )− βZW,

dW

dt
= βZW − νW.

Now, we consider a disease-affected predator, which is specialist for two prey species.

The model in this case is denoted by [ep ep] where the first “ep” denotes ecoepidemic

in predator and the second denotes explicit prey:

(2.2)
dX

dt
= rX

(

1−
X

K

)

− aZX − gXW,

dY

dt
= sY

(

1−
Y

H

)

− bZY − κYW,

dZ

dt
= −mZ2 + eZ(aX + bY ) + eW (gX + κY )− βZW,

dW

dt
= βZW − νW.

In both models all the parameters are assumed to be nonnegative. Their biological

meaning is rather obvious, as these are kind of standard models: r, u and s are growth

rates, K, L, H denote carrying capacities, a, g, b and κ are hunting rates, β is the

disease horizontal transmission rate, ν the natural plus disease-induced mortality,

m is the predators’ mortality rate, e is the conversion factor, i.e., the fraction of

captured prey that is used to produce new predators. In particular, note that for the

latter, if the biomass is measured in kilograms and in any case taking into account

that the whole prey is never entirely converted into predators’ mass, we take

(2.3) e 6 1.

The Jacobians are

(2.4) J [ep hp] =







J
[ep hp]
11 −aX −gX

aeZ + egW J
[ep hp]
22 −

u

L
Z + egX − βZ

0 βW βZ − ν
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with

J
[ep hp]
11 = r −

2r

K
X − aZ − gW, J

[ep hp]
22 = u−

2u

L
Z −

u

L
W + aeX − βW

and

(2.5) J [ep ep] =









J
[ep ep]
11 0 −aX −gX

0 J
[ep ep]
22 −bY −κY

aeZ + egW ebZ + eκW J
[ep ep]
33 egX + eκY − βZ

0 0 βW βZ − ν









with

J
[ep ep]
11 = r −

2r

K
X − aZ − gW, J

[ep ep]
22 = s−

2s

H
Y − bZ − κW,

J
[ep ep]
33 = −2mZ + eaX + ebY − βW,

respectively.

The first equation of model (2.1) describes the healthy prey propulation dynamics.

The first term on the right-hand side expresses logistic growth with r being the per

capita net reproduction rate and K the environment carrying capacity. The second

and third terms describe the process, where the healthy individual is hunted by

healthy predator Z and infected predator W , respectively. The second equation

of model (2.1) contains the dynamics of the healthy predator, that in absence of

prey X has an alternative resource, which is hidden in this model. It is implicitly

represented in the model by the carrying capacity L, whereas the predators per

capita net reproduction rate is u. The term eX(aZ + gW ) expresses the increase

of the predator Z population due to successful hunting of the prey by healthy and

infected predators, respectively. The term βZW models the infection process of

susceptible predators by contact with other infected individuals. The third equation

of model (2.1) describes the infected predatorW evolution, recruited as explained in

the previous equation and subject to disease-related mortality ν.

The first and fourth equations of model (2.2) represent the healthy prey X and

infected predator W dynamics. They are the same as for model (2.1). The second

equation of model (2.2) describes the alternative prey population dynamics which

now becomes an explicit variable of the system.

The first term on the right-hand side expresses logistic growth with per capita net

reproduction rate s and carrying capacity H . The second and third terms model the

process, where the individual of population Y is hunted by healthy predator Z and

infected predator W , respectively.

The third equation of model (2.2) describes the healthy predator population dy-

namics. In this equation, the first term on the right-hand side assumes mortality
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in the quadratic form −mZ2, since this term is related to the intraspecific compe-

tition term −uL−1Z2 of the system (2.1). Predators mortality clearly occurs in the

absence of both their food resources X and Y , because in this model the predator

is assumed to be a specialist on both of them. The term eZ(aX + bY ) corresponds

to the population increase of predator Z due to hunting the prey X and Y . Finally,

the term βZW accounts for individuals of the population Z that become infected.

3. Boundedness of models

In order to have a well-posed model, the system’s trajectories must be contained

in a compact set.

First of all, note that the populations cannot become negative, because they start

from positive initial values, for obvious biological reasons, and systems (2.1) and (2.2)

are homogeneous, so that the coordinate subspaces are solution trajectories and, by

the uniqueness theorem, they cannot be crossed by other trajectories. Indeed Ẋ = 0

if X(0) = 0, Ẏ = 0 if Y (0) = 0, Ż > 0 if Z(0) = 0, Ẇ = 0 if W (0) = 0 and when

nonvanishing, the initial conditions should always be positive to make biological

sense.

Proposition 3.1. Consider the total environment population ϕ(t) = X(t)+Z(t)+

W (t), in model (2.1). Then there exists η ∈ R+ for which

(3.1) ϕ(t) 6
(

ϕ(0)−
M

η

)

e−ηt +
M

η
6 max

{

ϕ(0),
M

η

}

.

Thus for model (2.1) the solutions are always nonnegative.

P r o o f. Taking an arbitrary 0 < η < ν, summing the equations in model (2.1),

we obtain

(3.2)
dϕ(t)

dt
= rX

(

1−
X

K

)

+ uZ
(

1−
Z +W

L

)

− νW

+ (e− 1)(aXZ + gXW ).

Recalling (2.3), the last term in (3.2) can be dropped, as well as the term −uL−1WZ,

to obtain:

(3.3)
dϕ(t)

dt
6 rX

(

1−
X

K

)

+ uZ
(

1−
Z

L

)

− νW.
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Then, adding ηϕ(t) and using the definition of ϕ on both sides of the inequality (3.3)

we find the estimate

dϕ(t)

dt
+ ηϕ(t) 6 rX

(

1−
X

K
+
η

r

)

+ uZ
(

1−
Z

L
+
η

u

)

+ (η − ν)W 6 p1(X) + p2(Z),

p1(X) = rX
(

1−
X

K
+
ν

r

)

,

p2(Z) = uZ
(

1−
Z

L
+
ν

u

)

.

The functions p1(X) and p2(Z) are concave parabolae, with maxima located at X
∗,

Z∗, and corresponding maximum values

M1 = p1(X
∗) =

rK

4

(

1 +
ν

r

)2

, M2 = p2(Z
∗) =

uL

4

(

1 +
ν

u

)2

.

Thus,
dϕ(t)

dt
+ ηϕ(t) 6M, M1 +M2 =M.

Integrating the differential inequality, we find (3.1). From this result, since 0 6

X,Z,W 6 ϕ, the boundedness of the original ecosystem populations is immediate.

From the nonnegativity of the trajectories, remarked before the proof, and this result,

the solution of model (2.1) remains bounded and the trajectories remain nonnegative.

�

Proposition 3.2. Consider the total environment population ψ(t) = X(t) +

Y (t) + Z(t) +W (t) in model (2.2). Then there exists η1 ∈ R+ for which

(3.4) ψ(t) 6
(

ϕ(0)−
M

η1

)

e−η1t +
M

η1
6 max

{

ψ(0),
M

η1

}

.

Thus for model (2.2) the solutions are always nonnegative.

P r o o f. We proceed in a way similar to that in the proof of Proposition 3.1.

Taking an arbitrary 0 < η1 < ν, summing the equations in model (2.2), we obtain

(3.5)
dψ(t)

dt
= rX

(

1−
X

K

)

+ sY
(

1−
Y

H

)

−mZ2 − νW

+ (e − 1)(aXZ + bY Z + gXW + κYW ).

