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Abstract. We shall prove a weak comparison principle for quasilinear elliptic operators
−div(a(x,∇u)) that includes the negative p-Laplace operator, where a : Ω × R

N
→ R

N

satisfies certain conditions frequently seen in the research of quasilinear elliptic operators.
In our result, it is characteristic that functions which are compared belong to different
spaces.
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1. Introduction and statement of the result

There are many comparison principles (maximum principles) for the second order

elliptic differential operators (see [4], [5], [6], [8], [9]). The comparison principle

implies the unique solvability and some regularity results of solutions to elliptic

differential equations.

In this paper, we shall study a weak comparison principle for some quasilinear

elliptic operators. In our case, it is characteristic that functions which are compared

belong to different spaces. Let Ω be an open set in R
N (additional restriction will

be imposed according to situations in the sequel) and 1 < p < ∞. We consider

a Carathéodory map a : Ω×R
N → R

N which satisfies the following conditions (a-1),

(a-2), (a-3):

(a-1) there exists α > 0 depending on p such that

a(x, ξ) · ξ > α|ξ|p a.e. x ∈ Ω ∀ ξ ∈ R
N ,

a dot denotes here the Euclidean scalar product in R
N ,
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(a-2) there exists β > 0 depending on p such that

|a(x, ξ)| 6 β|ξ|p−1 a.e. x ∈ Ω ∀ ξ ∈ R
N ,

(a-3) there exists γ > 0 depending on p such that if p > 2, then

(i) {a(x, ξ)− a(x, η)} · (ξ − η) > γ|ξ − η|p a.e. x ∈ Ω, for all ξ, η ∈ R
N ,

and if 1 < p < 2, then

(ii) {a(x, ξ)− a(x, η)} · (ξ − η) > γ{|ξ|+ |η|}p−2|ξ − η|2 a.e. x ∈ Ω, for all ξ,

η ∈ R
N with |ξ|+ |η| > 0.

The above conditions (a-1), (a-2), (a-3) are frequently seen in the research of

quasilinear elliptic operators (see [4]). We consider the operator −div(a(x,∇u))

generated by the Carathéodory map a mentioned above. The simple model case is

the negative p-Laplace operator. We can now state our theorem:

Theorem 1.1. Let Ω be an open set in R
N bounded in one direction and

1 < p < ∞, 1/p+ 1/p′ = 1. Assume the above conditions (a-1), (a-2), (a-3). Let

f ∈ Lp′

(Ω) and g ∈ Lp′

loc(Ω). Furthermore, assume that u ∈ W 1,p
0 (Ω), w ∈ W 1,p

loc (Ω)

with w > 0 a.e. in Ω and f, g satisfy the following conditions (c-1), (c-2), (c-3):

(c-1) −div(a(x,∇u)) = f in Ω (in the distributional sense),

(c-2) −div(a(x,∇w)) = g in Ω (in the distributional sense),

(c-3) f 6 g a.e. in Ω.

Then u 6 w a.e. in Ω.

R em a r k 1.1. (i) For example, (c-1) means that

(1.1)

∫

Ω

a(x,∇u) · ∇ϕdx =

∫

Ω

fϕdx ∀ϕ ∈ C∞

0 (Ω).

Since C∞

0 (Ω) is dense in the space W 1,p
0 (Ω), using condition (a-2) we see that (1.1)

holds for any ϕ ∈ W 1,p
0 (Ω).

(ii) When w ∈ W 1,p
loc (Ω) satisfies the above condition (c-2), w1 := w + c satisfies

the same condition (c-2) for all c ∈ R as well. Therefore, it follows from Theorem 1.1

that u 6 w1 a.e. in Ω whenever there exists a constant c ∈ R such that w1 = w+c > 0

a.e. in Ω.

In the following, we use the so-called positive part and negative part of a (real

valued) function u, defined by

u+ = u(x)+ = max{u(x), 0}, u− = u(x)− = −min{u(x), 0}.
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As an elementary comparison principle for the operator −div(a(x,∇u)), the next

one is well-known.

