A WEAK COMPARISON PRINCIPLE FOR SOME QUASILINEAR ELLIPTIC OPERATORS: IT COMPARES FUNCTIONS BELONGING TO DIFFERENT SPACES

Akihito Unai, Tokyo
Received April 20, 2018. Published online July 17, 2018.

Abstract. We shall prove a weak comparison principle for quasilinear elliptic operators $-\operatorname{div}(a(x, \nabla u))$ that includes the negative p-Laplace operator, where $a: \Omega \times \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$ satisfies certain conditions frequently seen in the research of quasilinear elliptic operators. In our result, it is characteristic that functions which are compared belong to different spaces.

Keywords: weak comparison principle; quasilinear elliptic operator; p-Laplace operator MSC 2010: 35B51, 35J62, 35J25

1. Introduction and statement of the result

There are many comparison principles (maximum principles) for the second order elliptic differential operators (see [4], [5], [6], [8], [9]). The comparison principle implies the unique solvability and some regularity results of solutions to elliptic differential equations.

In this paper, we shall study a weak comparison principle for some quasilinear elliptic operators. In our case, it is characteristic that functions which are compared belong to different spaces. Let Ω be an open set in \mathbb{R}^{N} (additional restriction will be imposed according to situations in the sequel) and $1<p<\infty$. We consider a Carathéodory map $a: \Omega \times \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$ which satisfies the following conditions (a-1), (a-2), (a-3):
(a-1) there exists $\alpha>0$ depending on p such that

$$
a(x, \xi) \cdot \xi \geqslant \alpha|\xi|^{p} \quad \text { a.e. } x \in \Omega \forall \xi \in \mathbb{R}^{N}
$$

a dot denotes here the Euclidean scalar product in \mathbb{R}^{N},
(a-2) there exists $\beta>0$ depending on p such that

$$
|a(x, \xi)| \leqslant \beta|\xi|^{p-1} \quad \text { a.e. } x \in \Omega \forall \xi \in \mathbb{R}^{N},
$$

(a-3) there exists $\gamma>0$ depending on p such that if $p \geqslant 2$, then
(i) $\{a(x, \xi)-a(x, \eta)\} \cdot(\xi-\eta) \geqslant \gamma|\xi-\eta|^{p}$ a.e. $x \in \Omega$, for all $\xi, \eta \in \mathbb{R}^{N}$,
and if $1<p<2$, then
(ii) $\{a(x, \xi)-a(x, \eta)\} \cdot(\xi-\eta) \geqslant \gamma\{|\xi|+|\eta|\}^{p-2}|\xi-\eta|^{2}$ a.e. $x \in \Omega$, for all ξ, $\eta \in \mathbb{R}^{N}$ with $|\xi|+|\eta|>0$.

The above conditions (a-1), (a-2), (a-3) are frequently seen in the research of quasilinear elliptic operators (see [4]). We consider the operator $-\operatorname{div}(a(x, \nabla u))$ generated by the Carathéodory map a mentioned above. The simple model case is the negative p-Laplace operator. We can now state our theorem:

Theorem 1.1. Let Ω be an open set in \mathbb{R}^{N} bounded in one direction and $1<p<\infty, 1 / p+1 / p^{\prime}=1$. Assume the above conditions (a-1), (a-2), (a-3). Let $f \in L^{p^{\prime}}(\Omega)$ and $g \in L_{\mathrm{loc}}^{p^{\prime}}(\Omega)$. Furthermore, assume that $u \in W_{0}^{1, p}(\Omega), w \in W_{\mathrm{loc}}^{1, p}(\Omega)$ with $w \geqslant 0$ a.e. in Ω and f, g satisfy the following conditions (c-1), (c-2), (c-3):
(c-1) $-\operatorname{div}(a(x, \nabla u))=f$ in Ω (in the distributional sense),
(c-2) $-\operatorname{div}(a(x, \nabla w))=g$ in Ω (in the distributional sense), (c-3) $f \leqslant g$ a.e. in Ω.

Then $u \leqslant w$ a.e. in Ω.
Remark 1.1. (i) For example, (c-1) means that

$$
\begin{equation*}
\int_{\Omega} a(x, \nabla u) \cdot \nabla \varphi \mathrm{d} x=\int_{\Omega} f \varphi \mathrm{~d} x \quad \forall \varphi \in C_{0}^{\infty}(\Omega) \tag{1.1}
\end{equation*}
$$

Since $C_{0}^{\infty}(\Omega)$ is dense in the space $W_{0}^{1, p}(\Omega)$, using condition (a-2) we see that (1.1) holds for any $\varphi \in W_{0}^{1, p}(\Omega)$.
(ii) When $w \in W_{\mathrm{loc}}^{1, p}(\Omega)$ satisfies the above condition (c-2), $w_{1}:=w+c$ satisfies the same condition (c-2) for all $c \in \mathbb{R}$ as well. Therefore, it follows from Theorem 1.1 that $u \leqslant w_{1}$ a.e. in Ω whenever there exists a constant $c \in \mathbb{R}$ such that $w_{1}=w+c \geqslant 0$ a.e. in Ω.

In the following, we use the so-called positive part and negative part of a (real valued) function u, defined by

$$
u^{+}=u(x)^{+}=\max \{u(x), 0\}, \quad u^{-}=u(x)^{-}=-\min \{u(x), 0\} .
$$

As an elementary comparison principle for the operator $-\operatorname{div}(a(x, \nabla u))$, the next one is well-known.
(A) Let Ω be an open set in \mathbb{R}^{N} and $1<p<\infty$. Let the Carathéodory map a satisfy conditions (a-2) and (a-3)' instead of (a-3) as follows:
$(\mathrm{a}-3)^{\prime} \quad\{a(x, \xi)-a(x, \eta)\} \cdot(\xi-\eta)>0$ a.e. $x \in \Omega$ for all $\xi, \eta \in \mathbb{R}^{N}, \xi \neq \eta$.
Assume that $u_{i} \in W^{1, p}(\Omega), i=1,2$, satisfy the following:

$$
\begin{equation*}
-\operatorname{div}\left(a\left(x, \nabla u_{1}\right)\right) \leqslant-\operatorname{div}\left(a\left(x, \nabla u_{2}\right)\right) \quad \text { in } \Omega, \tag{1.2}
\end{equation*}
$$

in the sense of distributions, that is,

$$
\begin{equation*}
\int_{\Omega} a\left(x, \nabla u_{1}\right) \cdot \nabla \varphi \mathrm{d} x \leqslant \int_{\Omega} a\left(x, \nabla u_{2}\right) \cdot \nabla \varphi \mathrm{d} x \quad \forall \varphi \in C_{0}^{\infty}(\Omega), \varphi \geqslant 0 . \tag{1.3}
\end{equation*}
$$

(Then note that (1.3) holds for any $\varphi \in W_{0}^{1, p}(\Omega)$ with $\varphi \geqslant 0$ a.e. in Ω by the argument of density and condition (a-2).)

Furthermore, suppose that $u_{1} \leqslant u_{2}$ on $\partial \Omega$ (this means $\left(u_{1}-u_{2}\right)^{+} \in W_{0}^{1, p}(\Omega)$ in the definition). Then $u_{1} \leqslant u_{2}$ a.e. in Ω.