Since e 6 1 by (2.3), from (3.5) we can obtain

(3.6)
dψ(t)

dt
6 rX

(

1−
X

K

)

+ sY
(

1−
Y

H

)

−mZ2 − νW.
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Adding η1ψ(t) on both sides of inequality (3.3) we find the estimate

dψ(t)

dt
+ η1ψ(t) 6 rX

(

1−
X

K
+
η1
r

)

+ sY
(

1−
Y

H
+
η1
s

)

+ Z(η1 −mZ) + (η1 − ν)W 6 q1(X) + q2(Y ) + q3(Z),

q1(X) = rX
(

1−
X

K
+
ν

r

)

,

q2(Z) = sY
(

1−
Y

H
+
ν

s

)

,

q3(Z) = Z(ν −mZ).

The functions q1(X), q2(Y ) and q3(Z) are concave parabolae, with maxima located

at X∗, Y ∗, Z∗, and the corresponding maximum values

M1 = q1(X
∗) =

rK

4

(

1+
ν

r

)2

, M2 = q2(Y
∗) =

sH

4

(

1+
ν

s

)2

, M3 = q3(Z
∗) =

ν2

4m
.

Thus,
dψ(t)

dt
+ η1ψ(t) 6M, M1 +M2 +M3 =M.

Integrating the differential inequality, we find (3.4). From this result, since 0 6

X,Y, Z,W 6 ψ, the boundedness of the original ecosystem populations is immediate.

�

4. Equilibria and stability analysis

The purely demographic model (2.1). As illustrated in the following propo-

sitions, there are six equilibria for the model (2.1), two of which are unconditionally

unstable while the remaining four are stable subject to suitable conditions on the

system parameters. We are concerned with two main issues in this respect, namely

feasibility and stability of these stationary points. The former refers to the fact that

the population values are all nonnegative. This is a key issue for biological reasons.

As for the latter, stability ensures that trajectories originating nearby an equilbrium,

do indeed tend to it.

Proposition 4.1. The trivial equilibrium point P
[ep hp]
1 = (0, 0, 0) and the point

P
[ep hp]
2 = (K, 0, 0) are always feasible and unstable.

P r o o f. Since the the system (2.1) is homogeneous, the origin P
[ep hp]
1 is a solu-

tion. The eigenvalues of the Jacobian matrix (2.4) evaluated at P
[ep hp]
1 are r, u, −ν.

As two eigenvalues are positive, the origin is unstable.

For Z =W = 0, the equilibrium equations of (2.1) give X2 = K, i.e., the equilib-

rium P
[ep hp]
2 , which is always feasible. The eigenvalues of the Jacobian evaluated at

P
[ep hp]
2 are −r, −ν, u+ aeK > 0, again showing instability. �
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Proposition 4.2. The healthy predator-only point P
[ep hp]
3 = (0, L, 0) is always

feasible. It is stable for

(4.1) r < aL, ν > βL.

P r o o f. For X =W = 0 in the system (2.1) we obtain the equilibrium P
[ep hp]
3 ,

which is always feasible. The Jacobian (2.4) at P
[ep hp]
3 becomes

J
[ep hp]
P3

=





r − aL 0 0

aeL −u −(u+ βL)

0 0 βL− ν





and provides explicitly the eigenvalues, one of which −u is negative, while the re-

maining ones give conditions (4.1). �

Proposition 4.3. The disease-free point

P
[ep hp]
4 =

(urK − auKL

a2eKL+ ur
,
aerKL+ urL

a2eKL+ ur
, 0
)

is feasible for

(4.2) r > aL,

and stable when the following condition holds:

(4.3) β < ν
ur + a2eKL

urL + aerKL
.

P r o o f. The above equilibrium expression is easily obtained by setting W = 0

in the system (2.1). The inequality X
[ep hp]
4 > 0 provides the feasibility condition

(4.2). The Jacobian matrix (2.4) evaluated at P
[ep hp]
4 gives one explicit eigenvalue,

from which (4.3) follows. In addition, since

−tr
(

J
[ep hp]

P4

)

=
r

K
X

[ep hp]
4 +

u

L
Z

[ep hp]
4 > 0

and

det
(

J
[ep hp]

P4

)

=
( ru

KL
+ a2e

)

X
[ep hp]
4 Z

[ep hp]
4 > 0,

the Routh-Hurwitz conditions on the remaining minor

J
[ep hp]

P4 =

(

−rK−1X
[ep hp]
4 −aX

[ep hp]
4

aeZ
[ep hp]
4 −uL−1Z

[ep hp]
4

)

are always satisfied, and thus (4.3) is the only condition for stability. �
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Proposition 4.4. The point

P
[ep hp]
5 =

(

0,
ν

β
,
uβL− uν

βu+ β2L

)

is feasible if

(4.4) ν 6 βL

and stable for

(4.5) urβ + rβ2L+ guν < auν + aνβL + guβL.

P r o o f. This equilibrium point is feasible for W
[ep hp]
5 > 0 which gives explic-

itly (4.4). One eigenvalue gives the stability condition (4.5), while for the remaining

minor

J
[ep hp]

P5 =







−
uν

βL
−
uν

βL
− ν

uβL− uν

u+ βL
0







the Routh-Hurwitz conditions are unconditionally satisfied:

−tr(J
[ep hp]

P5 ) =
uν

βL
> 0, det

(

J
[ep hp]

P5

)

= β
( u

L
+ β

)

Z [ep hp]W [ep hp] > 0.

�

Proposition 4.5. Coexistence, P
[ep hp]
6 = (X

[ep hp]
6 , Z

[ep hp]
6 ,W

[ep hp]
6 ), whose

population values are given below (4.8), exists as a double equilibrium for (4.9),

(4.10) and (4.11), or as a single point whenever (4.9) and (4.12) are satisfied, with

the additional feasibility condition

(4.6) β >
aνK + rβX

[ep hp]
6

rK
,

and it is stable for

(4.7) K >
(aνβL + ugβL+ auν)K + (aegβKL+ rβ2L+ ruβ)X

[ep hp]
6

rβ2L+ 2guν + ruβ
.
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P r o o f. Explicitly, the coordinates of P
[ep hp]
6 are

(4.8) Z
[ep hp]
6 =

ν

β
, W

[ep hp]
6 =

r

g
−
aν

gβ
−

r

gK
X

[ep hp]
6 ,

where X
[ep hp]
6 is a root of the quadratic function

Φ(X
[ep hp]
6 ) = α2(X

[ep hp]
6 )2 + α1X

[ep hp]
6 + α0

with

α2 = −
er

K
, α1 = er +

urν

gβKL
+

rν

gK
, α0 =

uν

β
−
rν

g
+
auν2

gβ2L
−
uν2

β2L
−
urν

gβL
+
aν2

gβ
.

Besides, P
[ep hp]
6 is feasible if W

[ep hp]
6 > 0, i.e., (4.6), and for X

[ep hp]
6 > 0 we have

conditions for two positive roots

∆ = α2
1 − 4α2α0 > 0, −α1α

−1
2 > 0, α0α

−1
2 > 0,

which are equivalent to

rν2β2L+ 4aegν2βKL2 + 4eg2uvβKL2 + e2g2rβ2K2L2 + 2ruv2βL(4.9)

+4aeguν2KL+ ru2ν2 > 2egrνβ2KL2 + 4eg2uν2KL+ 2egruνβKL,

L(egβK + νβ) + uν

egβL
> 0(4.10)

and

(4.11) urβ + rβ2L+ guν > auν + aνβL + guβL.