(A) Let Ω be an open set in R
N and 1 < p < ∞. Let the Carathéodory map a

satisfy conditions (a-2) and (a-3)′ instead of (a-3) as follows:

(a-3)′ {a(x, ξ)− a(x, η)} · (ξ − η) > 0 a.e. x ∈ Ω for all ξ, η ∈ R
N , ξ 6= η.

Assume that ui ∈ W 1,p(Ω), i = 1, 2, satisfy the following:

(1.2) −div(a(x,∇u1)) 6 −div(a(x,∇u2)) in Ω,

in the sense of distributions, that is,

(1.3)

∫

Ω

a(x,∇u1) · ∇ϕdx 6

∫

Ω

a(x,∇u2) · ∇ϕdx ∀ϕ ∈ C∞

0 (Ω), ϕ > 0.

(Then note that (1.3) holds for any ϕ ∈ W 1,p
0 (Ω) with ϕ > 0 a.e. in Ω by the

argument of density and condition (a-2).)

Furthermore, suppose that u1 6 u2 on ∂Ω (this means (u1 − u2)
+ ∈ W 1,p

0 (Ω) in

the definition). Then u1 6 u2 a.e. in Ω.

On the other hand, it needs various devices to compare functions ui ∈ W 1,p
loc (Ω),

i = 1, 2 (see [5], [6]). Applying [6], Theorem 4.8 to the operator −div(a(x,∇u)), for

example, we can have the following result:

(B) Let Ω be a bounded open set in R
N and 1 < p < ∞. Let the Carathéodory

map a satisfy conditions (a-2) and (a-3)′. Assume that ui ∈ W 1,p
loc (Ω), i = 1, 2,

satisfy (1.2) in the sense of distributions and u1 6 u2 on ∂Ω. Then it follows that

u1 6 u2 a.e. in Ω.

Though this is a fine assertion, in this case, the inequality ‘u1 6 u2 on ∂Ω’ means

that for every ε there exists a neighborhood V of ∂Ω such that for a.e. x ∈ V we

have u1(x) 6 u2(x) + ε (see [6], p. 954, Section 4.1). Therefore, to apply this result

we need to know the situation of ui, i = 1, 2, in a neighborhood of ∂Ω in advance.

Moreover, it needs the boundedness of Ω.

In our Theorem 1.1, only w belongs to the space W 1,p
loc (Ω) and u belongs to the

“good“ space W 1,p
0 (Ω), however, the open set Ω may be unbounded as long as it is

bounded in one direction and there is no difficulty for the corresponding condition to

‘u1 6 u2 on ∂Ω’. Needless to say, though u and w belong to the same spaceW
1,p
loc (Ω)

in our case, we use essentially that u belongs to the space W 1,p
0 (Ω). In this sense,

functions u and w belong to different spaces. Our assertion is different from others

in this viewpoint.

Especially, setting a(x, ξ) = |ξ|p−2ξ in Theorem 1.1, we immediately obtain the

next corollary for the negative p-Laplace operator −∆p:

−∆pu = −div(|∇u|p−2∇u).
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Corollary 1.2. Let Ω be an open set in R
N bounded in one direction and 1 <

p < ∞, 1/p+ 1/p′ = 1. Let f ∈ Lp′

(Ω) and g ∈ Lp′

loc(Ω). Assume that u ∈ W 1,p
0 (Ω),

w ∈ W 1,p
loc (Ω) with w > 0 a.e. in Ω and f , g satisfy the following conditions (i),

(ii), (iii):

(i) −∆pu = f in Ω (in the distributional sense),

(ii) −∆pw = g in Ω (in the distributional sense),

(iii) f 6 g a.e. in Ω.

Then

u 6 w a.e. in Ω.

R em a r k 1.2. Note that conditions (a-1), (a-2), (a-3) are automatically satisfied

for a(x, ξ) = |ξ|p−2ξ with 1 < p < ∞.

As a simple application to our result, we can show the boundedness of the distri-

butional solution to the p-Laplace equation under the Dirichlet boundary condition.

This boundedness result has already been obtained by [3], Theorem 17.7 when Ω is

bounded, however, we consider the proof is not applicable when Ω is bounded in only

one direction. Therefore, we demonstrate that the proof of [3], Theorem 17.7 is still

valid for domains Ω which are bounded in only one direction with our Corollary 1.2.