On the other hand, it needs various devices to compare functions $u_{i} \in W_{\mathrm{loc}}^{1, p}(\Omega)$, $i=1,2$ (see [5], [6]). Applying [6], Theorem 4.8 to the operator $-\operatorname{div}(a(x, \nabla u)$), for example, we can have the following result:
(B) Let Ω be a bounded open set in \mathbb{R}^{N} and $1<p<\infty$. Let the Carathéodory map a satisfy conditions (a-2) and (a-3)'. Assume that $u_{i} \in W_{\mathrm{loc}}^{1, p}(\Omega), i=1,2$, satisfy (1.2) in the sense of distributions and $u_{1} \leqslant u_{2}$ on $\partial \Omega$. Then it follows that $u_{1} \leqslant u_{2}$ a.e. in Ω.

Though this is a fine assertion, in this case, the inequality ' $u_{1} \leqslant u_{2}$ on $\partial \Omega$ ' means that for every ε there exists a neighborhood V of $\partial \Omega$ such that for a.e. $x \in V$ we have $u_{1}(x) \leqslant u_{2}(x)+\varepsilon$ (see [6], p. 954, Section 4.1). Therefore, to apply this result we need to know the situation of $u_{i}, i=1,2$, in a neighborhood of $\partial \Omega$ in advance. Moreover, it needs the boundedness of Ω.

In our Theorem 1.1, only w belongs to the space $W_{\text {loc }}^{1, p}(\Omega)$ and u belongs to the "good" space $W_{0}^{1, p}(\Omega)$, however, the open set Ω may be unbounded as long as it is bounded in one direction and there is no difficulty for the corresponding condition to ' $u_{1} \leqslant u_{2}$ on $\partial \Omega$ '. Needless to say, though u and w belong to the same space $W_{\text {loc }}^{1, p}(\Omega)$ in our case, we use essentially that u belongs to the space $W_{0}^{1, p}(\Omega)$. In this sense, functions u and w belong to different spaces. Our assertion is different from others in this viewpoint.

Especially, setting $a(x, \xi)=|\xi|^{p-2} \xi$ in Theorem 1.1, we immediately obtain the next corollary for the negative p-Laplace operator $-\Delta_{p}$:

$$
-\Delta_{p} u=-\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right) .
$$

Corollary 1.2. Let Ω be an open set in \mathbb{R}^{N} bounded in one direction and $1<$ $p<\infty, 1 / p+1 / p^{\prime}=1$. Let $f \in L^{p^{\prime}}(\Omega)$ and $g \in L_{\text {loc }}^{p^{\prime}}(\Omega)$. Assume that $u \in W_{0}^{1, p}(\Omega)$, $w \in W_{\text {loc }}^{1, p}(\Omega)$ with $w \geqslant 0$ a.e. in Ω and f, g satisfy the following conditions (i), (ii), (iii):
(i) $-\Delta_{p} u=f$ in Ω (in the distributional sense),
(ii) $-\Delta_{p} w=g$ in Ω (in the distributional sense),
(iii) $f \leqslant g$ a.e. in Ω.

Then

$$
u \leqslant w \quad \text { a.e. in } \Omega .
$$

Remark 1.2. Note that conditions (a-1), (a-2), (a-3) are automatically satisfied for $a(x, \xi)=|\xi|^{p-2} \xi$ with $1<p<\infty$.

As a simple application to our result, we can show the boundedness of the distributional solution to the p-Laplace equation under the Dirichlet boundary condition. This boundedness result has already been obtained by [3], Theorem 17.7 when Ω is bounded, however, we consider the proof is not applicable when Ω is bounded in only one direction. Therefore, we demonstrate that the proof of [3], Theorem 17.7 is still valid for domains Ω which are bounded in only one direction with our Corollary 1.2.

2. Lemmas

In this section we give three lemmas to prove our theorem. The first one is wellknown.

Lemma 2.1. Let Ω be an open set in \mathbb{R}^{N} bounded in one direction and $1<p<\infty$, $1 / p+1 / p^{\prime}=1$. Assume a Carathéodory map $a: \Omega \times \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$ satisfies conditions (a-1), (a-2), (a-3)', which have already been mentioned. Then for every $f \in L^{p^{\prime}}(\Omega)$ there exists a unique distributional solution $u \in W_{0}^{1, p}(\Omega)$ such that

$$
-\operatorname{div}(a(x, \nabla u))=f \quad \text { in } \Omega
$$

The next statement is mentioned in [10], Lemma 2.2.
Lemma 2.2. Let Ω be an open set in \mathbb{R}^{N} and $1 \leqslant p<\infty$.
(i) Let $v \in W^{1, p}(\Omega)$ and $v^{+}, w \in W_{0}^{1, p}(\Omega)$. Then we have

$$
(v-w)^{+},(w-v)^{-},(w+v)^{+},(-w-v)^{-} \in W_{0}^{1, p}(\Omega)
$$

(ii) Let $v \in W^{1, p}(\Omega)$ and $v^{-}, w \in W_{0}^{1, p}(\Omega)$. Then we have

$$
(-v-w)^{+},(w+v)^{-},(w-v)^{+},(-w+v)^{-} \in W_{0}^{1, p}(\Omega)
$$

The next statement is concerned with the Sobolev compact embedding.
Lemma 2.3. Let Ω be an open set in \mathbb{R}^{N} and $1 \leqslant p<\infty$. Assume that $\left(u_{k}\right)_{k}$ is a sequence in $W_{0}^{1, p}(\Omega)$ and there exists $v \in W_{0}^{1, p}(\Omega)$ such that

$$
\begin{equation*}
u_{k} \rightharpoonup v \quad \text { weakly in } W_{0}^{1, p}(\Omega) \quad \text { as } k \rightarrow \infty \tag{2.1}
\end{equation*}
$$

Then

$$
u_{k} \rightarrow v \quad \text { in } L_{\mathrm{loc}}^{p}(\Omega) \quad \text { as } k \rightarrow \infty
$$

Remark 2.1. The conclusion of Lemma 2.3 remains valid if the space $W_{0}^{1, p}(\Omega)$ is replaced by $W^{1, p}(\Omega)$.

Proof. We use the notation " $\omega \Subset \Omega$ " when ω is strongly included in Ω, i.e. $\bar{\omega}$ (the closure of ω in \mathbb{R}^{N}) is compact and $\bar{\omega} \subset \Omega$.

Take any open set $U \Subset \Omega$. Fix a function $\lambda \in C_{0}^{\infty}(\Omega)$ such that $\lambda(x)=1$ in U. Let U_{λ} be a bounded open set such that

$$
\operatorname{supp} \lambda \subset U_{\lambda} \Subset \Omega,
$$

here "supp λ " means support of a function λ. First, we easily see that

$$
\begin{equation*}
\left.\left(\lambda u_{k}\right)\right|_{U_{\lambda}} \in W_{0}^{1, p}\left(U_{\lambda}\right) \quad \text { and }\left.\quad(\lambda v)\right|_{U_{\lambda}} \in W_{0}^{1, p}\left(U_{\lambda}\right), \tag{2.2}
\end{equation*}
$$

here $\left.f\right|_{U_{\lambda}}$ denotes the restriction of the function f to U_{λ}. Furthermore, it follows from assumption (2.1) that

$$
\begin{equation*}
\left.\left.\left(\lambda u_{k}\right)\right|_{U_{\lambda}} \rightharpoonup(\lambda v)\right|_{U_{\lambda}} \quad \text { weakly in } W_{0}^{1, p}\left(U_{\lambda}\right) \quad \text { as } k \rightarrow \infty . \tag{2.3}
\end{equation*}
$$