For one positive root we have the conditions

∆ = α2
1 − 4α2α0 > 0, α0α

−1
2 < 0,

which correspond to (4.9) again, and

(4.12) urβ + rβ2L+ guν < auν + aνβL + guβL,

respectively. The Jacobian matrix of P
[ep hp]
6 is

J
[ep hp]
P6

=





−rK−1X
[ep hp]
6 −aX

[ep hp]
6 −gX

[ep hp]
6

eaνβ−1 + egW
[ep hp]
6 J

[ep hp]
22 J

[ep hp]
23

0 βW
[ep hp]
6 0
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with

J
[ep hp]
22 = u−

2uν

βL
+ eaX

[ep hp]
6 −

( u

L
+ β

)

W
[ep hp]
6 ,

J
[ep hp]
23 = − ν −

uν

βL
+ egX

[ep hp]
6 .

Requiring the condition J
[ep hp]
22 < 0, that is, (4.7), the principal minors of −J

[ep hp]
P6

are all positive:

r

K
X6 > 0, −

r

K
J
[ep hp]
22 X

[ep hp]
6 + aX

[ep hp]
6

(eaν

β
+ egW

[ep hp]
6

)

> 0,

eagνX
[ep hp]
6 W

[ep hp]
6 + eg2βX

[ep hp]
6 (W

[ep hp]
6 )2

+
urβ

KL
X

[ep hp]
6 Z

[ep hp]
6 W

[ep hp]
6 +

r

K
β2X

[ep hp]
6 Z

[ep hp]
6 W

[ep hp]
6

−
egrβ

K
X

[ep hp]
6 W

[ep hp]
6 > 0.

Thus, P6
[ep hp] is feasible and stable, if (4.6), (4.9), (4.10), (4.11), (4.12), and (4.7)

hold. �

In Table 1 we summarize the equilibria of model (2.1).

Equilibria Admissibility Stability

P
[ep hp]
1 always unstable

P
[ep hp]
2 always unstable

P
[ep hp]
3 always r < aL, ν > βL

P
[ep hp]
4 r > aL (4.3)

P
[ep hp]
5 ν 6 βL (4.5)

P
[ep hp]
6 (4.6), (4.9), (4.10), (4.11) – 2 positive roots (4.7)

(4.6), (4.9), (4.10), (4.12) – 1 positive root

Table 1. Behaviour and conditions of feasibility and stability of equilibria for model (2.1).

Model (2.2). The local stability analysis of model (2.2) gives 11 equilibria, four

of which are unconditionally unstable, one unfeasible and six are conditionally stable.

The details follow.

Proposition 4.6. The equilibria P
[ep ep]
1 = (0, 0, 0, 0), P

[ep ep]
2 = (K, 0, 0, 0),

P
[ep ep]
3 = (0, H, 0, 0), P

[ep ep]
4 = (K,H, 0, 0) are feasible and unstable and the equi-

librium P
[ep ep]
5 = (0, 0, νβ−1,−mνβ−2) is unfeasible.

P r o o f. For X = Y = Z =W = 0 in the system (2.2) we obtain that the origin

P
[ep ep]
1 exists and is feasible. The eigenvalues of the Jacobian matrix (2.5) evaluated

at P
[ep ep]
1 are −ν, r, s, 0. As two eigenvalues are positive, the origin is unstable.
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For Y = Z = W = 0 in the system (2.2), we obtain the equilibrium P
[ep ep]
2 ,

which exists and is feasible. The eigenvalues of the Jacobian matrix (2.5) evaluated

at P
[ep ep]
2 are −r, −ν, s, eaK. As two eigenvalues are positive, P

[ep ep]
2 is unstable.

For X = Z =W = 0 in the system (2.2) we obtain the equilibrium P
[ep ep]
3 , which

exists and is feasible. The eigenvalues of the Jacobian matrix (2.5) evaluated at

P
[ep ep]
3 are −s, −ν, r, ebH . As two eigenvalues are positive, P

[ep ep]
3 is unstable.

For Z =W = 0 in the system (2.2) we obtain the equilibrium P
[ep ep]
4 , which exists

and is feasible. The eigenvalues of the Jacobian matrix (2.5) evaluated at P
[ep ep]
4

are −ν, −s, −r, eaK + ebH . As one eigenvalue is positive, P
[ep ep]
4 is unstable.

Finally, for X = Y = 0 in the system (2.2) we obtain the equilibrium P
[ep ep]
5 =

(0, 0, νβ−1,−mνβ−2) which is unfeasible. �

Proposition 4.7. The point

P
[ep ep]
6 =

( mrK

a2eK +mr
, 0,

aerK

a2eK +mr
, 0
)

is always feasible and stable for

(4.13) β <
mrν + a2eνK

aerK
, b >

mrs+ a2esK

aerK
.

P r o o f. Considering Y =W = 0 in the system (2.2), we obtain the equilibrium

P
[ep ep]
6 =

( mrK

a2eK +mr
, 0,

aerK

a2eK +mr
, 0
)

.

Two eigenvalues of the Jacobian (2.5) evaluated at P
[ep ep]
6 are explicit, giving the

stability conditions (4.13). No other conditions arise since −J
[ep ep]

P6
with

J
[ep ep]

P6
=

(

− r
K
X

[ep ep]
6 −aX

[ep ep]
6

aeZ
[ep ep]
6 −mZ

[ep ep]
6

)

,

is positive definite, because its principal minors are

r

K
X

[ep ep]
6 > 0,

rm

K
X

[ep ep]
6 Z

[ep ep]
6 + a2eX

[ep ep]
6 Z

[ep ep]
6 > 0.

�

Proposition 4.8. The point

P
[ep ep]
7 =

(

0,
msH

b2eH +ms
,

besH

b2eH +ms
, 0
)

is always feasible and stable whenever

(4.14) β <
msν + b2eνH

besH
, a >

mrs+ b2erH

besH
.
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P r o o f. Substituting X =W = 0 in the system (2.2), we obtain the components

of P
[ep ep]
7 by solving the equilibrium equations. It is stable for the conditions (4.14),

given by two explicit eigenvalues. Nothing else is required, because −J
[ep ep]

P7
is

positive definite with

J
[ep ep]

P7
=

(

− s
H
Y

[ep ep]
7 −bY

[ep ep]
7

ebZ
[ep ep]
7 −mZ

[ep ep]
7

)

,

since its principal minors are

s

H
Y

[ep ep]
7 > 0,

sm

H
Y

[ep ep]
7 Z

[ep ep]
7 + b2eY

[ep ep]
7 Z

[ep ep]
7 > 0.

�

Proposition 4.9. The point P
[ep ep]
8 = (X

[ep ep]
8 , Y

[ep ep]
8 , Z

[ep ep]
8 , 0) with

X
[ep ep]
8 =

b2erHK +mrsK − abesHK

a2esK + b2erH +mrs
, Z

[ep ep]
8 =

aersK + bersH

a2esK + b2erH +mrs
,

Y
[ep ep]
8 =

a2esHK +mrsH − aberHK

a2esK + b2erH +mrs

is feasible if

a 6
b2erH +mrs

besH
,(4.15)

b 6
a2esK +mrs

aerK
,(4.16)

and is conditionally stable for

(4.17) β <
a2esνK + b2erνH +mrsν

aersK + bersH
.

P r o o f. P
[ep ep]
8 is obtained by setting W = 0 in the system (2.2). It is feasible

for X
[ep ep]
8 > 0, giving (4.15), and for Y

[ep ep]
8 > 0, giving (4.16). One explicit

eigenvalue of the Jacobian matrix gives the stability condition (4.17), No further

stability conditions arise, because −J
[ep ep]

P8
is positive definite, where

J
[ep ep]

P8
=













−
r

K
X

[ep ep]
8 0 −aX

[ep ep]
8

0 −
s

H
Y

[ep ep]
8 −bY

[ep ep]
8

aeZ8 ebZ
[ep ep]
8 −mZ

[ep ep]
8













.