2. Lemmas

In this section we give three lemmas to prove our theorem. The first one is well-

known.

Lemma 2.1. Let Ω be an open set inRN bounded in one direction and 1 < p < ∞,

1/p+ 1/p′ = 1. Assume a Carathéodory map a : Ω× R
N → R

N satisfies conditions

(a-1), (a-2), (a-3)′, which have already been mentioned. Then for every f ∈ Lp′

(Ω)

there exists a unique distributional solution u ∈ W 1,p
0 (Ω) such that

−div(a(x,∇u)) = f in Ω.

The next statement is mentioned in [10], Lemma 2.2.

Lemma 2.2. Let Ω be an open set in R
N and 1 6 p < ∞.

(i) Let v ∈ W 1,p(Ω) and v+, w ∈ W 1,p
0 (Ω). Then we have

(v − w)+, (w − v)−, (w + v)+, (−w − v)− ∈ W 1,p
0 (Ω).

486



(ii) Let v ∈ W 1,p(Ω) and v−, w ∈ W 1,p
0 (Ω). Then we have

(−v − w)+, (w + v)−, (w − v)+, (−w + v)− ∈ W 1,p
0 (Ω).

The next statement is concerned with the Sobolev compact embedding.

Lemma 2.3. Let Ω be an open set in R
N and 1 6 p < ∞. Assume that (uk)k is

a sequence in W 1,p
0 (Ω) and there exists v ∈ W 1,p

0 (Ω) such that

(2.1) uk ⇀ v weakly in W 1,p
0 (Ω) as k → ∞.

Then

uk → v in Lp
loc(Ω) as k → ∞.

R em a r k 2.1. The conclusion of Lemma 2.3 remains valid if the space W 1,p
0 (Ω)

is replaced by W 1,p(Ω).

P r o o f. We use the notation “ω ⋐ Ω” when ω is strongly included in Ω, i.e. ω

(the closure of ω in R
N ) is compact and ω ⊂ Ω.

Take any open set U ⋐ Ω. Fix a function λ ∈ C∞

0 (Ω) such that λ(x) = 1 in U .

Let Uλ be a bounded open set such that

suppλ ⊂ Uλ ⋐ Ω,

here “suppλ” means support of a function λ. First, we easily see that

(2.2) (λuk)|Uλ
∈ W 1,p

0 (Uλ) and (λv)|Uλ
∈ W 1,p

0 (Uλ),

here f |Uλ
denotes the restriction of the function f to Uλ. Furthermore, it follows

from assumption (2.1) that

(2.3) (λuk)|Uλ
⇀ (λv)|Uλ

weakly in W 1,p
0 (Uλ) as k → ∞.

Indeed, let F ∈ W−1,p′

(Uλ) (the dual space of W
1,p
0 (Uλ)), where 1/p + 1/p′ = 1.

From the representation theorem of the continuous linear functional on W 1,p
0 (Uλ)

(see [2], Prop. 9.20), there exist functions f0, f1, . . . , fN ∈ Lp′

(Uλ) such that

(2.4) 〈F, (λuk)|Uλ
〉W−1,p′ (Uλ),W

1,p
0

(Uλ)

=

∫

Uλ

f0(λuk) dx+

N∑

i=1

∫

Uλ

fi
∂

∂xi
(λuk) dx

=

∫

Uλ

f0(λuk) dx+

N∑

i=1

∫

Uλ

fi

( ∂λ

∂xi
uk + λ

∂uk

∂xi

)
dx

=

∫

Uλ

(
f0λ+

N∑

i=1

fi
∂λ

∂xi

)
uk dx+

N∑

i=1

∫

Uλ

(fiλ)
∂uk

∂xi
dx.
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We denote by f̄i, i = 0, 1, . . . , N its extension by zero outside Uλ, that is,

f̄i(x) =

{
fi(x) if x ∈ Uλ,

0 if x ∈ Ω \ Uλ.