Indeed, let $F \in W^{-1, p^{\prime}}\left(U_{\lambda}\right)$ (the dual space of $W_{0}^{1, p}\left(U_{\lambda}\right)$), where $1 / p+1 / p^{\prime}=1$. From the representation theorem of the continuous linear functional on $W_{0}^{1, p}\left(U_{\lambda}\right)$ (see [2], Prop. 9.20), there exist functions $f_{0}, f_{1}, \ldots, f_{N} \in L^{p^{\prime}}\left(U_{\lambda}\right)$ such that

$$
\begin{align*}
& \left\langle F,\left.\left(\lambda u_{k}\right)\right|_{U_{\lambda}}\right\rangle_{W^{-1, p^{\prime}}\left(U_{\lambda}\right), W_{0}^{1, p}\left(U_{\lambda}\right)} \tag{2.4}\\
& \quad=\int_{U_{\lambda}} f_{0}\left(\lambda u_{k}\right) \mathrm{d} x+\sum_{i=1}^{N} \int_{U_{\lambda}} f_{i} \frac{\partial}{\partial x_{i}}\left(\lambda u_{k}\right) \mathrm{d} x \\
& \quad=\int_{U_{\lambda}} f_{0}\left(\lambda u_{k}\right) \mathrm{d} x+\sum_{i=1}^{N} \int_{U_{\lambda}} f_{i}\left(\frac{\partial \lambda}{\partial x_{i}} u_{k}+\lambda \frac{\partial u_{k}}{\partial x_{i}}\right) \mathrm{d} x \\
& \quad=\int_{U_{\lambda}}\left(f_{0} \lambda+\sum_{i=1}^{N} f_{i} \frac{\partial \lambda}{\partial x_{i}}\right) u_{k} \mathrm{~d} x+\sum_{i=1}^{N} \int_{U_{\lambda}}\left(f_{i} \lambda\right) \frac{\partial u_{k}}{\partial x_{i}} \mathrm{~d} x
\end{align*}
$$

We denote by $\bar{f}_{i}, i=0,1, \ldots, N$ its extension by zero outside U_{λ}, that is,

$$
\bar{f}_{i}(x)= \begin{cases}f_{i}(x) & \text { if } x \in U_{\lambda} \\ 0 & \text { if } x \in \Omega \backslash U_{\lambda}\end{cases}
$$

Using the representation theorem of the continuous linear functional on $W_{0}^{1, p}(\Omega)$ (not on $\left.W_{0}^{1, p}\left(U_{\lambda}\right)\right)$ this time and assumption (2.1), we have from (2.4) that

$$
\begin{aligned}
& \left\langle F,\left.\left(\lambda u_{k}\right)\right|_{U_{\lambda}}\right\rangle_{W^{-1, p^{\prime}}\left(U_{\lambda}\right), W_{0}^{1, p}\left(U_{\lambda}\right)} \\
& \quad=\int_{\Omega}\left(\bar{f}_{0} \lambda+\sum_{i=1}^{N} \bar{f}_{i} \frac{\partial \lambda}{\partial x_{i}}\right) u_{k} \mathrm{~d} x+\sum_{i=1}^{N} \int_{\Omega}\left(\bar{f}_{i} \lambda\right) \frac{\partial u_{k}}{\partial x_{i}} \mathrm{~d} x \\
& \quad \rightarrow \int_{\Omega}\left(\bar{f}_{0} \lambda+\sum_{i=1}^{N} \bar{f}_{i} \frac{\partial \lambda}{\partial x_{i}}\right) v \mathrm{~d} x+\sum_{i=1}^{N} \int_{\Omega}\left(\bar{f}_{i} \lambda\right) \frac{\partial v}{\partial x_{i}} \mathrm{~d} x \\
& \quad=\int_{\Omega} \bar{f}_{0}(\lambda v) \mathrm{d} x+\sum_{i=1}^{N} \int_{\Omega} \bar{f}_{i} \frac{\partial}{\partial x_{i}}(\lambda v) \mathrm{d} x=\int_{U_{\lambda}} f_{0}(\lambda v) \mathrm{d} x+\sum_{i=1}^{N} \int_{U_{\lambda}} f_{i} \frac{\partial}{\partial x_{i}}(\lambda v) \mathrm{d} x \\
& \quad=\left\langle F,(\lambda v) \mid U_{\lambda}\right\rangle_{W^{-1, p^{\prime}}\left(U_{\lambda}\right), W_{0}^{1, p}\left(U_{\lambda}\right)}
\end{aligned}
$$

as $k \rightarrow \infty$. This implies (2.3).
Since U_{λ} is a bounded open set, by the Sobolev compact embedding $W_{0}^{1, p}\left(U_{\lambda}\right) \hookrightarrow$ $L^{p}\left(U_{\lambda}\right)$ we obtain from (2.2) and (2.3) that

$$
\left.\left.\left(\lambda u_{k}\right)\right|_{U_{\lambda}} \rightarrow(\lambda v)\right|_{U_{\lambda}} \text { in } L^{p}\left(U_{\lambda}\right) \quad \text { as } k \rightarrow \infty,
$$

without any regularity assumption on U_{λ}. Considering U instead of U_{λ}, it follows

$$
\left.\left.u_{k}\right|_{U} \rightarrow v\right|_{U} \quad \text { in } L^{p}(U) \quad \text { as } k \rightarrow \infty
$$

This proves Lemma 2.3.

3. Proof of our theorem

We give the proof of our Theorem 1.1 in this section.
Proof of Theorem 1.1. We divide our proof into four steps.
Step 1. Take a sequence of open sets Ω_{k} as $k=1,2, \ldots$ such that

$$
\Omega=\bigcup_{k=1}^{\infty} \Omega_{k}, \quad \Omega_{k} \Subset \Omega_{k+1} \text { (see proof of Lemma 2.3). }
$$

Now let f_{k} be the restriction of the function f to Ω_{k} :

$$
f_{k}(x):=\left.f\right|_{\Omega_{k}}(x), \quad x \in \Omega_{k}
$$

Then $f_{k} \in L^{p^{\prime}}\left(\Omega_{k}\right)$. Using Lemma 2.1 there exists a unique distributional solution $u_{k} \in W_{0}^{1, p}\left(\Omega_{k}\right)$ such that

$$
\begin{equation*}
-\operatorname{div}\left(a\left(x, \nabla u_{k}\right)\right)=f_{k} \quad \text { in } \Omega_{k} \tag{3.1}
\end{equation*}
$$

for every $k \in \mathbb{N}$.
Step 2. On the other hand, for every $k \in \mathbb{N}$ it follows that (the restriction of the function w to $\left.\Omega_{k}\right)\left.w\right|_{\Omega_{k}} \in W^{1, p}\left(\Omega_{k}\right)$ satisfies

$$
\begin{equation*}
-\operatorname{div}(a(x, \nabla w))=g \quad \text { in } \Omega_{k}, \tag{3.2}
\end{equation*}
$$

in the distributional sense. And the assumption ' $w \geqslant 0$ a.e. in Ω ' leads to $\left(u_{k}-\left.w\right|_{\Omega_{k}}\right)^{+} \in W_{0}^{1, p}\left(\Omega_{k}\right)$ by Lemma 2.2 (ii), that is, $u_{k} \leqslant w$ on $\partial \Omega_{k}$. So we conclude from (3.1) and (3.2) that

$$
u_{k} \leqslant w \quad \text { a.e. in } \Omega_{k} \quad \text { for } k=1,2, \ldots,
$$

with the comparison principle of the type (A) of Section 1 . Combining this inequality and $w \geqslant 0$ a.e. in Ω again, we have

$$
\begin{equation*}
\bar{u}_{k} \leqslant w \quad \text { a.e. in } \Omega \quad \text { for } k=1,2, \ldots, \tag{3.3}
\end{equation*}
$$

where the function \bar{u}_{k} is defined as:

$$
\bar{u}_{k}(x):= \begin{cases}u_{k}(x) & \text { if } x \in \Omega_{k} \tag{3.4}\\ 0 & \text { if } x \in \Omega \backslash \Omega_{k}\end{cases}
$$