Indeed, its principal minors are

r

K
X

[ep ep]
8 > 0,

rs

HK
X

[ep ep]
8 Y

[ep ep]
8 > 0,

(mrs

HK
+
a2es

H
+
b2er

K

)

X8Y8Z8 > 0.

�
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Proposition 4.10. The main prey-free equilibrium point

P
[ep ep]
9 = (0, Y

[ep ep]
9 , Z

[ep ep]
9 ,W

[ep ep]
9 )

is conditionally feasible, see (4.18), (4.20) below, and stable, (4.22).

P r o o f. We have explicitly

Z
[ep ep]
9 = νβ−1, Y

[ep ep]
9 = H −

bνH

sβ
−
κH

s
W

[ep ep]
9 ,

and W
[ep ep]
9 is given by the roots of the quadratic function

Φ(W
[ep ep]
9 ) = α2(W

[ep ep]
9 )2 + α1W

[ep ep]
9 + α0

with

α2 = −
eκ2H

s
, α1 = −

2beνκH

sβ
+ eκH − ν, α0 = −

b2eν2H

sβ2
+
beνH

β
−
mν2

β2
.

The point P
[ep ep]
9 is feasible if Y

[ep ep]
9 > 0, which becomes

(4.18) s >
bν

β
+ κW

[ep ep]
9 ,

and also, two positive values for W
[ep ep]
9 are obtained if

∆ = α2
1 − 4α2α0 > 0, −α1α

−1
2 > 0, α0α

−1
2 > 0,

which are equivalent to

(4.19) ν <
e2sκ2β2H2 + 4beν2βκH + β2sν2

4emνκH + 2esβ2κH

and

(4.20) ν <
esκβH

sβ + 2beκH
, β <

b2eνH +msν

besH
,

respectively. For one positive root W
[ep ep]
9 , instead of the above the following con-

ditions must hold:

∆ = α2
1 − 4α2α0 > 0, α0α

−1
2 < 0,
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which are equivalent to the first condition (4.19) and

(4.21) β >
b2eνH +msν

besH
.

Besides, P
[ep ep]
9 is stable for

(4.22) r <
aν

β
+ gW

[ep ep]
9

given by an explicit eigenvalue of the Jacobian matrix.

In addition,

J
[ep ep]

P9
=













−
s

H
Y

[ep ep]
9 −bY

[ep ep]
9 −κY

[ep ep]
9

beν

β
+ eκW

[ep ep]
9 J

[ep ep]

22 J
[ep ep]

23

0 βW
[ep ep]
9 0













,

with

J
[ep ep]

22 = J
[ep ep]
33 , J

[ep ep]

23 = J
[ep ep]
34 ,

is negative definite, if we require the conditions J
[ep ep]
33 < 0, J

[ep ep]
34 < 0, i.e.,

(4.23) b <
2mν

eβH
+
b2ν

sβ
+
(bκ

s
+

β

eH

)

W
[ep ep]
9

and

(4.24) e <
ebν

sβ
+

ν

κH
+
eκ

s
W

[ep ep]
9 ,

respectively. Indeed, in this way the principal minors of −JP9 turn out to be all

positive,

s

H
Y

[ep ep]
9 > 0,

s

H
J
[ep ep]

22 Y
[ep ep]
9 + bY

[ep ep]
9

(beν

β
+ eκW

[ep ep]
9

)

> 0,

(βκY
[ep ep]
9 W

[ep ep]
9 )J

[ep ep]

22 +
sβ

H
Y

[ep ep]
9 W

[ep ep]
9 J

[ep ep]

23 > 0.

�

Proposition 4.11. The equilibrium point

P
[ep ep]
10 = (X

[ep ep]
10 , 0, Z

[ep ep]
10 ,W

[ep ep]
10 )

is unique and feasible if the conditions (4.25) and (4.28) hold; it is conditionally

stable when (4.29), (4.30), and (4.31) hold.
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P r o o f. Setting Y = 0 in the system (2.2), we obtain the population values

X
[ep ep]
10 = K −

aνK

rβ
−
gK

r
W

[ep ep]
10 , Z

[ep ep]
10 =

ν

β
,

where W
[ep ep]
10 is a root of the quadratic function

Φ(W
[ep ep]
10 ) = α2(W

[ep ep]
10 )2 + α1W

[ep ep]
10 + α0

with

α2 = −
eg2K

r
, α1 = egK −

2aegνK

rβ
− ν, α0 =

aeνK

β
−
a2eν2K

rβ2
−
mν2

β2
.

For feasibility we need to require X
[ep ep]
10 > 0, that is,

(4.25) r >
aν

β
+ gW

[ep ep]
10 ,

and W
[ep ep]
10 > 0. In this case, two positive roots arise if

∆ = α2
1 − 4α2α0 > 0, −α1α

−1
2 > 0, α0α

−1
2 > 0,

which are equivalent to

ν <
rν2β2 + 4aegν2βK + e2g2rβ2K2

4eg2mνK + 2egrβ2K
,(4.26)

β >
rνβ + 2aegνK

egrK
, β <

mrν + a2eνK

aerK
,(4.27)

respectively. One positive root is found whenever the conditions

∆ = α2
1 − 4α2α0 > 0, α0α

−1
2 < 0

hold, which are equivalent to (4.25) and

(4.28) β >
mrν + a2eνK

aerK
.

One explicit eigenvalue of the Jacobian at P
[ep ep]
10 is J

[ep ep]
22 , which must be neg-

ative for stability, giving

(4.29) s <
bν

β
+ κW

[ep ep]
10

given by one explicit eigenvalue of J
[ep ep]
P10

.
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In addition,

J
[ep ep]

P10
=













−
r

K
X

[ep ep]
10 −aX

[ep ep]
10 −gX

[ep ep]
10

aeν

β
+ egW

[ep ep]
10 J

[ep ep]
33 egX

[ep ep]
10 − ν

0 βW
[ep ep]
10 0













is negative definite, if we require the conditions J
[ep ep]
33 < 0 and J

[ep ep]
34 < 0, that is,

(4.30) a <
2mν

eβK
+
a2ν

rβ
+
(ag

r
− β

)

W
[ep ep]
10

and

(4.31) ν > egX
[ep ep]
10 ,

because its principal minors become

r

K
X

[ep ep]
10 > 0,

r

K
J
[ep ep]
33 X10 + aX

[ep ep]
10

(aeν

β
+ egW

[ep ep]
10

)

> 0,

gβX
[ep ep]
10 W

[ep ep]
10

(aeν

β
+ egW

[ep ep]
10

)

+
rβ

K
X

[ep ep]
10 W

[ep ep]
10 (ν − egX

[ep ep]
10 ) > 0.

�

Proposition 4.12. The coexistence

P
[ep ep]
11 = (X

[ep ep]
11 , Y

[ep ep]
11 , Z

[ep ep]
11 ,W

[ep ep]
11 )

is unique if (4.32) and (4.35) hold and is conditionally stable for (4.36).

P r o o f. For the coexistence P
[ep ep]
11 we have

Z
[ep ep]
11 = νβ−1, X

[ep ep]
11 = K −

aνK

rβ
−
gK

r
W

[ep ep]
11 ,

Y
[ep ep]
11 = H −

bνH

sβ
−
κH

s
W

[ep ep]
11

with W
[ep ep]
11 given by the root of the quadratic function

Φ(W
[ep ep]
11 ) = α2(W

[ep ep]
11 )2 + α1W

[ep ep]
11 + α0,
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with

α2 = −
eg2K

r
−
eκ2H

s
, α1 = eκH + egK − ν −

2beνκH

sβ
−

2aegνK

rβ
,

α0 =
beνH

β
+
aeνK

β
−
mν2

β2
−
a2eν2K

rβ2
−
b2eν2H

sβ2
.