Using the representation theorem of the continuous linear functional on W 1,p
0 (Ω)

(not on W 1,p
0 (Uλ)) this time and assumption (2.1), we have from (2.4) that

〈F, (λuk)|Uλ
〉W−1,p′ (Uλ),W

1,p
0

(Uλ)

=

∫

Ω

(
f̄0λ+

N∑

i=1

f̄i
∂λ

∂xi

)
uk dx+

N∑

i=1

∫

Ω

(f̄iλ)
∂uk

∂xi
dx

→

∫

Ω

(
f̄0λ+

N∑

i=1

f̄i
∂λ

∂xi

)
v dx+

N∑

i=1

∫

Ω

(f̄iλ)
∂v

∂xi
dx

=

∫

Ω

f̄0(λv) dx+

N∑

i=1

∫

Ω

f̄i
∂

∂xi
(λv) dx =

∫

Uλ

f0(λv) dx+

N∑

i=1

∫

Uλ

fi
∂

∂xi
(λv) dx

= 〈F, (λv)|Uλ
〉W−1,p′ (Uλ),W

1,p
0

(Uλ)

as k → ∞. This implies (2.3).

Since Uλ is a bounded open set, by the Sobolev compact embedding W
1,p
0 (Uλ) →֒

Lp(Uλ) we obtain from (2.2) and (2.3) that

(λuk)|Uλ
→ (λv)|Uλ

in Lp(Uλ) as k → ∞,

without any regularity assumption on Uλ. Considering U instead of Uλ, it follows

uk|U → v|U in Lp(U) as k → ∞.

This proves Lemma 2.3. �

3. Proof of our theorem

We give the proof of our Theorem 1.1 in this section.

P r o o f of Theorem 1.1. We divide our proof into four steps.

Step 1. Take a sequence of open sets Ωk as k = 1, 2, . . . such that

Ω =
∞⋃

k=1

Ωk, Ωk ⋐ Ωk+1 (see proof of Lemma 2.3).
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Now let fk be the restriction of the function f to Ωk:

fk(x) := f |Ωk
(x), x ∈ Ωk.

Then fk ∈ Lp′

(Ωk). Using Lemma 2.1 there exists a unique distributional solution

uk ∈ W 1,p
0 (Ωk) such that

(3.1) −div(a(x,∇uk)) = fk in Ωk

for every k ∈ N.

Step 2. On the other hand, for every k ∈ N it follows that (the restriction of the

function w to Ωk) w|Ωk
∈ W 1,p(Ωk) satisfies

(3.2) −div(a(x,∇w)) = g in Ωk,

in the distributional sense. And the assumption ‘w > 0 a.e. in Ω’ leads to

(uk − w|Ωk
)+ ∈ W 1,p

0 (Ωk) by Lemma 2.2 (ii), that is, uk 6 w on ∂Ωk. So we

conclude from (3.1) and (3.2) that

uk 6 w a.e. in Ωk for k = 1, 2, . . . ,

with the comparison principle of the type (A) of Section 1. Combining this inequality

and w > 0 a.e. in Ω again, we have

(3.3) ūk 6 w a.e. in Ω for k = 1, 2, . . . ,

where the function ūk is defined as:

(3.4) ūk(x) :=

{
uk(x) if x ∈ Ωk,

0 if x ∈ Ω \ Ωk.

Step 3. By Remark 1.1 (i), first note that (3.1) means

(3.5)

∫

Ωk

a(x,∇uk) · ∇ϕdx =

∫

Ωk

fkϕdx ∀ϕ ∈ W 1,p
0 (Ωk).

Substituting ϕ = uk ∈ W 1,p
0 (Ωk) in (3.5) and using condition (a-1), it follows

α‖∇ūk‖
p
Lp(Ω) = α‖∇uk‖

p
Lp(Ωk)

6

∫

Ωk

a(x,∇uk) · ∇uk dx =

∫

Ωk

fkuk dx

6 ‖fk‖Lp′(Ωk)
‖uk‖Lp(Ωk) 6 ‖f‖Lp′(Ω)‖ūk‖Lp(Ω)
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for every k ∈ N. Note that ūk ∈ W 1,p
0 (Ω), thanks to Poincaré’s inequality we obtain

α‖∇ūk‖
p
Lp(Ω) 6 C‖f‖Lp′(Ω)‖∇ūk‖Lp(Ω),

that is

(3.6) ‖∇ūk‖
p−1
Lp(Ω) 6

C

α
‖f‖Lp′(Ω) for k = 1, 2, . . . ,

where C is a constant. Since W 1,p
0 (Ω) (1 < p < ∞) is reflexive, there exists v ∈

W 1,p
0 (Ω) and a subsequence of (ūk)k, still denoted by (ūk)k, such that

ūk ⇀ v weakly in W 1,p
0 (Ω) as k → ∞.

