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Abstract. We shall prove a weak comparison principle for quasilinear elliptic operators
—div(a(z, Vu)) that includes the negative p-Laplace operator, where a: Q x RN — RY
satisfies certain conditions frequently seen in the research of quasilinear elliptic operators.
In our result, it is characteristic that functions which are compared belong to different
spaces.
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1. INTRODUCTION AND STATEMENT OF THE RESULT

There are many comparison principles (maximum principles) for the second order
elliptic differential operators (see [4], [5], [6], [8], [9]). The comparison principle
implies the unique solvability and some regularity results of solutions to elliptic
differential equations.

In this paper, we shall study a weak comparison principle for some quasilinear
elliptic operators. In our case, it is characteristic that functions which are compared
belong to different spaces. Let Q be an open set in R" (additional restriction will
be imposed according to situations in the sequel) and 1 < p < co. We consider
a Carathéodory map a: 2 x RY — RN which satisfies the following conditions (a-1),
(a-2), (a-3):

(a-1) there exists @ > 0 depending on p such that

a(z, £) - €= alflP ae. x€QVEERY,
a dot denotes here the Euclidean scalar product in RY,
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(a-2) there exists 8 > 0 depending on p such that
la(z, I < BIEP™ ae zeQVEERY,

(a-3) there exists v > 0 depending on p such that if p > 2, then
(1) {a(@,&) —alz, n)}- (E—n) =€ —n” ae. 2 € Q, forall §, n € RY,
and if 1 < p < 2, then
(i) {a(z,8) —alz,m)} - (€—n) =g+ n}P~2[€ —nf* ae. 2 € Q, for all &,
n € RN with |¢] + |n| > 0.

The above conditions (a-1), (a-2), (a-3) are frequently seen in the research of
quasilinear elliptic operators (see [4]). We consider the operator —div(a(z, Vu))
generated by the Carathéodory map a mentioned above. The simple model case is
the negative p-Laplace operator. We can now state our theorem:

Theorem 1.1. Let ©Q be an open set in RN bounded in one direction and
l<p<oo, 1/p+1/p’ =1. Assume the above conditions (a-1), (a-2), (a-3). Let
feL’(Q) andge LfolC(Q). Furthermore, assume that u € Wy™*(Q), w € WL P(Q)
with w > 0 a.e. in Q and f, g satisty the following conditions (c-1), (¢-2), (c-3):
(c-1) —div(a(z,Vu)) = f in Q (in the distributional sense),

(c-2) —div(a(x, Vw)) = g in Q (in the distributional sense),
(c-3) f

Then u

g a.e. in Q.
w

NN

a.e. in .

Remark 1.1. (i) For example, (c-1) means that
(1.1) / a(z,Vu) - Vodr = / fedz Ve Cie(Q).
Q Q

Since C§°(Q) is dense in the space W, (), using condition (a-2) we see that (1.1)
holds for any ¢ € WP ().

(i) When w € W,LP(Q) satisfies the above condition (c-2), w; := w + c satisfies
the same condition (c-2) for all ¢ € R as well. Therefore, it follows from Theorem 1.1
that u < wy a.e. in ) whenever there exists a constant ¢ € R such that w; = w+c¢ >0

a.e. in Q.

In the following, we use the so-called positive part and negative part of a (real
valued) function u, defined by

ut =u(z)" = max{u(z),0}, w  =u(z)” = —min{u(z),0}.
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As an elementary comparison principle for the operator —div(a(z, Vu)), the next
one is well-known.

(A) Let Q be an open set in RY and 1 < p < oo. Let the Carathéodory map a
satisfy conditions (a-2) and (a-3)" instead of (a-3) as follows:

(a-3)  H{a(x,€) —alx,n)}-(E—n)>0ae xeQforall, ne RN, &£
Assume that u; € WHP(Q), i = 1,2, satisfy the following:

(1.2) —div(a(x, Vuy)) < —div(a(z, Vug)) in Q,

in the sense of distributions, that is,

(1.3) / a(x,Vuy) - Vodr < / a(x,Vug) - Vedz Yo e C((Q), ¢ > 0.
Q Q

(Then note that (1.3) holds for any ¢ € W;P(Q) with ¢ > 0 a.e. in Q by the
argument of density and condition (a-2).)