The equilibrium P
[ep ep]
11 is feasible if X

[ep ep]
11 > 0 and Y

[ep ep]
11 > 0, i.e., for

(4.32) r >
aν

β
+ gW

[ep ep]
11 , s >

bν

β
+ κW

[ep ep]
11 ,

respectively, and if W
[ep ep]
11 > 0. There are two positive roots if

∆ = α2
1 − 4α2α0 > 0, −α1α

−1
2 > 0, α0α

−1
2 > 0,

which are equivalent to

e2rsβ2κ2H2 + 8abe2gν2κKH + 4berν2κβH + 4ae2rνκ2βKH(4.33)

+ 4be2g2sνβKH + 2e2grsκβ2KH + 4aegsν2βK + e2g2rsβ2K

+ rsν2β2 > 4a2e2ν2κ2KH + 4b2e2g2ν2KH + 4be2grνκβKH

+ 4emrν2κ2H + 4ae2gsνκβKH

+ 2ersνκβ2H + 4eg2msν2K + 2egrsνβ2K,

ν <
ersβκH + egrsβK

2berκH + rsβ + 2aegsK
, β <

b2erνH +mrsν + a2esνK

bersH + aersK
,(4.34)

respectively. For one positive root the conditions are

∆ = α2
1 − 4α2α0 > 0, α0α

−1
2 < 0,

or, explicitly, (4.33) and

(4.35) β >
b2erνH +mrsν + a2esνK

bersH + aersK
.

In addition, J
[ep ep]
P11

is negative definite if we require the condition J
[ep ep]
34 < 0

which explicitly becomes

(4.36) egX
[ep ep]
11 + eκY

[ep ep]
11 < ν.
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Indeed, the Jacobian of P
[ep ep]
11 simplifies to

J
[ep ep]
P11

=





















−
r

K
X

[ep ep]
11 0 −aX

[sp ep]
11 −gX

[ep ep]
11

0 −
s

H
Y

[ep ep]
11 −bY

[ep ep]
11 −κY

[ep ep]
11

J
[ep ep]
31 J

[ep ep]
32 −

mν

β
J
[ep ep]
34

0 0 βW
[ep ep]
11 0





















,

with

J
[ep ep]
31 =

aeν

β
+ egW

[ep ep]
11 , J

[ep ep]
32 =

beν

β
+ eκW

[ep ep]
11 ,

J
[ep ep]
34 = egX

[ep ep]
11 + eκY

[ep ep]
11 − ν.

The first three principal minors of J
[ep ep]
P11

are all positive:

r

K
X

[ep ep]
11 > 0,

rs

HK
X

[ep ep]
11 Y

[ep ep]
11 > 0,

X
[ep ep]
11 Y

[ep ep]
11

[(mrs

HK
+
a2es

H
+
b2er

K

) ν

β
+
(aegs

H
+
berκ

K

)

W
[ep ep]
11

]

> 0,

and also the determinant is, as it simplifies to

egs

H

(aν

β
+ gW

[ep ep]
11

)

+
eκr

K

(bν

β
+ κW

[ep ep]
11

)

−
rs

HK
J
[ep ep]
34 > 0.

Thus, then being feasible, P
[ep ep]
11 is stable if (4.36) holds. �

In Table 2 we summarize the behaviour of the equilibria of model (2.2).

5. Theoretical results for bifurcations of models (2.1) and (2.2)

The bifurcations presented in this section were found from the conditions of fea-

sibility and stability of equilibria of the systems (2.1) and (2.2). These conditions

are summarized in Tables 1 and 2. We do not claim that the bifurcations found are

exhaustive.

To study the local bifurcations of the equilibria of models (2.1) and (2.2) we use

the Sotomayor theorem [13].

Proposition 5.1. Consider the continuously differentiable system (2.1), then:

(i) There is a transcritical bifurcation between the equilibria P
[ep hp]
3 and P

[ep hp]
4

when r passes through the critical value r† = aL.

(ii) There is a transcritical bifurcation between the equilibria P
[ep hp]
3 and P

[ep hp]
5

when ν passes through the critical value ν† = βL.
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Equilibria Admissibility Stability

P
[ep ep]
1 always unstable

P
[ep ep]
2 always unstable

P
[ep ep]
3 always unstable

P
[ep ep]
4 always unstable

P
[ep ep]
5 unfeasible

P
[ep ep]
6 always (4.13)

P
[ep ep]
7 always (4.14)

P
[ep ep]
8 (4.15), (4.16) (4.17)

P
[ep ep]
9 (4.18), (4.19), (4.20) – 2 positive roots (4.22), (4.23), (4.24)

(4.18), (4.19), (4.21) – 1 positive root

P
[ep ep]
10 (4.25), (4.26), (4.27) – 2 positive roots (4.29), (4.30), (4.31)

(4.25), (4.26), (4.28) – 1 positive root

P
[ep ep]
11 (4.32), (4.33), (4.34) – 2 positive roots (4.36)

(4.32), (4.33), (4.35) – 1 positive root

Table 2. Behaviour and conditions of feasibility and stability of equilibria for model (2.2).

P r o o f. (i) The equilibrium point P
[ep hp]
3 coincides with the equilibrium P

[ep hp]
4

at the parametric threshold r† = aL, compare the first stability condition (4.1) of

P
[ep hp]
3 and the feasibility condition (4.2) of P

[ep hp]
4 .

The Jacobian matrix of the system (2.1) evaluated at P
[ep hp]
3 and at the para-

metric threshold r† = aL becomes

J
[ep hp]
P3

(r†) =





0 0 0

aeL −u −u− βL

0 0 −ν + βL





and its right and left eigenvectors, corresponding to the zero eigenvalue, are given by

V1 = ϕ1(1, aeL/u, 0)
T and Q1 = ω1(1, 0, 0)

T, where ϕ1 and ω1 are arbitrary nonzero

real numbers. Differentiating with respect to r the right-hand sides of the system

(2.1), we find

fr =





X
[ep hp]
3 (1−X

[ep hp]
3 /K)

0

0



 .

Its Jacobian matrix is

Dfr =







1−
2

K
X

[ep hp]
3 0 0

0 0 0

0 0 0






.
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Calculating D2f , we find

D2f(P, ψ)(V, V )

=















∂2f1
∂X2

ξ21 +
∂2f1
∂Z2

ξ22 +
∂2f1
∂W 2

ξ23 + 2
∂2f1
∂X∂Z

ξ1ξ2 + 2
∂2f1
∂X∂W

ξ1ξ3 + 2
∂2f1
∂Z∂W

ξ2ξ3

∂2f2
∂X2

ξ21 +
∂2f2
∂Z2

ξ22 +
∂2f2
∂W 2

ξ23 + 2
∂2f2
∂X∂Z

ξ1ξ2 + 2
∂2f2
∂X∂W

ξ1ξ3 + 2
∂2f2
∂Z∂W

ξ2ξ3

∂2f3
∂X2

ξ21 +
∂2f3
∂Z2

ξ22 +
∂2f3
∂W 2

ξ23 + 2
∂2f3
∂X∂Z

ξ1ξ2 + 2
∂2f3
∂X∂W

ξ1ξ3 + 2
∂2f3
∂Z∂W

ξ2ξ3















,

where P = (X,Z,W )T, while the components of f = (f1, f2, f3)
T are given by the

right-hand sides of (2.1), ψ represents the parametric thresold and ξ1, ξ2, ξ3 are the

components of the eigenvector V = (ξ1, ξ2, ξ3)
T of the variations in X,Z, and W .