Hence, we have that

(3.7) ūk → v in Lp
loc(Ω) as k → ∞,

by Lemma 2.3.

Moreover, using the diagonal method there exists a further subsequence of (ūk)k,

still denoted by (ūk)k, such that

(3.8) ūk(x) → v(x) a.e. x ∈ Ω as k → ∞.

Then passing to the limit in (3.3), we obtain that

(3.9) v(x) 6 w(x) a.e. x ∈ Ω.

Step 4. To establish our Theorem 1.1 it now suffices to prove that v ∈ W 1,p
0 (Ω)

in (3.7) satisfies

(3.10)

∫

Ω

a(x,∇v) · ∇ϕdx =

∫

Ω

fϕdx ∀ϕ ∈ C∞

0 (Ω).

Indeed, since u satisfies condition (c-1), it follows that

(3.11) v(x) = u(x) a.e. in Ω,

by the uniqueness of solutions to (c-1) (see Lemma 2.1). We thus deduce that

u(x) = v(x) 6 w(x) a.e. in Ω,

from (3.9) and (3.11). This proves Theorem 1.1.
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In what follows, we give the proof that v ∈ W 1,p
0 (Ω) satisfies (3.10). So fix any

φ ∈ C∞

0 (Ω). Let ω be an open set such that

suppφ ⊂ ω ⋐ Ω,

and Ωk0
be such that

ω ⋐ Ωk0
.

Fix h ∈ C∞

0 (Ω) such that

0 6 h(x) 6 1, supph ⊂ Ωk0
, h(x) = 1 in a neighborhood of ω.

First of all, using the extension of functions outside Ωk by zero like in (3.4), we have

from (3.5) that

(3.12)

∫

Ω

a(x,∇ūk) · ∇ϕ̄dx =

∫

Ω

fkϕ̄dx ∀ϕ ∈ W 1,p
0 (Ωk)

for every k ∈ N. Let k, l > k0. Because of supp{h(ūk − ūl)} ⊂ Ωk0
we have

{h(ūk − ūl)}|Ωk
∈ W 1,p

0 (Ωk), {h(ūk − ūl)}|Ωl
∈ W 1,p

0 (Ωl).

Hence, we can substitute {h(ūk−ūl)}|Ωk
for ϕ in (3.12) and substitute {h(ūk−ūl)}|Ωl

for ϕ in (3.12) replacing k with l. Noting that

{h(ūk − ūl)}|Ωk
= {h(ūk − ūl)}|Ωl

= h(ūk − ūl),

we then obtain

(3.13)

∫

Ω

{a(x,∇ūk)− a(x,∇ūl)} · ∇{h(ūk − ūl)} dx =

∫

Ω

(f̄k − f̄l)h(ūk − ūl) dx.

Since f̄k(x)h(x) = f̄l(x)h(x) a.e. in Ω, we see

(3.14) (the right-hand side of (3.13)) = 0.

Now we deal with the left-hand side of (3.13). According to condition (a-3), (i), (ii),

we get the following two cases.

Case 1: p > 2.

By condition (a-3) (i) and h > 0, it follows that

(3.15) (the left-hand side of (3.13))

=

∫

Ω

{a(x,∇ūk)− a(x,∇ūl)} · {(∇h)(ūk − ūl) + h∇(ūk − ūl)} dx

> γ

∫

Ω

|∇(ūk − ūl)|
ph dx+

∫

Ω

{a(x,∇ūk)− a(x,∇ūl)} · (∇h)(ūk − ūl) dx.
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We deduce from (3.13), (3.14), (3.15) and condition (a-2) that

γ

∫

ω

|∇(ūk − ūl)|
p dx 6 γ

∫

Ω

|∇(ūk − ūl)|
ph dx

6 −

∫

Ω

{a(x,∇ūk)− a(x,∇ūl)} · (∇h)(ūk − ūl) dx

6

∫

Ωk0

{|a(x,∇ūk)|+ |a(x,∇ūl)|}|∇h||ūk − ūl| dx

6 β‖∇h‖L∞(Ω)

∫

Ωk0

{|∇ūk|
p−1 + |∇ūl|

p−1}|ūk − ūl| dx.