Step 3. By Remark 1.1 (i), first note that (3.1) means

$$
\begin{equation*}
\int_{\Omega_{k}} a\left(x, \nabla u_{k}\right) \cdot \nabla \varphi \mathrm{d} x=\int_{\Omega_{k}} f_{k} \varphi \mathrm{~d} x \quad \forall \varphi \in W_{0}^{1, p}\left(\Omega_{k}\right) . \tag{3.5}
\end{equation*}
$$

Substituting $\varphi=u_{k} \in W_{0}^{1, p}\left(\Omega_{k}\right)$ in (3.5) and using condition (a-1), it follows

$$
\begin{aligned}
\alpha\left\|\nabla \bar{u}_{k}\right\|_{L^{p}(\Omega)}^{p} & =\alpha\left\|\nabla u_{k}\right\|_{L^{p}\left(\Omega_{k}\right)}^{p} \\
& \leqslant \int_{\Omega_{k}} a\left(x, \nabla u_{k}\right) \cdot \nabla u_{k} \mathrm{~d} x=\int_{\Omega_{k}} f_{k} u_{k} \mathrm{~d} x \\
& \leqslant\left\|f_{k}\right\|_{L^{p^{\prime}}\left(\Omega_{k}\right)}\left\|u_{k}\right\|_{L^{p}\left(\Omega_{k}\right)} \leqslant\|f\|_{L^{p^{\prime}}(\Omega)}\left\|\bar{u}_{k}\right\|_{L^{p}(\Omega)}
\end{aligned}
$$

for every $k \in \mathbb{N}$. Note that $\bar{u}_{k} \in W_{0}^{1, p}(\Omega)$, thanks to Poincaré's inequality we obtain

$$
\alpha\left\|\nabla \bar{u}_{k}\right\|_{L^{p}(\Omega)}^{p} \leqslant C\|f\|_{L^{p^{\prime}}(\Omega)}\left\|\nabla \bar{u}_{k}\right\|_{L^{p}(\Omega)}
$$

that is

$$
\begin{equation*}
\left\|\nabla \bar{u}_{k}\right\|_{L^{p}(\Omega)}^{p-1} \leqslant \frac{C}{\alpha}\|f\|_{L^{p^{\prime}}(\Omega)} \quad \text { for } k=1,2, \ldots \tag{3.6}
\end{equation*}
$$

where C is a constant. Since $W_{0}^{1, p}(\Omega)(1<p<\infty)$ is reflexive, there exists $v \in$ $W_{0}^{1, p}(\Omega)$ and a subsequence of $\left(\bar{u}_{k}\right)_{k}$, still denoted by $\left(\bar{u}_{k}\right)_{k}$, such that

$$
\bar{u}_{k} \rightharpoonup v \quad \text { weakly in } W_{0}^{1, p}(\Omega) \quad \text { as } k \rightarrow \infty .
$$

Hence, we have that

$$
\begin{equation*}
\bar{u}_{k} \rightarrow v \quad \text { in } L_{\mathrm{loc}}^{p}(\Omega) \quad \text { as } k \rightarrow \infty, \tag{3.7}
\end{equation*}
$$

by Lemma 2.3.
Moreover, using the diagonal method there exists a further subsequence of $\left(\bar{u}_{k}\right)_{k}$, still denoted by $\left(\bar{u}_{k}\right)_{k}$, such that

$$
\begin{equation*}
\bar{u}_{k}(x) \rightarrow v(x) \quad \text { a.e. } x \in \Omega \text { as } k \rightarrow \infty . \tag{3.8}
\end{equation*}
$$

Then passing to the limit in (3.3), we obtain that

$$
\begin{equation*}
v(x) \leqslant w(x) \quad \text { a.e. } x \in \Omega . \tag{3.9}
\end{equation*}
$$

Step 4. To establish our Theorem 1.1 it now suffices to prove that $v \in W_{0}^{1, p}(\Omega)$ in (3.7) satisfies

$$
\begin{equation*}
\int_{\Omega} a(x, \nabla v) \cdot \nabla \varphi \mathrm{d} x=\int_{\Omega} f \varphi \mathrm{~d} x \quad \forall \varphi \in C_{0}^{\infty}(\Omega) . \tag{3.10}
\end{equation*}
$$

Indeed, since u satisfies condition (c-1), it follows that

$$
\begin{equation*}
v(x)=u(x) \quad \text { a.e. in } \Omega, \tag{3.11}
\end{equation*}
$$

by the uniqueness of solutions to (c-1) (see Lemma 2.1). We thus deduce that

$$
u(x)=v(x) \leqslant w(x) \quad \text { a.e. in } \Omega,
$$

from (3.9) and (3.11). This proves Theorem 1.1.

In what follows, we give the proof that $v \in W_{0}^{1, p}(\Omega)$ satisfies (3.10). So fix any $\phi \in C_{0}^{\infty}(\Omega)$. Let ω be an open set such that

$$
\operatorname{supp} \phi \subset \omega \Subset \Omega,
$$

and $\Omega_{k_{0}}$ be such that

$$
\omega \Subset \Omega_{k_{0}}
$$

Fix $h \in C_{0}^{\infty}(\Omega)$ such that

$$
0 \leqslant h(x) \leqslant 1, \quad \operatorname{supp} h \subset \Omega_{k_{0}}, \quad h(x)=1 \text { in a neighborhood of } \omega .
$$

First of all, using the extension of functions outside Ω_{k} by zero like in (3.4), we have from (3.5) that

$$
\begin{equation*}
\int_{\Omega} a\left(x, \nabla \bar{u}_{k}\right) \cdot \nabla \bar{\varphi} \mathrm{d} x=\int_{\Omega} \bar{f}_{k} \bar{\varphi} \mathrm{~d} x \quad \forall \varphi \in W_{0}^{1, p}\left(\Omega_{k}\right) \tag{3.12}
\end{equation*}
$$

for every $k \in \mathbb{N}$. Let $k, l \geqslant k_{0}$. Because of $\operatorname{supp}\left\{h\left(\bar{u}_{k}-\bar{u}_{l}\right)\right\} \subset \Omega_{k_{0}}$ we have

$$
\left.\left\{h\left(\bar{u}_{k}-\bar{u}_{l}\right)\right\}\right|_{\Omega_{k}} \in W_{0}^{1, p}\left(\Omega_{k}\right),\left.\quad\left\{h\left(\bar{u}_{k}-\bar{u}_{l}\right)\right\}\right|_{\Omega_{l}} \in W_{0}^{1, p}\left(\Omega_{l}\right) .
$$