We can thus verify the following three conditions

Q1
Tfr(P

[ep hp]
3 , r†) = 0, Q1

T[Dfr(P
[ep hp]
3 , r†)V1] = ϕ1ω1 6= 0,

QT
1 [D

2f(P
[ep hp]
3 , r†)(V1, V1)] = −ω1ϕ

2
1

(2aL

K
+ a2eL

)

6= 0.

(ii) When the equilibrium point P
[ep hp]
3 coincides with the equilibrium P

[ep hp]
5

at the threshold ν† = βL (compare the second stability condition (4.1) of P
[ep hp]
3

and the feasibility condition (4.4) of equilibrium P
[ep hp]
5 ), the Jacobian matrix of

the system (2.1) evaluated at P
[ep hp]
3 and at the parametric threshold ν† becomes

J
[ep hp]
P3

(ν†) =





r − aL 0 0

aeL −u −u− βL

0 0 0



 .

Its right and left eigenvectors, corresponding to the zero eigenvalue, are given by

V2 = ϕ2(0, 1,−u/(u+βL))
T and Q2 = ω2(0, 0, 1)

T, where ϕ2 and ω2 are any nonzero

real numbers. Differentiating with respect to ν† the right-hand sides of (2.1), we find

fν =





0

0

−W
[ep hp]
3



 ,

and calculating its Jacobian matrix, we get

Dfν =





0 0 0

0 0 0

0 0 −1



 .
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From D2f we can finally verify the following three conditions:

Q2
Tfν(P

[ep hp]
3 , ν†) = 0, Q2

T[Dfν(P
[ep hp]
3 , ν†)V2] = ϕ2ω2

u

u+ βL
6= 0,

QT
2 [D

2f(P
[ep hp]
3 , ν†)(V2, V2)] = −ω2ϕ

2
2

2uβ

u+ βL
6= 0.

Hence all conditons for transcritical bifurcation are satisfied. �

Proposition 5.2. Consider the continuously differentiable system of equations

(2.2), then:

(i) There is a transcritical bifurcation between the equilibria P
[ep ep]
8 and P

[ep ep]
6

when b crosses the critical value b† = (mrs+ a2esK)/(aerK) .

(ii) There is a transcritical bifurcation between the equilibria P
[ep ep]
8 and P

[ep ep]
7

when a passes through the critical value a† = (mrs + b2erH)/(besH).

P r o o f. (i) When the equilibria P
[ep ep]
8 and P

[ep ep]
6 coincide at the parametric

threshold b† = (mrs+ a2esK)/(aerK) (compare the second condition of (4.13) and

the condition (4.16)), the Jacobian of the system (2.1) evaluated at P
[ep ep]
8 and at

the parametric threshold b† is

J
[ep ep]
P8

(b†) =





















−
mr2

mr + a2eK
0 −

amrK

mr + a2eK
−

gmrK

mr + a2eK

0 0 0 0

a2e2rK

mr + a2eK
es −

aemrK

mr + a2eK

egmrK − aerβK

mr + a2eK

0 0 0
−mrν − a2eνK + aerβK

mr + a2eK





















and its right and left eigenvectors, corresponding to the zero eigenvalue are given by

V3 = ϕ3(1,−r/s,−r/(aK), 0)T and Q3 = ω3(0, 1, 0, 0)
T, where ϕ3 and ω3 are any

nonzero real numbers. Differentiating partially the right-hand sides of the system of

equations (2.2) with respect to b, we find

fb =









0

−Y
[ep ep]
8 Z

[ep ep]
8

eY
[ep ep]
8 Z

[ep ep]
8

0









,

and calculating its Jacobian matrix, we get

Dfb =









0 0 0 0

0 −Z
[ep ep]
8 −Y

[ep ep]
8 0

0 eZ
[ep ep]
8 eZ

[ep ep]
8 0

0 0 0 0









.
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From the calculation of D2f the following three conditions are verified:

Q3
Tfb(P

[ep ep]
8 , b†) = 0, Q3

T[Dfb(P
[ep ep]
8 , b†)V3] = ϕ3ω3̺ 6= 0,

QT
3 [D

2fb(P
[ep ep]
8 , b†)(V3, V3)] = −2ω3ϕ

2
3

mr2H + a2erHK + a2er2K

a2esHK
6= 0,

Since the feasibility condition of P
[ep ep]
8 for Y

[ep ep]
8 is given by (4.16), and

̺ =
r(a2esHK − aberHK +mrsH)

aK
+

r(arrK + berH)

a2esK + b2erH +mrs
,

we have
r(a2esHK − aberHK +mrsH)

aK
> 0

and thus ̺ 6= 0.

(ii) For the equilibrium point P
[ep ep]
8 = P

[ep ep]
7 at the threshold a† = (mrs +

b2erH)/(besH) (compare the second condition of (4.14) and the condition (4.15)),

the Jacobian of (2.2) evaluated at P
[ep ep]
8 and at the parametric threshold a†, is

J
[ep ep]
P8

(a†) =



















0 0 0 0

0 −
ms2

ms+ b2eH
−

bmsH

ms+ b2eH
0

er
b2e2sH

ms+ b2eH
−

bemsH

ms+ b2eH

(emκ− ebβ)sH

ms+ b2eH

0 0 0
−b2eνH + besβH −msν

ms+ b2eH



















and its right and left eigenvectors, corresponding to the zero eigenvalue, are given

by V4 = ϕ4(1,−r/s, r/(bH), 0)T and Q4 = ω4(1, 0, 0, 0)
T, where ϕ4 and ω4 are any

nonzero real numbers. Differentiating partially with respect to a† the right-hand

sides of (2.2), we find

fa =









−X
[ep ep]
8 Z

[ep ep]
8

0

eX
[ep ep]
8 Z

[ep ep]
8

0









,

and calculating its Jacobian, we get

Dfa =









−Z
[ep ep]
8 0 0 0

0 0 0 0

eZ
[ep ep]
8 0 eX

[ep ep]
8 0

0 0 0 0









.
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Evaluation of D2f verifies the following three conditions:

QT
4 fa(P

[ep ep]
8 , a†) = 0, QT

4 [Dfa(P
[ep ep]
8 , a†)V4] = −ϕ4ω4

besH

ms+ b2eH
6= 0

QT
4 [D

2fa(P
[ep ep]
8 , a†)(V4, V4)] = −2ω4ϕ

2
4

b2ersH2 + b2er2K +mr2sK

b2esH2K
6= 0.

Hence all conditons for a transcritical bifurcation are satisfied. The computation

of D2f(P, ψ)(V, V ) of (2.2) is analogous to the formula for the model (2.1). �

6. Numerical results for bifurcations of models (2.1) and (2.2)

In Section 5 we performed theoretical analysis for transcritical bifurcation of mod-

els (2.1) and (2.2). In this section, we illustrate these transcritical bifurcations and

further investigate the possibilities for transcritical bifurcations about other equi-

libria of the systems by means of numerical simulations, by suitably adapting the

standard ode45 Matlab routine for our purposes.

Numerical results for model (2.1). Here, we perform the investigation for

transcritical bifurcations in terms of the bifurcation parameters ν and r. Consid-

ering ν as the bifurcation parameter we find transcritical bifurcations between the

equilibria: P
[ep hp]
3 and P

[ep hp]
5 for ν† = βL = 1.6 as well as between P

[ep hp]
5 and

P
[ep hp]
6 for

ν† =
β(ur + rβL − guL)

au+ aβL − gu
= 0.4009,

see Figure 1 frames (a) and (b), respectively.