Furthermore, suppose that u; < ug on 9Q (this means (u; — ug)™ € Wol’p(Q) in
the definition). Then u; < ug a.e. in .

On the other hand, it needs various devices to compare functions u; € Wﬁ)f (Q),
i=1,2 (see [5], [6]). Applying [6], Theorem 4.8 to the operator —div(a(z, Vu)), for
example, we can have the following result:

(B) Let Q be a bounded open set in RV and 1 < p < co. Let the Carathéodory
map a satisfy conditions (a-2) and (a-3)’. Assume that u; € Wﬁ)f(ﬂ), i=1,2,
satisfy (1.2) in the sense of distributions and u; < ug on 9. Then it follows that
up < ug a.e. in €.

Though this is a fine assertion, in this case, the inequality ‘u; < ug on 92" means
that for every e there exists a neighborhood V of 02 such that for a.e. x € V we
have ui(x) < ua(x) + € (see [6], p. 954, Section 4.1). Therefore, to apply this result
we need to know the situation of u;, ¢ = 1,2, in a neighborhood of 02 in advance.
Moreover, it needs the boundedness of (2.

In our Theorem 1.1, only w belongs to the space Wﬁ)f(ﬂ) and u belongs to the
“good“ space VVO1 P(Q), however, the open set { may be unbounded as long as it is
bounded in one direction and there is no difficulty for the corresponding condition to
‘u; < ug on 9. Needless to say, though u and w belong to the same space Wéf(ﬂ)
in our case, we use essentially that u belongs to the space VVO1 P(Q). In this sense,
functions u and w belong to different spaces. Our assertion is different from others
in this viewpoint.

Especially, setting a(x,£) = [£|P~2¢ in Theorem 1.1, we immediately obtain the
next corollary for the negative p-Laplace operator —A:

—Apu = —div(|Vul[P~2Vu).
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Corollary 1.2. Let Q be an open set in RY bounded in one direction and 1 <
p<oo, 1/p+1/p' =1. Let f € L”(Q) and g € LY, (). Assume that u € W, "(Q),

w € Wli)Cp(Q) with w > 0 a.e. in Q and f, g satisfy the following conditions (i),
(i), (ii):
(i) —Apu = f in Q (in the distributional sense),
(ii) —A,w = g in Q (in the distributional sense),
(i) f < g a.e. in Q.
Then

u<w a.e in.

Remark 1.2. Note that conditions (a-1), (a-2), (a-3) are automatically satisfied
for a(x,&) = [€]P72¢ with 1 < p < 0.

As a simple application to our result, we can show the boundedness of the distri-
butional solution to the p-Laplace equation under the Dirichlet boundary condition.
This boundedness result has already been obtained by [3], Theorem 17.7 when € is
bounded, however, we consider the proof is not applicable when 2 is bounded in only
one direction. Therefore, we demonstrate that the proof of [3], Theorem 17.7 is still
valid for domains 2 which are bounded in only one direction with our Corollary 1.2.

2. LEMMAS

In this section we give three lemmas to prove our theorem. The first one is well-

known.

Lemma 2.1. Let € be an open set in RY bounded in one direction and 1 < p < oo,
1/p+1/p’ = 1. Assume a Carathéodory map a:  x RN — RY satisfies conditions

/

(a-1), (a-2), (a-3)’, which have already been mentioned. Then for every f € L ()
there exists a unique distributional solution u € VVO1 "P(Q) such that

—div(a(z,Vu)) = f inQ.

The next statement is mentioned in [10], Lemma 2.2.

Lemma 2.2. Let Q be an open set in RY and 1 < p < oo.
(i) Let v e W'?(Q) and v+, w € W, P(Q). Then we have

(v—w)*, (w=2)", (w+o)t, (~w—v)" € W"(Q).
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(i) Let v e WhP(Q) and v, w € Wy?(Q). Then we have

(—v—w)*, (w+0)7, (w—v)", (~w+v)” € WyP(Q).

The next statement is concerned with the Sobolev compact embedding.

Lemma 2.3. Let Q2 be an open set in RY and 1 < p < co. Assume that (uy)y, is
a sequence in W, '* () and there exists v € W) *(Q) such that

2.1 up — v  weakly in WP(Q)  as k — oo.
0

Then
up, — v in LY (Q) ask — oo.

Remark 2.1. The conclusion of Lemma 2.3 remains valid if the space W, (Q)
is replaced by W1?(Q).