Hence, we can substitute $\left.\left\{h\left(\bar{u}_{k}-\bar{u}_{l}\right)\right\}\right|_{\Omega_{k}}$ for φ in (3.12) and substitute $\left.\left\{h\left(\bar{u}_{k}-\bar{u}_{l}\right)\right\}\right|_{\Omega_{l}}$ for φ in (3.12) replacing k with l. Noting that

$$
\overline{\left.\left\{h\left(\bar{u}_{k}-\bar{u}_{l}\right)\right\}\right|_{\Omega_{k}}}=\overline{\left.\left\{h\left(\bar{u}_{k}-\bar{u}_{l}\right)\right\}\right|_{\Omega_{l}}}=h\left(\bar{u}_{k}-\bar{u}_{l}\right),
$$

we then obtain

$$
\begin{equation*}
\int_{\Omega}\left\{a\left(x, \nabla \bar{u}_{k}\right)-a\left(x, \nabla \bar{u}_{l}\right)\right\} \cdot \nabla\left\{h\left(\bar{u}_{k}-\bar{u}_{l}\right)\right\} \mathrm{d} x=\int_{\Omega}\left(\bar{f}_{k}-\bar{f}_{l}\right) h\left(\bar{u}_{k}-\bar{u}_{l}\right) \mathrm{d} x . \tag{3.13}
\end{equation*}
$$

Since $\bar{f}_{k}(x) h(x)=\bar{f}_{l}(x) h(x)$ a.e. in Ω, we see

$$
\begin{equation*}
(\text { the right-hand side of }(3.13))=0 \tag{3.14}
\end{equation*}
$$

Now we deal with the left-hand side of (3.13). According to condition (a-3), (i), (ii), we get the following two cases.

Case 1: $p \geqslant 2$.
By condition (a-3) (i) and $h \geqslant 0$, it follows that
(3.15) (the left-hand side of (3.13))

$$
\begin{aligned}
& =\int_{\Omega}\left\{a\left(x, \nabla \bar{u}_{k}\right)-a\left(x, \nabla \bar{u}_{l}\right)\right\} \cdot\left\{(\nabla h)\left(\bar{u}_{k}-\bar{u}_{l}\right)+h \nabla\left(\bar{u}_{k}-\bar{u}_{l}\right)\right\} \mathrm{d} x \\
& \geqslant \gamma \int_{\Omega}\left|\nabla\left(\bar{u}_{k}-\bar{u}_{l}\right)\right|^{p} h \mathrm{~d} x+\int_{\Omega}\left\{a\left(x, \nabla \bar{u}_{k}\right)-a\left(x, \nabla \bar{u}_{l}\right)\right\} \cdot(\nabla h)\left(\bar{u}_{k}-\bar{u}_{l}\right) \mathrm{d} x .
\end{aligned}
$$

We deduce from (3.13), (3.14), (3.15) and condition (a-2) that

$$
\begin{aligned}
\gamma \int_{\omega}\left|\nabla\left(\bar{u}_{k}-\bar{u}_{l}\right)\right|^{p} \mathrm{~d} x & \leqslant \gamma \int_{\Omega}\left|\nabla\left(\bar{u}_{k}-\bar{u}_{l}\right)\right|^{p} h \mathrm{~d} x \\
& \leqslant-\int_{\Omega}\left\{a\left(x, \nabla \bar{u}_{k}\right)-a\left(x, \nabla \bar{u}_{l}\right)\right\} \cdot(\nabla h)\left(\bar{u}_{k}-\bar{u}_{l}\right) \mathrm{d} x \\
& \leqslant \int_{\Omega_{k_{0}}}\left\{\left|a\left(x, \nabla \bar{u}_{k}\right)\right|+\left|a\left(x, \nabla \bar{u}_{l}\right)\right|\right\}\left|\nabla h \| \bar{u}_{k}-\bar{u}_{l}\right| \mathrm{d} x \\
& \leqslant \beta\|\nabla h\|_{L^{\infty}(\Omega)} \int_{\Omega_{k_{0}}}\left\{\left|\nabla \bar{u}_{k}\right|^{p-1}+\left|\nabla \bar{u}_{l}\right|^{p-1}\right\}\left|\bar{u}_{k}-\bar{u}_{l}\right| \mathrm{d} x .
\end{aligned}
$$

Using Hölder's inequality and (3.6), we have

$$
\begin{aligned}
\left\|\nabla\left(\bar{u}_{k}-\bar{u}_{l}\right)\right\|_{L^{p}(\omega)}^{p} & \leqslant \frac{\beta}{\gamma}\|\nabla h\|_{L^{\infty}(\Omega)}\left\{\left\|\nabla \bar{u}_{k}\right\|_{L^{p}(\Omega)}^{p-1}+\left\|\nabla \bar{u}_{l}\right\|_{L^{p}(\Omega)}^{p-1}\right\}\left\|\bar{u}_{k}-\bar{u}_{l}\right\|_{L^{p}\left(\Omega_{k_{0}}\right)} \\
& \leqslant 2 \frac{C \beta}{\alpha \gamma}\|\nabla h\|_{L^{\infty}(\Omega)}\|f\|_{L^{p^{\prime}}(\Omega)}\left\|\bar{u}_{k}-\bar{u}_{l}\right\|_{L^{p}\left(\Omega_{k_{0}}\right)} .
\end{aligned}
$$

The above inequality and (3.7) implies that $\left(\left.\bar{u}_{k}\right|_{\omega}\right)_{k}$ is a Cauchy sequence in $W^{1, p}(\omega)$. By the completeness of $W^{1, p}(\omega)$ and (3.7) again, we consequently obtain

$$
\begin{equation*}
\left.\left.\bar{u}_{k}\right|_{\omega} \rightarrow v\right|_{\omega} \quad \text { in } W^{1, p}(\omega) \quad \text { as } k \rightarrow \infty . \tag{3.16}
\end{equation*}
$$

Case 2: $1<p<2$.
Write

$$
A\left(u_{k}, u_{l}\right):=\left\{x \in \Omega ;\left|\nabla \bar{u}_{k}(x)\right|+\left|\nabla \bar{u}_{l}(x)\right|>0\right\}
$$

and set for every $0<\varepsilon<1$ that

$$
\begin{aligned}
B^{\varepsilon-}\left(u_{k}, u_{l}\right) & :=\left\{x \in \Omega ; \frac{\left|\nabla\left(\bar{u}_{k}-\bar{u}_{l}\right)(x)\right|}{\left|\nabla \bar{u}_{k}(x)\right|+\left|\nabla \bar{u}_{l}(x)\right|}>\varepsilon\right\} \cap A\left(u_{k}, u_{l}\right), \\
B^{\varepsilon+}\left(u_{k}, u_{l}\right) & :=\left\{x \in \Omega ; \frac{\left|\nabla\left(\bar{u}_{k}-\bar{u}_{l}\right)(x)\right|}{\left|\nabla \bar{u}_{k}(x)\right|+\left|\nabla \bar{u}_{l}(x)\right|} \leqslant \varepsilon\right\} \cap A\left(u_{k}, u_{l}\right) .
\end{aligned}
$$

First we have

$$
\begin{align*}
\int_{\omega} & \left|\nabla\left(\bar{u}_{k}-\bar{u}_{l}\right)\right|^{p} \mathrm{~d} x=\int_{\omega \cap A\left(u_{k}, u_{l}\right)}\left|\nabla\left(\bar{u}_{k}-\bar{u}_{l}\right)\right|^{p} \mathrm{~d} x \tag{3.17}\\
& =\int_{\omega \cap B^{\varepsilon-\left(u_{k}, u_{l}\right)}}\left|\nabla\left(\bar{u}_{k}-\bar{u}_{l}\right)\right|^{p} \mathrm{~d} x+\int_{\omega \cap B^{\varepsilon+\left(u_{k}, u_{l}\right)}}\left|\nabla\left(\bar{u}_{k}-\bar{u}_{l}\right)\right|^{p} \mathrm{~d} x .
\end{align*}
$$