Using Hölder’s inequality and (3.6), we have

‖∇(ūk − ūl)‖
p
Lp(ω) 6

β

γ
‖∇h‖L∞(Ω){‖∇ūk‖

p−1
Lp(Ω) + ‖∇ūl‖

p−1
Lp(Ω)}‖ūk − ūl‖Lp(Ωk0

)

6 2
Cβ

αγ
‖∇h‖L∞(Ω)‖f‖Lp′(Ω)‖ūk − ūl‖Lp(Ωk0

).

The above inequality and (3.7) implies that (ūk|ω)k is a Cauchy sequence inW
1,p(ω).

By the completeness of W 1,p(ω) and (3.7) again, we consequently obtain

(3.16) ūk|ω → v|ω in W 1,p(ω) as k → ∞.

Case 2: 1 < p < 2.

Write

A(uk, ul) := {x ∈ Ω; |∇ūk(x)| + |∇ūl(x)| > 0},

and set for every 0 < ε < 1 that

Bε−(uk, ul) :=
{
x ∈ Ω;

|∇(ūk − ūl)(x)|

|∇ūk(x)| + |∇ūl(x)|
> ε

}
∩ A(uk, ul),

Bε+(uk, ul) :=
{
x ∈ Ω;

|∇(ūk − ūl)(x)|

|∇ūk(x)| + |∇ūl(x)|
6 ε

}
∩ A(uk, ul).

First we have

(3.17)

∫

ω

|∇(ūk − ūl)|
p dx =

∫

ω∩A(uk,ul)

|∇(ūk − ūl)|
p dx

=

∫

ω∩Bε−(uk,ul)

|∇(ūk − ūl)|
p dx+

∫

ω∩Bε+(uk,ul)

|∇(ūk − ūl)|
p dx.

We estimate two terms of (3.17).

The first term:
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By condition (a-3) (ii), it follows that

(3.18) (the left-hand side of (3.13))

=

∫

Ωk0

{a(x,∇ūk)− a(x,∇ūl)} · {(∇h)(ūk − ūl) + h∇(ūk − ūl)} dx

> γ

∫

Ωk0
∩A(uk,ul)

h{|∇ūk|+ |∇ūl|}
p−2|∇(ūk − ūl)|

2 dx

+

∫

Ωk0

{a(x,∇ūk)− a(x,∇ūl)} · (∇h)(ūk − ūl) dx.

Therefore, we have

(3.19) γε2−p

∫

ω∩Bε−(uk,ul)

|∇(ūk − ūl)|
p dx

6 γε2−p

∫

Ωk0
∩Bε−(uk,ul)

h|∇(ūk − ūl)|
p dx

6 γ

∫

Ωk0
∩Bε−(uk,ul)

h
( |∇(ūk − ūl)(x)|

|∇ūk(x)|+ |∇ūl(x)|

)2−p

|∇(ūk − ūl)|
p dx

= γ

∫

Ωk0
∩Bε−(uk,ul)

h{|∇ūk|+ |∇ūl|}
p−2|∇(ūk − ūl)|

2 dx

6 γ

∫

Ωk0
∩Bε−(uk,ul)

h{|∇ūk|+ |∇ūl|}
p−2|∇(ūk − ūl)|

2 dx

+

∫

Ωk0
∩Bε+(uk,ul)

h{|∇ūk|+ |∇ūl|}
p−2|∇(ūk − ūl)|

2 dx

= γ

∫

Ωk0
∩A(uk,ul)

h{|∇ūk|+ |∇ūl|}
p−2|∇(ūk − ūl)|

2 dx

6 −

∫

Ωk0

{a(x,∇ūk)− a(x,∇ūl)} · (∇h)(ūk − ūl) dx

(here we used (3.13), (3.14), and (3.18))

6 β‖∇h‖L∞(Ω)

∫

Ωk0

{|∇ūk|
p−1 + |∇ūl|

p−1}|ūk − ūl| dx

(here we used condition (a-2))

6 β‖∇h‖L∞(Ω){‖∇ūk‖
p−1
Lp(Ω) + ‖∇ūl‖

p−1
Lp(Ω)}‖ūk − ūl‖Lp(Ωk0

)

6 2β‖∇h‖L∞(Ω)

(C
α
‖f‖Lp′(Ω)

)
‖ūk − ūl‖Lp(Ωk0

)

(here we used (3.6)).