Proof. We use the notation “w € Q2" when w is strongly included in 2, i.e. @
(the closure of w in RY) is compact and @ C .

Take any open set U € €. Fix a function A € C§°(2) such that A(z) = 1 in U.
Let Uy be a bounded open set such that

supp A C Uy € Q,
here “supp A” means support of a function A. First, we easily see that
(2.2) (Mup)lo, € WP (Ux) and  (Mo)|u, € Wy (Un),

here f|y, denotes the restriction of the function f to Ux. Furthermore, it follows
from assumption (2.1) that

(2.3) (Aug)|v, = W)y,  weakly in WP (Uy) as k — oo.

Indeed, let F € W12 (U,) (the dual space of W,"*(Uy)), where 1/p+1/p = 1.
From the representation theorem of the continuous linear functional on WO1 P(Uy)
(see [2], Prop. 9.20), there exist functions fo, f1,..., fn € L”l(UA) such that

(2-4) <F7 ()\uk)|U>\>W—1,P'(U/\)’W(}*p(U/\)

3

N
0
= fO()\'Ufk)dQT‘f' E fz—()\uk)dx
Ux = Ju," 0

— f(Au)dx+§N:/ f(aAu +)\auk)dx
- 0 k i\ 5 Uk a_
Uax —1 Ui 81)1' 8.1}'1

N oA N du
= for+ fi—)u dx + / fid 2k A
[ (+ Sty Jmwar+ 3 [ g
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We denote by f;, i =0,1,..., N its extension by zero outside Uy, that is,

_ B filz) if x € Uy,
fi(x){o if 2 € Q\ Uy,

Using the representation theorem of the continuous linear functional on WO1 P(Q)
(not on Wy P(Uy)) this time and assumption (2.1), we have from (2.4) that

<Fa (/\uk)|UA>W—1:P’(U,\),Wol”’(U,\)

N N
:/(fO)\‘f'Zfi%)ukdx‘f'Z/(fi)\)%d
—>/(f0/\+Zfz >vdx+§j/ (FN) o

/fo/\v d:c+Z/fz / fo(Mw) dx+z Av) da

= (F, ()3 w10 0y, wir (0y)

as k — oo. This implies (2.3).
Since U, is a bounded open set, by the Sobolev compact embedding VVO1 P(Uy) —
L?(Uy) we obtain from (2.2) and (2.3) that
(Aug)lu, = (W)|u, in LP(Uy) as k — oo,
without any regularity assumption on Uy. Considering U instead of Uy, it follows

uglo = vlg in LP(U) as k — oo.

This proves Lemma 2.3. O

3. PROOF OF OUR THEOREM

We give the proof of our Theorem 1.1 in this section.

Proof of Theorem 1.1. We divide our proof into four steps.
Step 1. Take a sequence of open sets 2 as k = 1,2, ... such that

Q= U Qi, Q € Qi1 (see proof of Lemma 2.3).
k=1
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Now let fx be the restriction of the function f to :

fe() = fla.(x), z€ Q.

Then fi € L (Q). Using Lemma 2.1 there exists a unique distributional solution
uy € Wy'P(Q) such that

(3.1) —div(a(z, Vug)) = fr  in Qg

for every k € N.
Step 2. On the other hand, for every k € N it follows that (the restriction of the
function w to Q) w|q, € WHP(Qy) satisfies

(3.2) —div(a(z,Vw)) =g in Qp,

in the distributional sense. And the assumption ‘w > 0 a.e. in €’ leads to
(ur, — w|o, )t € WyP () by Lemma 2.2(ii), that is, up < w on dQ. So we
conclude from (3.1) and (3.2) that

up <w a.e. inQ fork=1,2,...

)

with the comparison principle of the type (A) of Section 1. Combining this inequality
and w > 0 a.e. in ) again, we have

(3.3) ur <w ae. inQ fork=1,2,...,

where the function @y is defined as:

~ B ug(z) if x € O,
(34 o) = {0 if 2 €0\ Q.