We estimate two terms of (3.17).
The first term:

By condition (a-3) (ii), it follows that
(3.18) (the left-hand side of (3.13))

$$
\begin{aligned}
= & \int_{\Omega_{k_{0}}}\left\{a\left(x, \nabla \bar{u}_{k}\right)-a\left(x, \nabla \bar{u}_{l}\right)\right\} \cdot\left\{(\nabla h)\left(\bar{u}_{k}-\bar{u}_{l}\right)+h \nabla\left(\bar{u}_{k}-\bar{u}_{l}\right)\right\} \mathrm{d} x \\
\geqslant & \gamma \int_{\Omega_{k_{0}} \cap A\left(u_{k}, u_{l}\right)} h\left\{\left|\nabla \bar{u}_{k}\right|+\left|\nabla \bar{u}_{l}\right|\right\}^{p-2}\left|\nabla\left(\bar{u}_{k}-\bar{u}_{l}\right)\right|^{2} \mathrm{~d} x \\
& +\int_{\Omega_{k_{0}}}\left\{a\left(x, \nabla \bar{u}_{k}\right)-a\left(x, \nabla \bar{u}_{l}\right)\right\} \cdot(\nabla h)\left(\bar{u}_{k}-\bar{u}_{l}\right) \mathrm{d} x .
\end{aligned}
$$

Therefore, we have

$$
\begin{align*}
& \gamma \varepsilon^{2-p} \int_{\omega \cap B^{\varepsilon-\left(u_{k}, u_{l}\right)}}\left|\nabla\left(\bar{u}_{k}-\bar{u}_{l}\right)\right|^{p} \mathrm{~d} x \tag{3.19}\\
& \leqslant \gamma \varepsilon^{2-p} \int_{\Omega_{k_{0}} \cap B^{\varepsilon-\left(u_{k}, u_{l}\right)}} h\left|\nabla\left(\bar{u}_{k}-\bar{u}_{l}\right)\right|^{p} \mathrm{~d} x \\
& \leqslant \gamma \int_{\Omega_{k_{0}} \cap B^{\varepsilon-\left(u_{k}, u_{l}\right)}} h\left(\frac{\left|\nabla\left(\bar{u}_{k}-\bar{u}_{l}\right)(x)\right|}{\left|\nabla \bar{u}_{k}(x)\right|+\left|\nabla \bar{u}_{l}(x)\right|}\right)^{2-p}\left|\nabla\left(\bar{u}_{k}-\bar{u}_{l}\right)\right|^{p} \mathrm{~d} x \\
&= \gamma \int_{\Omega_{k_{0}} \cap B^{\varepsilon-\left(u_{k}, u_{l}\right)}} h\left\{\left|\nabla \bar{u}_{k}\right|+\left|\nabla \bar{u}_{l}\right|\right\}^{p-2}\left|\nabla\left(\bar{u}_{k}-\bar{u}_{l}\right)\right|^{2} \mathrm{~d} x \\
& \leqslant \gamma \int_{\Omega_{k_{0}} \cap B^{\varepsilon-\left(u_{k}, u_{l}\right)}} h\left\{\left|\nabla \bar{u}_{k}\right|+\left|\nabla \bar{u}_{l}\right|\right\}^{p-2}\left|\nabla\left(\bar{u}_{k}-\bar{u}_{l}\right)\right|^{2} \mathrm{~d} x \\
& \quad+\int_{\Omega_{k_{0}} \cap B^{\varepsilon+\left(u_{k}, u_{l}\right)}} h\left\{\left|\nabla \bar{u}_{k}\right|+\left|\nabla \bar{u}_{l}\right|\right\}^{p-2}\left|\nabla\left(\bar{u}_{k}-\bar{u}_{l}\right)\right|^{2} \mathrm{~d} x \\
&= \gamma \int_{\Omega_{k_{0}} \cap A\left(u_{k}, u_{l}\right)} h\left\{\left|\nabla \bar{u}_{k}\right|+\left|\nabla \bar{u}_{l}\right|\right\}^{p-2}\left|\nabla\left(\bar{u}_{k}-\bar{u}_{l}\right)\right|^{2} \mathrm{~d} x \\
& \leqslant-\int_{\Omega_{k_{0}}}\left\{a\left(x, \nabla \bar{u}_{k}\right)-a\left(x, \nabla \bar{u}_{l}\right)\right\} \cdot(\nabla h)\left(\bar{u}_{k}-\bar{u}_{l}\right) \mathrm{d} x
\end{align*}
$$

(here we used (3.13), (3.14), and (3.18))

$$
\leqslant \beta\|\nabla h\|_{L^{\infty}(\Omega)} \int_{\Omega_{k_{0}}}\left\{\left|\nabla \bar{u}_{k}\right|^{p-1}+\left|\nabla \bar{u}_{l}\right|^{p-1}\right\}\left|\bar{u}_{k}-\bar{u}_{l}\right| \mathrm{d} x
$$

(here we used condition (a-2))

$$
\leqslant \beta\|\nabla h\|_{L^{\infty}(\Omega)}\left\{\left\|\nabla \bar{u}_{k}\right\|_{L^{p}(\Omega)}^{p-1}+\left\|\nabla \bar{u}_{l}\right\|_{L^{p}(\Omega)}^{p-1}\right\}\left\|\bar{u}_{k}-\bar{u}_{l}\right\|_{L^{p}\left(\Omega_{k_{0}}\right)}
$$

$$
\leqslant 2 \beta\|\nabla h\|_{L^{\infty}(\Omega)}\left(\frac{C}{\alpha}\|f\|_{L^{p^{\prime}}(\Omega)}\right)\left\|\bar{u}_{k}-\bar{u}_{l}\right\|_{L^{p}\left(\Omega_{k_{0}}\right)}
$$

(here we used (3.6)).
On the other hand, since it follows that

$$
\begin{equation*}
\left|\nabla\left(\bar{u}_{k}-\bar{u}_{l}\right)\right| \leqslant \varepsilon\left(\left|\nabla \bar{u}_{k}\right|+\left|\nabla \bar{u}_{l}\right|\right) \quad \text { a.e. in } \omega \cap B^{\varepsilon+}\left(u_{k}, u_{l}\right), \tag{3.20}
\end{equation*}
$$

we obtain from (3.20) that

$$
\begin{align*}
& \left\|\nabla\left(\bar{u}_{k}-\bar{u}_{l}\right)\right\|_{L^{p}\left(\omega \cap B^{\left.\varepsilon+\left(u_{k}, u_{l}\right)\right)}\right.}^{p}=\int_{\omega \cap B^{\varepsilon+\left(u_{k}, u_{l}\right)}}\left|\nabla\left(\bar{u}_{k}-\bar{u}_{l}\right)\right|^{p} \mathrm{~d} x \tag{3.21}\\
& \quad \leqslant \varepsilon^{p} \int_{\omega \cap B^{\varepsilon+\left(u_{k}, u_{l}\right)}}\left(\left|\nabla \bar{u}_{k}\right|+\left|\nabla \bar{u}_{l}\right|\right)^{p} \mathrm{~d} x \leqslant \varepsilon^{p}\left\|\left|\nabla \bar{u}_{k}\right|+\left|\nabla \bar{u}_{l}\right|\right\|_{L^{p}(\Omega)}^{p} \\
& \quad \leqslant 2^{p} \varepsilon^{p}\left(\frac{C}{\alpha}\|f\|_{L^{p^{\prime}}(\Omega)}\right)^{p /(p-1)}
\end{align*}
$$