On the other hand, since it follows that

(3.20) |∇(ūk − ūl)| 6 ε(|∇ūk|+ |∇ūl|) a.e. in ω ∩Bε+(uk, ul),
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we obtain from (3.20) that

(3.21) ‖∇(ūk − ūl)‖
p
Lp(ω∩Bε+(uk,ul))

=

∫

ω∩Bε+(uk,ul)

|∇(ūk − ūl)|
p dx

6 εp
∫

ω∩Bε+(uk,ul)

(|∇ūk|+ |∇ūl|)
p dx 6 εp‖ |∇ūk|+ |∇ūl| ‖

p
Lp(Ω)

6 2pεp
(C
α
‖f‖Lp′(Ω)

)p/(p−1)

.

Consequently, we deduce from (3.19) and (3.21) that

(3.22)

∫

ω

|∇(ūk − ūl)|
p dx

=

∫

ω∩Bε−(uk,ul)

|∇(ūk − ūl)|
p dx+

∫

ω∩Bε+(uk,ul)

|∇(ūk − ūl)|
p dx

6
2β

γε2−p
‖∇h‖L∞(Ω)

(C
α
‖f‖Lp′(Ω)

)
‖ūk − ūl‖Lp(Ωk0

)

+ 2pεp
(C
α
‖f‖Lp′(Ω)

)p/(p−1)

.

From (3.7) it follows that

(3.23) (the right-hand side of (3.22)) → 2pεp
(C
α
‖f‖Lp′(Ω)

)p/(p−1)

as k, l → ∞,

and since 0 < ε < 1 is arbitrary, we can see from (3.22) and (3.23) that (ūk|ω)k>k0

is a Cauchy sequence in W 1,p(ω). By the completeness of W 1,p(ω) and (3.7) again,

we consequently obtain

(3.24) ūk|ω → v|ω in W 1,p(ω) as k → ∞.

Thus, we have for 1 < p < ∞

(3.25) ūk|ω → v|ω in W 1,p(ω) as k → ∞,

from (3.16) and (3.24). Now remember that ūk as k ∈ N satisfy (3.12) and φ ∈

C∞

0 (Ω), suppφ ⊂ ω ⋐ Ωk as k > k0. Hence, we have from (3.12) that

(3.26)

∫

Ω

a(x,∇ūk) · ∇φdx =

∫

Ω

f̄kφdx ∀ k > k0.

Passing to the limit for k → ∞

(3.27) (the right-hand side of (3.26))→

∫

Ω

fφdx,
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by the definition of f̄k, on the other hand,

(3.28) (the left-hand side of (3.26))→

∫

Ω

a(x,∇v) · ∇φdx,

as follows.

P r o o f of (3.28). We can prove (3.28) as in [10], step 3 in the proof of Lemma 2.3.

Indeed, set

(Naξ)(x) = a(x, ξ(x)) (= (a1(x, ξ(x)), . . . , aN (x, ξ(x)))),

for any ξ = (ξ1, . . . , ξN ) ∈ (Lp(Ω))N . Then we can use Nemitski’s composition theo-

rem ([1], Theorem 3.6, [7], Section 3.6, Corollary 3, note that Nemitski’s composition

theorem is valid for any open set Ω) from condition (a-2) and obtain that the oper-

ator Na : (Lp(Ω))N → (Lp′

(Ω))N is continuous. Using this with ω and ∇ūk instead

of Ω and ξ, respectively, it follows

Na(∇ūk) → Na(∇v) in (Lp′

(ω))N as k → ∞

from (3.25). This is equivalent to

‖a(·, (∇ūk)(·)) − a(·, (∇v)(·))‖Lp′ (ω) → 0 as k → ∞.