Step 3. By Remark 1.1 (i), first note that (3.1) means

(3.5) / a(z,Vug) - Veodz = frodz Vo e WeP ().
Q Q

Substituting ¢ = ug € WP (Q) in (3.5) and using condition (a-1), it follows
aHv’akHil’(Q) = 04||V“k|‘€p(gk)
< / a(z, Vug) - Vug do = / frug dx
Qe Qp
S Ml o i lluel Loy < LF Il (o k]l e o)
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for every k € N. Note that @y € WO1 P(Q), thanks to Poincaré’s inequality we obtain
AlIVaR|T ) < CIN oo | Vi o,
that is

I c
(3.6) IVl 7s i < I fllpro) fork=12..,

where C' is a constant. Since W,”(Q2) (1 < p < o) is reflexive, there exists v €
W,y (Q) and a subsequence of (i), still denoted by (i )x, such that

i, — v weakly in W P(Q) as k — oc.
Hence, we have that
(3.7) ar —v in LY (Q) ask — oo,

by Lemma 2.3.
Moreover, using the diagonal method there exists a further subsequence of (uy ),
still denoted by (@ )k, such that

(3.8) ag(z) = v(z) ae ze€Qask— oo
Then passing to the limit in (3.3), we obtain that
(3.9) v(z) L w(x) a.e x €

Step 4. To establish our Theorem 1.1 it now suffices to prove that v € Wol’p(Q)
in (3.7) satisfies

(3.10) /Qa(a:,Vv) -Vpdz = /Qfgada: Yo e C5° ().

Indeed, since u satisfies condition (c-1), it follows that

(3.11) v(z) =u(z) ae. in Q,

by the uniqueness of solutions to (c-1) (see Lemma 2.1). We thus deduce that
u(z) =v(zr) < w(xz) ae. in

from (3.9) and (3.11). This proves Theorem 1.1.
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In what follows, we give the proof that v € W, (Q) satisfies (3.10). So fix any
¢ € CF(Q). Let w be an open set such that

supp ¢ C w €

and Q, be such that
w E Qk0~

Fix h € C§°(9) such that
0< h(z) <1, supph C Q,, h(z)=1in a neighborhood of w.

First of all, using the extension of functions outside €, by zero like in (3.4), we have
from (3.5) that

(3.12) / a(x,Viug) - Vodr = / frpdz VYoe Wol’p(Qk)
Q Q
for every k € N. Let k, [ > ko. Because of supp{h(ay — u;)} C Qf, we have
{h(ar —u)}e, € Wo (), {hlur —w)}a, € Wy ().

Hence, we can substitute {h(ur—1u;)}|q, for ¢ in (3.12) and substitute {h(ur—1u;)}|q,
for ¢ in (3.12) replacing k with I. Noting that

{h(ur — w) o, = {h(ar — w)}ta, = h(ur — w),
we then obtain
(3.13) /Q{a(x, Vi) — alw, Vi) } - V{h(a, — @)} de = /Q(fk — F)h(ag — ) e
Since fi(2)h(x) = fi()h(z) ace. in Q, we see
(3.14) (the right-hand side of (3.13)) = 0.

Now we deal with the left-hand side of (3.13). According to condition (a-3), (i), (ii),
we get the following two cases.

Case 1: p > 2.
By condition (a-3) (i) and h > 0, it follows that

(3.15) (the left-hand side of (3.13))
= /Q{a(x, V) —a(x, Vi) } - {(Vh)(ay — @) + hV (ur — @)} do

> ’Y/Q |V(’l_l,k — ﬂl)|phd$ + /Q{a(x, VQ_Lk) — a(x,Vﬂl)} . (Vh)(ﬂk — ’l_l,l) dzx.
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We deduce from (3.13), (3.14), (3.15) and condition (a-2) that
'y/ |V (a —@;)|P de < 'y/Q |V (ar —@)|Phdx
<- /Q{a(x,Vﬂk) — alw, Va)} - (Vh) (g — @) da
< /Q {la(z, Vaw)| + la(z, Var) [} Vhl|ax — @] de
ko

<IThecey [ AVaP + [Tal - ] .
Qko
Using Holder’s inequality and (3.6), we have

o B e e o
IV (W — )70 < ;||VhHL°°(Q){||vukHI[J/p(1Q) IVl i ik — @l oo,
cp o
< 2a_,y|‘Vh||L°°(Q)HfHLP’(Q)”uk — Wl Lr(ay,)-

The above inequality and (3.7) implies that (u|, ) is a Cauchy sequence in WP (w).
By the completeness of W1?(w) and (3.7) again, we consequently obtain

(3.16) Uklw = v|lw in WHP(w) as k — oc.