Consequently, we deduce from (3.19) and (3.21) that

$$
\begin{align*}
& \int_{\omega}\left|\nabla\left(\bar{u}_{k}-\bar{u}_{l}\right)\right|^{p} \mathrm{~d} x \tag{3.22}\\
&= \int_{\omega \cap B^{\varepsilon-}\left(u_{k}, u_{l}\right)}\left|\nabla\left(\bar{u}_{k}-\bar{u}_{l}\right)\right|^{p} \mathrm{~d} x+\int_{\left.\omega \cap B^{\varepsilon+(} u_{k}, u_{l}\right)}\left|\nabla\left(\bar{u}_{k}-\bar{u}_{l}\right)\right|^{p} \mathrm{~d} x \\
& \leqslant \frac{2 \beta}{\gamma \varepsilon^{2-p}}\|\nabla h\|_{L^{\infty}(\Omega)}\left(\frac{C}{\alpha}\|f\|_{L^{p^{\prime}}(\Omega)}\right)\left\|\bar{u}_{k}-\bar{u}_{l}\right\|_{L^{p}\left(\Omega_{k_{0}}\right)} \\
&+2^{p} \varepsilon^{p}\left(\frac{C}{\alpha}\|f\|_{L^{p^{\prime}}(\Omega)}\right)^{p /(p-1)}
\end{align*}
$$

From (3.7) it follows that
(3.23) (the right-hand side of $(3.22)) \rightarrow 2^{p} \varepsilon^{p}\left(\frac{C}{\alpha}\|f\|_{L^{p^{\prime}}(\Omega)}\right)^{p /(p-1)} \quad$ as $k, l \rightarrow \infty$,
and since $0<\varepsilon<1$ is arbitrary, we can see from (3.22) and (3.23) that $\left(\left.\bar{u}_{k}\right|_{\omega}\right)_{k \geqslant k_{0}}$ is a Cauchy sequence in $W^{1, p}(\omega)$. By the completeness of $W^{1, p}(\omega)$ and (3.7) again, we consequently obtain

$$
\begin{equation*}
\left.\left.\bar{u}_{k}\right|_{\omega} \rightarrow v\right|_{\omega} \quad \text { in } W^{1, p}(\omega) \quad \text { as } k \rightarrow \infty \tag{3.24}
\end{equation*}
$$

Thus, we have for $1<p<\infty$

$$
\begin{equation*}
\left.\left.\bar{u}_{k}\right|_{\omega} \rightarrow v\right|_{\omega} \quad \text { in } W^{1, p}(\omega) \quad \text { as } k \rightarrow \infty \tag{3.25}
\end{equation*}
$$

from (3.16) and (3.24). Now remember that \bar{u}_{k} as $k \in \mathbb{N}$ satisfy (3.12) and $\phi \in$ $C_{0}^{\infty}(\Omega), \operatorname{supp} \phi \subset \omega \Subset \Omega_{k}$ as $k \geqslant k_{0}$. Hence, we have from (3.12) that

$$
\begin{equation*}
\int_{\Omega} a\left(x, \nabla \bar{u}_{k}\right) \cdot \nabla \phi \mathrm{d} x=\int_{\Omega} \bar{f}_{k} \phi \mathrm{~d} x \quad \forall k \geqslant k_{0} . \tag{3.26}
\end{equation*}
$$

Passing to the limit for $k \rightarrow \infty$

$$
\begin{equation*}
\text { (the right-hand side of }(3.26)) \rightarrow \int_{\Omega} f \phi \mathrm{~d} x \tag{3.27}
\end{equation*}
$$

by the definition of \bar{f}_{k}, on the other hand,

$$
\begin{equation*}
(\text { the left-hand side of }(3.26)) \rightarrow \int_{\Omega} a(x, \nabla v) \cdot \nabla \phi \mathrm{d} x \tag{3.28}
\end{equation*}
$$

as follows.
Pro of of (3.28). We can prove (3.28) as in [10], step 3 in the proof of Lemma 2.3. Indeed, set

$$
\left(N_{a} \xi\right)(x)=a(x, \xi(x)) \quad\left(=\left(a_{1}(x, \xi(x)), \ldots, a_{N}(x, \xi(x))\right)\right),
$$

for any $\xi=\left(\xi_{1}, \ldots, \xi_{N}\right) \in\left(L^{p}(\Omega)\right)^{N}$. Then we can use Nemitski's composition theorem ([1], Theorem 3.6, [7], Section 3.6, Corollary 3, note that Nemitski's composition theorem is valid for any open set Ω) from condition (a-2) and obtain that the operator $N_{a}:\left(L^{p}(\Omega)\right)^{N} \rightarrow\left(L^{p^{\prime}}(\Omega)\right)^{N}$ is continuous. Using this with ω and $\nabla \bar{u}_{k}$ instead of Ω and ξ, respectively, it follows

$$
N_{a}\left(\nabla \bar{u}_{k}\right) \rightarrow N_{a}(\nabla v) \quad \text { in }\left(L^{p^{\prime}}(\omega)\right)^{N} \quad \text { as } k \rightarrow \infty
$$

from (3.25). This is equivalent to

$$
\left\|a\left(\cdot,\left(\nabla \bar{u}_{k}\right)(\cdot)\right)-a(\cdot,(\nabla v)(\cdot))\right\|_{L^{p^{\prime}}(\omega)} \rightarrow 0 \quad \text { as } k \rightarrow \infty .
$$

Accordingly, noting that $\operatorname{supp} \phi \subset \omega$, it follows that

$$
\begin{aligned}
& \left|\int_{\Omega} a\left(x, \nabla \bar{u}_{k}(x)\right) \cdot \nabla \phi(x) \mathrm{d} x-\int_{\Omega} a(x, \nabla v(x)) \cdot \nabla \phi(x) \mathrm{d} x\right| \\
& \quad \leqslant \int_{\omega}\left|a\left(x, \nabla \bar{u}_{k}(x)\right)-a(x, \nabla v(x))\right| \| \nabla \phi(x) \mid \mathrm{d} x \\
& \quad \leqslant\left\|a\left(\cdot,\left(\nabla \bar{u}_{k}\right)(\cdot)\right)-a(\cdot,(\nabla v)(\cdot))\right\|_{L^{p^{\prime}}(\omega)}\|\nabla \phi\|_{L^{p}(\omega)} \rightarrow 0 \quad \text { as } k \rightarrow \infty .
\end{aligned}
$$

Thus we arrive at (3.28).
Consequently, we deduce from (3.26), (3.27), and (3.28) that $v \in W_{0}^{1, p}(\Omega)$ satisfies

$$
\int_{\Omega} a(x, \nabla v) \cdot \nabla \phi \mathrm{d} x=\int_{\Omega} f \phi \mathrm{~d} x .
$$

This concludes the proof of Theorem 1.1.

4. Application

In this section we give an application to our result. As mentioned in Section 1, we follow [3], Theorem 17.7.