The frames (a) and (b) of Figure 2 illustrate the transcritical bifurcation be-

tween P
[ep hp]
3 and P

[ep hp]
4 taking r as a bifurcation parameter with threshold r† =

aL = 0.5, and between P
[ep hp]
6 and P

[ep hp]
4 for the threshold

ν† =
β(urL + aerK)

ur + a2eKL
= 0.9747,

respectively.

Table 3 presents a summary of all bifurcation results in our numerical simulations.

Behaviour of the model (2.1) Equilibria involved Parameter threshold

Transcritical bifurcation P
[ep hp]
3 − P

[ep hp]
5 ν† = 1.6

Transcritical bifurcation P
[ep hp]
5 − P

[ep hp]
6 ν† = 0.4009

Transcritical bifurcation P
[ep hp]
3 − P

[ep hp]
4 r† = 0.5

Transcritical bifurcation P
[ep hp]
4 − P

[ep hp]
6 ν† = 0.9747

Table 3. Behaviour of equilibria of model (2.1) considering ν and r as variation parameters.
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Figure 1. (a) Transcritical bifurcation between P
[ep hp]
3 and P

[ep hp]
5 . The equilibrium

P
[ep hp]
5 is stable for 0.1 < ν < 1.6 and P

[ep hp]
3 is stable for ν > 1.6. The

vertical line corresponds to the transcritical bifurcation threshold ν† = 1.6 be-
tween the equilibria.

(b) Transcritical bifurcation between P
[ep hp]
5 and P

[ep hp]
6 . The equilibrium

P
[ep hp]
6 is stable for 0.1 < ν < 0.4009 and P

[ep hp]
5 is stable for ν > 0.4009. The

vertical line corresponds to the transcritical bifurcation threshold ν† = 0.4009.
The parameter values for (a) and (b) are r = u = 1, L = 2, K = 10, e = 0.75,
g = 0.56, a = 1.75.
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Figure 2. (a) Transcritical bifurcation between P
[ep hp]
3 and P

[ep hp]
4 . The equilibrium

P
[ep hp]
3 is stable for 0.1 < r < 0.5 and P

[ep hp]
4 is stable for r > 0.5. The ver-

tical line corresponds to the transcritical bifurcation threshold r† = 0.5 with
ν = 0.9747.
(b) Transcritical bifurcation between P

[ep hp]
6 and P

[ep hp]
4 . The equilibrium

P
[ep hp]
6 is stable for 0.1 < ν < 0.9747 and P

[ep hp]
4 is stable for ν > 0.9747.

The vertical line transcritical bifurcation threshold ν† = 0.9747 between the
equilibria and r = 1.
The parameter values for (a) and (b) are: L = 1, K = 10, e = 0.75, a = β = 0.5,
u = 0.1, g = 0.37.
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⊲ Numerical results for model (2.2)

Here we take β, a, and b as bifurcation parameters in model (2.2). Figures 3, 4, 5

illustrate all the possibilities that we have found. All the different behaviours of the

system are summarized in Table 4.

Behaviour of the model (2.2) Equilibria involved Parameter threshold

Transcritical bifurcation P
[ep ep]
7 − P

[ep ep]
9 β† = 0.5667

Transcritical bifurcation P
[ep ep]
6 − P

[ep ep]
10 β† = 0.1826

Transcritical bifurcation P
[ep ep]
11 − P

[ep ep]
8 β† = 0.3884

Transcritical bifurcation P
[ep ep]
6 − P

[ep ep]
8 b† = 1.5

Transcritical bifurcation P
[ep ep]
7 − P

[ep ep]
8 a† = 2.17

Table 4. Behaviour of equilibria of model (2.2) considering β, b, and a as bifurcation pa-
rameters.

Note that considering β as the bifurcation parameter the system has several poss-

ible different behaviours.

Figure 3 (a) illustrates the transcritical bifurcation between P
[ep ep]
6 and P

[ep ep]
10

and (b) illustrates a transcritical bifurcation between P
[ep ep]
7 and P

[ep ep]
9 for

β† =
ν(mr + a2eK)

aerK
= 0.1826, β† =

msν + b2eνH

besH
= 0.5667,

respectively.

Figure 4 illustrates the transcritical bifurcation between P
[ep hp]
8 and P

[ep ep]
11 with

critical threshold

β† =
ν(a2esK + b2erH +mrs)

aersK + bersH
= 0.3884.

Figure 5 (a), (b) illustrates numerical simulations when we consider b and a as

bifurcation parameters. There is a transcritical bifurcation between P
[ep ep]
6 and

P
[ep ep]
8 and another one between P

[ep ep]
7 and P

[ep ep]
8 for

b† =
mrs+ a2esK

aerK
= 1.5, a† =

mrs+ b2erH

besH
= 2.17,

respectively.
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Figure 3. The common parameter values for both (a) and (b) are: r = 1, K = 10, e = 0.75,
ν = 0.5, g = 0.937, m = s = b = 0.25, H = 10, κ = 0.187.

(a) Transcritical bifurcation between P
[ep hp]
6 and P

[ep ep]
10 . The equilibrium

P
[ep hp]
6 is stable for 0.1 < β < 0.1826 and P

[ep ep]
10 is stable for β > 0.1826. The

vertical line corresponds to the transcritical bifurcation threshold β† = 0.1826
between the equilibria. Here we have a = 0.18.

(b) Transcritical bifurcation between P
[ep hp]
7 and P

[ep ep]
9 . The equilibrium

P
[ep hp]
7 is obtained for 0.1 < β < 0.5667 while P

[ep ep]
9 is found for β > 0.5667.

The vertical line corresponds to the transcritical bifurcation threshold β† =
0.5667 between the equilibria. In this case we take a = 1.25.
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Figure 4. Transcritical bifurcation between P
[ep hp]
8 and P

[ep ep]
11 . The equilibrium P

[ep hp]
8

is stable for 0.1 < β < 0.3884 while P
[ep ep]
11 is obtained for 0.3884 < β < 0.67.

The vertical line corresponds to the transcritical bifurcation threshold β† =
0.3884. The remaining parameter values are r = 1, K = 10, e = 0.75, ν = 0.5,
g = 0.5625, m = b = 0.25, κ = 0.187, a = 0.75, s = H = 1.
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Figure 5. (a) Transcritical bifurcation between P
[ep ep]
8 and P

[ep ep]
6 for the parameter val-

ues r = K = a = e = m = 0.5, g = 0.8, s = H = β = 0.3 and ν = κ = 0.9.

Initial conditions X0 = Z0 = W0 = 0.01. The equilibrium P
[ep ep]
8 is found for

0.1 6 b < 1.5 and P
[ep ep]
6 arises for b > 1.5. The vertical line corresponds to the

transcritical bifurcation threshold b† = 1.5.
(b) Transcritical bifurcation between P

[ep ep]
8 and P

[ep ep]
7 for the parameter val-

ues K = e = m = 0.5, g = 0.8, r = s = H = β = 0.3, b = 1.5 and ν = κ = 0.9.

Initial conditions and populations are the same. The equilibrium P
[ep ep]
8 is found

for 0.1 6 a < 2.17 while P
[ep ep]
7 exists in the range a > 2.17. The vertical line

corresponds to the transcritical bifurcation threshold a† = 2.17.

7. Comparing analytical findings for models (2.1) and (2.2)

In this section, we compare the behaviour of the models (2.1) and (2.2), summa-

rizing in Table 5 all the possibilities.

As we can see in Table 5, both ecosystems cannot completely disappear. Note

that to the origin P
[ep hp]
1 in model (2.1) corresponds also the point P

[ep ep]
3 of model

(2.2), in which only the alternative prey thrives. The prey-only equilibria P
[ep hp]
2

and P
[ep ep]
2 , P

[ep ep]
3 and P

[ep ep]
4 are all unstable.