Accordingly, noting that suppφ ⊂ ω, it follows that

∣∣∣∣
∫

Ω

a(x,∇ūk(x)) · ∇φ(x) dx−

∫

Ω

a(x,∇v(x)) · ∇φ(x) dx

∣∣∣∣

6

∫

ω

|a(x,∇ūk(x))− a(x,∇v(x))||∇φ(x)| dx

6 ‖a(·, (∇ūk)(·)) − a(·, (∇v)(·))‖Lp′ (ω)‖∇φ‖Lp(ω) → 0 as k → ∞.

Thus we arrive at (3.28).

Consequently, we deduce from (3.26), (3.27), and (3.28) that v ∈ W 1,p
0 (Ω) satisfies

∫

Ω

a(x,∇v) · ∇φdx =

∫

Ω

fφdx.

This concludes the proof of Theorem 1.1. �
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4. Application

In this section we give an application to our result. As mentioned in Section 1, we

follow [3], Theorem 17.7.

Let Sν be a strip-like domain such that

Sν = {x ∈ R
N ; (x− x0) · ν ∈ (−a, a)}

for some a > 0 and x0 ∈ R
N , where ν is a unit vector and a dot denotes the

scalar product in R
N . Let Ω ⊂ Sν be an open set. We assume that u ∈ W 1,p

0 (Ω),

1 < p < ∞, satisfies

(4.1) −div(|∇u|p−2∇u) = f in Ω,

in the distributional sense with f ∈ L∞(Ω) ∩ Lp′

(Ω), 1/p + 1/p′ = 1. Then we

conclude that u ∈ L∞(Ω) and

(4.2) ‖u‖L∞(Ω) 6
p− 1

p
ap/(p−1)(‖f‖L∞(Ω))

1/(p−1).

Indeed, first we set α := 1 + 1/(p− 1) and

w̃(x) := aα − |(x− x0) · ν|
α (> 0) in Ω.

Then we see w̃ ∈ W 1,p
loc (Ω) (note that w̃ does not belong to W

1,p(Ω) in general when

the open set Ω (⊂ Sν) is unbounded). A simple computing leads us to

∇w̃ = −α|(x− x0) · ν|
α−1{sgn((x− x0) · ν)}ν,

where sgn function is defined by

sgn(t) :=






1 if t > 0,

0 if t = 0,

−1 if t < 0.

So we have

|∇w̃|p−2 = αp−2|(x− x0) · ν|
(α−1)(p−2).

Therefore, noting (α− 1) + (α− 1)(p− 2) = (α− 1)(p− 1) = 1, it follows that

|∇w̃|p−2∇w̃ = −αp−1|(x− x0) · ν|
(α−1)+(α−1)(p−2){sgn((x− x0) · ν)}ν

= −αp−1|(x− x0) · ν|{sgn((x − x0) · ν)}ν

= −αp−1((x− x0) · ν)ν,
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and after a simple computation we obtain

(4.3) −div(|∇w̃|p−2∇w̃) = αp−1.

Therefore, setting w := α−1‖f‖
1/(p−1)
L∞(Ω) w̃ (∈ W 1,p

loc (Ω)), then noting that

|∇w|p−2∇w =
1

αp−1
‖f‖L∞(Ω)|∇w̃|p−2∇w̃,

we derive from (4.3) that

(4.4) −div(|∇w|p−2∇w) = ‖f‖L∞(Ω).

Since f 6 ‖f‖L∞(Ω) as a matter of course, combining it with (4.1), (4.4), and w > 0

in Ω, we can apply Corollary 1.2. Hence, we conclude that

u 6 w =
1

α
‖f‖

1/(p−1)
L∞(Ω) w̃.

Since −u is a solution to (4.1) corresponding to −f , we have

|u| 6 w =
1

α
‖f‖

1/(p−1)
L∞(Ω) w̃.

Finally, noting
1

α
=

p− 1

p
and 0 6 w̃ 6 aα = ap/(p−1),

we obtain (4.2).

R em a r k 4.1. In the above consideration, u ∈ W 1,p
0 (Ω) ⊂ W 1,p(Ω), however,

w does not belong to W 1,p(Ω) in general when the open set Ω (⊂ Sν) is unbounded.

Therefore, the elementary comparison principle of the type (A) of Section 1 cannot

be applied to the above inference.
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