
63 (2018) APPLICATIONS OF MATHEMATICS No. 4, 399–422

ENTRY-EXIT DECISIONS WITH IMPLEMENTATION DELAY

UNDER UNCERTAINTY

Yong-Chao Zhang, Qinhuangdao

Received July 29, 2017. Published online June 18, 2018.

Abstract. We employ a natural method from the perspective of the optimal stopping
theory to analyze entry-exit decisions with implementation delay of a project, and provide
closed expressions for optimal entry decision times, optimal exit decision times, and the
maximal expected present value of the project. The results in conventional research were
obtained under the restriction that the sum of the entry cost and exit cost is nonnegative.
In practice, we may meet cases when this sum is negative, so it is necessary to remove
the restriction. If the sum is negative, there may exist two trigger prices of entry decision,
which does not happen when the sum is nonnegative, and it is not optimal to enter and
then immediately exit the project even though it is an arbitrage opportunity.
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1. Introduction

A firm plans to invest in a project which could produce a commodity at some

variable cost. To activate the project, the firm has to put a sunk cost, and, in order

to get the maximal expected profit from the project, the firm may abandon the

project at another sunk cost.

What time is optimal to decide to enter the project and what time is optimal

to decide to exit the project? This so-called entry-exit decision problem appeals to

many authors, because the theoretical results of it may be used to analyze many

concrete problems. Isik et al. [8] employed the results to examine the decisions of

a firm whether to invest in an emerging market or abandon the investment. Pradhan
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and Leung [17] showed a behavioral study on the entry, stay and exit decisions of

the fishers in Hawaii’s longline fishery. Kjærland [10] applied the results to study

hydropower investment opportunities within the Norwegian context. Leung [11] used

them to investigate the entry and exit decisions of foreign banks in Hong Kong.

Many authors answered the above two questions in the setting that there is no

time lag between decision times and corresponding implementation times [5], [18], [6],

[13], [21], [19], [20], [12], [3], [22]. In practice, a major characteristic of investments

is that there exist lags between decision times and corresponding implementation

times. Some authors discussed entry-exit decision problems with implementation

delay. For example, see [2], [7], [14], [4].

In [2], Bar-Ilan and Strange embedded lags in the classical model presented by

Dixit [5]. They considered entry and exit decisions by employing the real option the-

ory and derived a system of equations (see equations (22)–(25) in [2]), then obtained

semi-closed solutions for entry and exit decisions. However, they did not prove the

existence and uniqueness of the solution to the system. Gauthier and Morellec [7]

provided more explicit solutions through assuming a priori the forms of decision

times. In [14], Øksendal studied two optimal exit decision problems with implemen-

tation delay—an assets selling problem and a resource extraction problem. In [4],

Costeniuc et al. applied the probabilistic approach to entry and exit decisions with

Parisian implementation delay from the view of real options.

The results in conventional research were obtained under the assumption that the

sum of the entry cost and exit cost is nonnegative. In practice, we may meet cases

when this sum is negative even though it seems to be rather rare. For example,

a large number of illiquid assets are planed to be sold quickly, so the transaction

price of these assets is in general lower than the current price. The difference of

the current price and the transaction price can be considered a negative cost. If the

difference is large enough, the sum of the entry cost and exit cost may be negative.

We will remove this assumption and study the case where the sum is negative.

If the sum is nonnegative, there exists no arbitrage opportunity, and there is only

one trigger price of entry decision. However, if the sum is negative, it is an arbitrage

opportunity to enter and then immediately exit the project, and there may be two

trigger prices of entry decision ((vi) of Theorem 5.6). We find that it is not optimal

to enter and then immediately exit the project even if the sum is negative (see (iii),

(v), and (vi) of Theorem 5.6 and Theorem 5.10).

In this paper, we employ a method from the perspective of the optimal stop-

ping theory, which proves to be natural, to rigorously discuss the entry-exit decision

problem with implementation delay. We study this problem in three steps. First, we

transform the delayed implementation case into an immediate implementation case.