Case 2: 1 <p<2.
Write
Aug,uy) = {x € Q; |Vag(z)| + |Va(z)| > 0},

and set for every 0 < & < 1 that

. - o V(e — w)(2)|

B (ug, up) := {x € Var@)] £ V(o] > 5} N A(ug,up),
e ._ IV —w)(2)]

Bt (ug,, ) := {x € Q; Nan @) £ V(o] < 6} N A(ug, up).

First we have
(3.17) / |V (g — w)|P do = / |V (g, — ) [P da
w wNA(ug,ur)

:/ |V (wg —al)|de+/ |V (a, — @)|P de.
wNBe— (ug,ur)

wNBet (ug,up)

We estimate two terms of (3.17).
The first term:
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By condition (a-3) (ii), it follows that
(3.18) (the left-hand side of (3.13))

= A {a(z,Viug) — a(z, Vi) } - {(Vh)(ar — w) + hV (ur — w)} dz

27/ R{|Vig| + |V |} 2|V (ag — )| dz
QkomA(ulwul)
+ {a(x, Vﬂk) — a(m, V’U,l)} . (Vh)(ﬂk — ’Etl) dax.
QkO

Therefore, we have

(3.19) 427 / IV (g, — @) P da

NBe~ (ug,ur)

< 762—7)/ BV (@, — )P da
QigNBE™ (ug,ur)

IV(ay —w)(x)] \2-P,_, R
h(|Vﬂk(ﬂc)|+|Val(m)|) |V (ag, —ug)|P d

N

S~

7y

QpoNBe~ (uk,ur)

h{|Vag| + [V |} 2|V (i — w)|* do

I
2

S— S5—

ko NB=~ (ug,ur)

N

v R{|Vig| + |V | }P 72|V (ag — w)|? dz

ko N B~ (uk,ur)

+/ h{|Vﬂk| + |V’U,l|}p_2|V(’Uk — ’U,l)|2 dz

Qo NB=T (uk,ur)

:7/ W{|Vag| + [V Y2V (@, — @) de
QkOﬁA(uk,u;,)

< - A {a(z, V) — a(z,Vig)} - (Vh)(ar — u;) dx

(here we used (3.13), (3.14), and (3.18))
<BIVhlwgey [ (Tl [V Y - ol do
(here we used condition (a-2))

_ —1 _ —1 _ _
< BIVAI Lo o) {IVERlT o) + IVENT L0 It = ll ooy,

c _ _
< 28]Vl @) (1 Loy )k =l o,
(here we used (3.6)).

On the other hand, since it follows that

(3.20) IV (ar — w)| < e(|Vag| + |Viy|) ae. in wn BT (ug, uy),
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we obtain from (3.20) that

B21) IV~ 0 e iy = | (@ — )P da

wNBet (ug,ur)
< Ep/ (IVar] +[Va])? de < e[| [Vag] + [Vl [, g,
W B (g ur)

C p/(p—1)
<2 (Zflr@) -

Consequently, we deduce from (3.19) and (3.21) that

(3.22) / IV (i — @) [P da

= / |V(ﬂk—m)|pdx+/ |V (ar — @) de
wNBe~ (ug,ur) wNBe+ (ug,up)
20 C o

< VAl (G 1 e )1 = Tl oo,

C p/(p—1)
+ 2767 (Z 1| fll o)

From (3.7) it follows that

p/(p—1)
) as k,l — oo,

(3.23) (the right-hand side of (3.22)) — 2pap<g||f||Lp/(Q)

and since 0 < £ < 1 is arbitrary, we can see from (3.22) and (3.23) that (Txl|w)k>k,
is a Cauchy sequence in W!?(w). By the completeness of WP (w) and (3.7) again,
we consequently obtain

(3.24) Ugly — vl in WHP(W) as k — oo.
Thus, we have for 1 < p < 00
(3.25) Uklw = v|lw in WP (w) as k — oo,

from (3.16) and (3.24). Now remember that @y as k € N satisfy (3.12) and ¢ €
C§° (), supp ¢ C w € Qi as k > ko. Hence, we have from (3.12) that

(3.26) /a(x,Vﬂk)-qudx:/fkqﬁdx Yk > ko.
Q Q

Passing to the limit for £ — oo

(3.27) (the right-hand side of (3.26)) — / fode,
Q
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by the definition of fi, on the other hand,
(3.28) (the left-hand side of (3.26)) — / a(z, Vv) - Vodz,
Q

as follows.