The healthy-predator-only equilibrium P
[ep hp]
3 has its counterpart in the point

P
[ep ep]
7 . The equilibrium P

[ep hp]
3 can be achieved stably in the simpler model pro-

vided (4.1) is satisfied, and P
[ep ep]
7 can also be stably attained, if the stability con-

dition (4.14) holds.

The disease-free equilibrium point in model (2.1) is P
[ep hp]
4 . Three points of

model (2.2) could be related to it, namely P
[ep ep]
6 , P

[ep ep]
7 and P

[ep ep]
8 , differing in

that either the extra source or the main prey are absent, or that both preys thrive,

together with the healthy predators.

The main-prey-free point P
[ep hp]
5 in model (2.1) cannot be compared with the

equilibrium P
[ep ep]
5 of model (2.2), because P

[ep ep]
5 does not contain the alternative
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Equilibrium – model (2.1) Equilibrium – model (2.2) Interpretation

P
[ep hp]
1 = (0, 0, 0) (u) P

[ep ep]
1 = (0, 0, 0, 0) (u) ecosystem collapse

P
[ep ep]
3 = (0, ·, 0, 0) (u)

P
[ep hp]
2 = (·, 0, 0) (u) P

[ep ep]
2 = (·, 0, 0, 0) (u)

P
[ep ep]
3 = (0, ·, 0, 0) (u) prey-only

P
[ep ep]
4 = (·, ·, 0, 0) (u)

P
[ep hp]
3 = (0, ·, 0) (cs) P

[ep ep]
7 = (0, ·, ·, 0) (cs) healthy-predator-only

P
[ep hp]
4 = (·, ·, 0) (cs) P

[ep ep]
6 = (·, 0, ·, 0) (cs)

P
[ep ep]
7 = (0, ·, ·, 0) (cs) disease-free

P
[ep ep]
8 = (·, ·, ·, 0) (cs)

P
[ep hp]
5 = (0, ·, ·) (cs) P

[ep ep]
5 = (0, 0, ·, ·) (u) main-prey-free

P
[ep ep]
9 = (0, ·, ·, ·) (cs)

P
[ep hp]
6 = (·, ·, ·) (cs) P

[ep ep]
10 = (·, 0, ·, ·) (cs) coexistence

P
[ep ep]
11 = (·, ·, ·, ·) (cs)

Table 5. Possibilities of comparison between equilibria of systems (2.1) and (2.2) that have
the same biological behaviour. Notation: u=unstable, s= stable, cs= conditio-
nally stable, uf=unstable if feasible, sf= stable if feasible. Note that the sec-
ond and third components of system (2.1) correspond to the third and fourth
components of system (2.2), respectively, while in this latter system the second
component represents the explicit resource that was hidden in the model (2.1).

resource and the predator can only survive if the alternative prey thrives in the

absence of the main prey. Its counterpart is thus just the equilibrium P
[ep ep]
9 .

Finally, the coexistence equilibria in both models are conditionally stable. Table 5

shows that the P
[ep hp]
6 in model (2.1) can be related with equilibria P

[ep ep]
10 and

P
[ep ep]
11 of model (2.2). Thus, for both models there is a possibility of survival of all

predators and preys.

8. Results

In this paper, we have compared the dynamics between two predator-prey models

where a transmissible disease spreads among the predators. The alternative prey for

the predator is implicit in the first model, but in the second we have made it explicit.

The most important parameters determining the type of possible changes in the

system behaviour, leading to transcritical bifurcations, are the growth rate r of the

prey population X and the mortality of the infected predator ν. In the case where

the mortality rate ν of the infected predator exceeds the infection rate β of healthy

predator Z, the environment becomes infection-free due to the extinction of the in-

fected predators W . However, two distinct scenarios arise: in the first, if the growth
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rate of the prey X is smaller than the predator efficiency Z in converting the resource

into new predators as well as its carrying capacity L (see Proposition 4.2), the result-

ing dynamics is composed only of healthy predators Z; their survival is guaranteed

by the existence of an alternative resource. However, if the growth rate of the prey X

exceeds the predator efficiency as well as the carrying capacity of the healthy preda-

tor Z, the main prey survives in the environment. This result is guaranteed by the

existence of a transcritical bifurcation between the equilibria P
[ep hp]
3 and P

[ep hp]
4 .

Continuing along the same lines, the study of transcritical bifurcation between the

equilibria P
[ep hp]
3 and P

[ep hp]
5 shows that if the mortality rate ν of the infected preda-

torW is smaller than the infection rate β and the carrying capacity L of the healthy-

predator, the ecosystem will be composed just of the populations of healthy predators

Z and infected predatorsW ; their survival is in this case guaranteed by the available

alternative resource (see the feasibility and stability conditions (4.4) and (4.5)).

For the second model (2.2), where the alternative resource is explicit, the main

parameters defining the system dynamics are the predation rates a and b on the main

prey X and on the alternative prey Y as well as the infection rate β of the healthy

predator Z, respectively. In an infection-free scenario, the analysis of the transcritical

bifurcation between equilibria P
[ep ep]
6 and P

[ep ep]
8 indicates the predation rate b as

an important factor to guarantee the survival of the predator, i.e., b determines if the

predator will feed only on the main prey or on both main and alternative prey, see the

second condition of (4.13) and (4.16). Similarly, the transcritical bifurcation between

P
[ep ep]
7 and P

[ep ep]
8 indicates that the mortality a characterizes the predator survival

only. The second condition of (4.14) shows that the healthy predator Z has only the

alternative prey Y as the source of food represented by the stable equilibrium point

P
[ep ep]
7 . But, when a transcritical bifurcation occurs with the equilibrium point

P
[ep ep]
8 , considering the same value of the bifurcation parameter a (see condition

(4.15)), the healthy predator Z has two sources of food, i.e., the main prey X and

the alternative prey Y . Thus, the predator thrives on both resources.

Our numerical analysis indicates that the disease transmission rate β plays a fun-

damental role for obtaining an environment with persistent disease, see Section 6.

Table 6 illustrates the comparison between models with hidden and explicit prey

for the predator, considering an environment with and without the possibility of

a transmissible disease among the predators.

There is no possibility of a scenario where in the ecoepidemic model (2.2) the

infected predators thrive without the presence of the main and of the alternative

prey, because P
[ep ep]
5 is unstable. However, healthy and infected predators survive

without the presence of the main prey in both systems (2.1) and (2.2). In this case,

the alternative prey provides the food for predators in both models. This situation

is represented by the main-prey-free equilibria P
[ep hp]
5 and P

[ep ep]
9 .
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Biological interpretation Environment with disease Environment without disease

transmission in predator Z transmission in predator Z, [3]
ecosystem collapse not possible not possible

prey-only not possible not possible

healthy-predator-only possible possible

disease-free possible possible

main-prey-free/predator-only possible possible

coexistence possible possible

Table 6. Systems dynamics considering an environment with and without a transmissible
disease among the predator population Z. The column representing the biological
interpretation in the table refers to the equilibrium points obtained in both models
(2.1) and (2.2) which are biologically equivalent.

The environment in which only the healthy predator Z survives in the absence

of the main prey is possible in both scenarios, i.e., at the equilibria P
[ep hp]
3 and

P
[ep ep]
7 . The disease-free equilibrium points represented by P

[ep hp]
4 and P

[ep ep]
8

when represented in the same dynamics but without a transmissible disease among

individuals Z, [3], clearly can represent the coexistence between X and Z popula-

tions. In this situation, investigated in [3], the same feasibility conditions for these

equilibria hold. The coexistence also has the same behaviour in both environments,

i.e., with and without a transmissible disease among the predator population Z.
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