Let S_{ν} be a strip-like domain such that

$$
S_{\nu}=\left\{x \in \mathbb{R}^{N} ;\left(x-x_{0}\right) \cdot \nu \in(-a, a)\right\}
$$

for some $a>0$ and $x_{0} \in \mathbb{R}^{N}$, where ν is a unit vector and a dot denotes the scalar product in \mathbb{R}^{N}. Let $\Omega \subset S_{\nu}$ be an open set. We assume that $u \in W_{0}^{1, p}(\Omega)$, $1<p<\infty$, satisfies

$$
\begin{equation*}
-\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)=f \quad \text { in } \Omega \tag{4.1}
\end{equation*}
$$

in the distributional sense with $f \in L^{\infty}(\Omega) \cap L^{p^{\prime}}(\Omega), 1 / p+1 / p^{\prime}=1$. Then we conclude that $u \in L^{\infty}(\Omega)$ and

$$
\begin{equation*}
\|u\|_{L^{\infty}(\Omega)} \leqslant \frac{p-1}{p} a^{p /(p-1)}\left(\|f\|_{L^{\infty}(\Omega)}\right)^{1 /(p-1)} . \tag{4.2}
\end{equation*}
$$

Indeed, first we set $\alpha:=1+1 /(p-1)$ and

$$
\widetilde{w}(x):=a^{\alpha}-\left|\left(x-x_{0}\right) \cdot \nu\right|^{\alpha}(\geqslant 0) \quad \text { in } \Omega .
$$

Then we see $\widetilde{w} \in W_{\text {loc }}^{1, p}(\Omega)$ (note that \widetilde{w} does not belong to $W^{1, p}(\Omega)$ in general when the open set $\Omega\left(\subset S_{\nu}\right)$ is unbounded). A simple computing leads us to

$$
\nabla \widetilde{w}=-\alpha\left|\left(x-x_{0}\right) \cdot \nu\right|^{\alpha-1}\left\{\operatorname{sgn}\left(\left(x-x_{0}\right) \cdot \nu\right)\right\} \nu
$$

where sgn function is defined by

$$
\operatorname{sgn}(t):= \begin{cases}1 & \text { if } t>0 \\ 0 & \text { if } t=0 \\ -1 & \text { if } t<0\end{cases}
$$

So we have

$$
|\nabla \widetilde{w}|^{p-2}=\alpha^{p-2}\left|\left(x-x_{0}\right) \cdot \nu\right|^{(\alpha-1)(p-2)} .
$$

Therefore, noting $(\alpha-1)+(\alpha-1)(p-2)=(\alpha-1)(p-1)=1$, it follows that

$$
\begin{aligned}
|\nabla \widetilde{w}|^{p-2} \nabla \widetilde{w} & =-\alpha^{p-1}\left|\left(x-x_{0}\right) \cdot \nu\right|^{(\alpha-1)+(\alpha-1)(p-2)}\left\{\operatorname{sgn}\left(\left(x-x_{0}\right) \cdot \nu\right)\right\} \nu \\
& =-\alpha^{p-1}\left|\left(x-x_{0}\right) \cdot \nu\right|\left\{\operatorname{sgn}\left(\left(x-x_{0}\right) \cdot \nu\right)\right\} \nu \\
& =-\alpha^{p-1}\left(\left(x-x_{0}\right) \cdot \nu\right) \nu
\end{aligned}
$$

and after a simple computation we obtain

$$
\begin{equation*}
-\operatorname{div}\left(|\nabla \widetilde{w}|^{p-2} \nabla \widetilde{w}\right)=\alpha^{p-1} \tag{4.3}
\end{equation*}
$$

Therefore, setting $w:=\alpha^{-1}\|f\|_{L^{\infty}(\Omega)}^{1 /(p-1)} \widetilde{w}\left(\in W_{\text {loc }}^{1, p}(\Omega)\right)$, then noting that

$$
|\nabla w|^{p-2} \nabla w=\frac{1}{\alpha^{p-1}}\|f\|_{L^{\infty}(\Omega)}|\nabla \widetilde{w}|^{p-2} \nabla \widetilde{w}
$$

we derive from (4.3) that

$$
\begin{equation*}
-\operatorname{div}\left(|\nabla w|^{p-2} \nabla w\right)=\|f\|_{L^{\infty}(\Omega)} \tag{4.4}
\end{equation*}
$$

Since $f \leqslant\|f\|_{L^{\infty}(\Omega)}$ as a matter of course, combining it with (4.1), (4.4), and $w \geqslant 0$ in Ω, we can apply Corollary 1.2 . Hence, we conclude that

$$
u \leqslant w=\frac{1}{\alpha}\|f\|_{L^{\infty}(\Omega)}^{1 /(p-1)} \widetilde{w} .
$$

Since $-u$ is a solution to (4.1) corresponding to $-f$, we have

$$
|u| \leqslant w=\frac{1}{\alpha}\|f\|_{L^{\infty}(\Omega)}^{1 /(p-1)} \widetilde{w} .
$$

Finally, noting

$$
\frac{1}{\alpha}=\frac{p-1}{p} \quad \text { and } \quad 0 \leqslant \widetilde{w} \leqslant a^{\alpha}=a^{p /(p-1)}
$$

we obtain (4.2).
Remark 4.1. In the above consideration, $u \in W_{0}^{1, p}(\Omega) \subset W^{1, p}(\Omega)$, however, w does not belong to $W^{1, p}(\Omega)$ in general when the open set $\Omega\left(\subset S_{\nu}\right)$ is unbounded. Therefore, the elementary comparison principle of the type (A) of Section 1 cannot be applied to the above inference.

References

[1] L. Boccardo, G. Croce: Elliptic Partial Differential Equations. Existence and Regularity of Distributional Solutions. De Gruyter Studies in Mathematics 55, De Gruyter, Berlin, 2013.
zbl MR doi
[2] H. Brezis: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Universitext, Springer, New York, 2011.
[3] M. Chipot: Elliptic Equations: An Introductory Course. Birkhäuser Advanced Texts. Basler Lehrbücher, Birkhäuser, Basel, 2009.
[4] L.Damascelli: Comparison theorems for some quasilinear degenerate elliptic operators and applications to symmetry and monotonicity results. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 15 (1998), 493-516.
[5] L. D'Ambrosio, A. Farina, E. Mitidieri, J. Serrin: Comparison principles, uniqueness and symmetry results of solutions of quasilinear elliptic equations and inequalities. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 90 (2013), 135-158.
zbl MR doi
[6] L. D'Ambrosio, E. Mitidieri: A priori estimates and reduction principles for quasilinear elliptic problems and applications. Adv. Differ. Equ. 17 (2012), 935-1000.
zbl MR
[7] D. Mitrović, D. Žubrinić: Fundamentals of Applied Functional Analysis. Distribu-tions-Sobolev Spaces-Nonlinear Elliptic Equations. Pitman Monographs and Surveys in Pure and Applied Mathematics 91, Longman, Harlow, 1998.
[8] D. Motreanu, V. V. Motreanu, N. Papageorgiou: Topological and Variational Methods with Applications to Nonlinear Boundary Value Problems. Springer, New York, 2014. zbl MR doi
[9] P. Tolksdorf: On the Dirichlet problem for quasilinear equations in domains with conical boundary points. Commun. Partial Differ. Equations 8 (1983), 773-817.
zbl MR doi
[10] A. Unai: Sub- and super-solutions method for some quasilinear elliptic operators. Far East J. Math. Sci. (FJMS) 99 (2016), 851-867.
zbl doi

Author's address: Akihito Unai, Department of Applied Mathematics, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-0825, Japan, e-mail: unai@ rs.kagu.tus.ac.jp.