Proof of (3.28). We can prove (3.28) as in [10], step 3 in the proof of Lemma 2.3.
Indeed, set

(Na&)(z) = a(z,&(2)) (= (a1(z,£(2)), .- -, an (2, £(2)))),

for any ¢ = (&1,...,&n) € (LP(Q))YN. Then we can use Nemitski’s composition theo-
rem ([1], Theorem 3.6, [7], Section 3.6, Corollary 3, note that Nemitski’s composition
theorem is valid for any open set ) from condition (a-2) and obtain that the oper-
ator N,: (LP(Q))N — (L¥ (Q))V is continuous. Using this with w and Vi instead
of Q and &, respectively, it follows

No(Viig) = No(Vv) in (P (w))N  as k — oo
from (3.25). This is equivalent to
la(, (Var) () = al (Vo) ()l pwr ) = 0 as k= oo

Accordingly, noting that supp ¢ C w, it follows that

/ a(z, Vin(z)) - Vo(a) dz — / a(z, Vo(@)) - Vo(z) de
Q Q

< / la(z, V() — a(z, Vo(2))|[Vo(z)| dz
< Jlal (VaR)() = als (VO) D)l oy | VBl oy = 0 = 0.

Thus we arrive at (3.28).
Consequently, we deduce from (3.26), (3.27), and (3.28) that v € W **(2) satisfies

/Qa(a:,Vv)-qudmz/chﬁdx.

This concludes the proof of Theorem 1.1. O
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4. APPLICATION

In this section we give an application to our result. As mentioned in Section 1, we
follow [3], Theorem 17.7.
Let S, be a strip-like domain such that

S ={zeRY; (x—10)-v € (—a, a)}

for some a > 0 and zp € RY, where v is a unit vector and a dot denotes the
scalar product in RY. Let 2 C S, be an open set. We assume that u € Wol’p(Q),
1 < p < oo, satisfies

(4.1) —div(|VulP?Vu) = f in Q,

in the distributional sense with f € L>®(Q) N L’ (Q), 1/p+ 1/p/ = 1. Then we
conclude that u € L>(£) and

p—1 _ _
(4.2) [l o) < 5 a® P (| £l oo o))/ 7.

Indeed, first we set o :=1+4+1/(p — 1) and
w(zr) :=a%—|(x — o) -v|* (= 0) in Q.

Then we see @ € W,"P(Q2) (note that @ does not belong to WP () in general when

loc

the open set Q (C S,) is unbounded). A simple computing leads us to
V@ = —al(z — o) - v[° {sgn((@ — z0) - 1)},

where sgn function is defined by

1 if t >0,
sgn(t):=<¢ 0 ift=0,
-1 ift<o.

So we have
V@ |P~2 = o~ 2|(z — x0) - ,/|(a*1)(p72).

Therefore, noting (o — 1) + (o — 1)(p — 2) = (o — 1)(p — 1) = 1, it follows that
Vo |P~2Va = —aP Y (z — xp) - v~ DH@ D=2 fson((z — z0) - v) v
= 0" (o) - vl (s — o) - )}

=—a? 1 ((z — o) - V),
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and after a simple computation we obtain
(4.3) —div(|V@[P2Vw) = P!,

Therefore, setting w := a*1||f||2/o£’zm1) w (€ VV1 P(Q)), then noting that

[Vw|P~*Vw = ||f||L°°(Q)|V{E|p72V{E;

ob—1

we derive from (4.3) that
(4.4) —div(| VP 2Vw) = | fll 1~ 0)-

Since f < |||z () as a matter of course, combining it with (4.1), (4.4), and w > 0
in €, we can apply Corollary 1.2. Hence, we conclude that

1 1)
= —IIfIIL{,E’ZQ)

Since —u is a solution to (4.1) corresponding to —f, we have

1 1) ~
lu] < w = —||f||LC£’zm>

Finally, noting
1 - p—1 and 0< @< a®=a?/ @1,
o p

we obtain (4.2).

Remark 4.1. In the above consideration, u € W, () ¢ W'?(Q), however,
w does not belong to WP(Q) in general when the open set Q (C S,) is unbounded.
Therefore, the elementary comparison principle of the type (A) of Section 1 cannot
be applied to the above inference.
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