Second, we decompose the immediate implementation case into two standard optimal
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stopping problems, and then solve these two problems. Finally, we provide explicitly

an optimal entry decision time, an optimal exit decision time and an expression of

the maximal expected present value of the project.

We outline the structure of this paper. In Section 2, we recall briefly the classical

optimal stopping theory. In Section 3, we show that delayed optimal stopping prob-

lems involving two stopping times can be transformed to immediate stopping ones.

In Section 4, we describe the model in detail. In Section 5, we obtain an optimal

entry-exit decision as to when the firm decides to enter the project and when the

firm decides to exit the project (Theorem 5.10). Some extensions will be given in

Section 6 and conclusions will be drawn in Section 7.

2. Some results concerning classical optimal stopping problems

In this section, we recall briefly some results of classical optimal stopping problems.

For details, we refer to [16], Section 5.2.

Let (Ω,F , {Ft}t>0,P) be a filtered probability space with {Ft}t>0 satisfying the

usual conditions and F0 being the completion of {∅,Ω}. Let W = (W (t), t > 0) be

a d-dimensional standard Brownian motion defined on (Ω,F , {Ft}t>0,P).

Let X = (X(t), t > 0) be a diffusion in Rn given by

dX(t) = α(X(t)) dt+ β(X(t)) dW (t), X(0) = x,

where α : Rn → Rn and β : Rn → Rn×d are some Lipschitz functions.

Let T denote the set of all stopping times valued in [0,∞].

Theorem 2.1. Consider the optimal stopping problem

(2.1) V (x) := sup
τ∈T

E
x

[∫ τ

0

exp(−rt)f(X(t)) dt+ exp(−rτ)g(X(τ))

]

for some Lipschitz functions f and g. Here Ex[·] := E[· | X(0) = x], and

exp(−rτ)g(X(τ)) ≡ 0 on {τ = ∞}.

Assume that r > 0 is large enough. Then the following statements are true.

(i) The value function V is Lipschitz continuous and is the unique viscosity solution

with linear growth of the variational inequality

min{rV − LV − f, V − g} = 0,

where L is the infinitesimal generator of X .
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(ii) Set S := {x : x ∈ Rn, V (x) = g(x)}, which is called the exercise region. Then

τ∗ := inf{t : t > 0, X(t) ∈ S} is a maximizer of problem (2.1).

(iii) The value function V is a viscosity solution of

rV − LV − f = 0 on C,

where C := {x : x ∈ Rn, V (x) > g(x)} is the continuation region. Moreover, if

L is locally uniformly elliptic, V is C2 on C.

(iv) Assume that X is 1-dimensional, L is locally uniformly elliptic, and g is C1

on S. Then V is C1 on ∂C and C2 at the isolated points of S.

(v) Define a function V̂ by

V̂ (x) := E

[∫ ∞

0

exp(−rt)f(X(t)) dt

]
.

Then S = ∅ implies V̂ > g and V̂ > g implies V = V̂ .

(vi) If g is C2 continuous on some open set O, then S ⊂ {x : x ∈ O, rg(x)−Lg(x)−

f(x) > 0} ∪ Oc.

(vii) Assume that X is 1-dimensional and takes values in (0,∞), X(t, x) →

X(t, 0) = 0 as x → 0, V̂ (x0) < g(x0) for some x0 > 0, and g is C2 con-

tinuous. We have the following two facts. If D = [a,∞) for some a > 0,

where D := {x : x > 0, rg(x) − Lg(x) − f(x) > 0}, then S = [x∗,∞) for some

x∗ ∈ [a,∞). If g(0) > f(0)/r and D = (0, a] for some a > 0, then S = (0, x∗]

for some x∗ ∈ (0, a].

P r o o f. We refer to [16], Section 5.2 for the proof. �

3. A useful transformation

In this section, we show that delayed optimal stopping problems involving two

stopping times can be transformed into immediate stopping ones. The proof is

similar to that of [15], p. 38, Theorem 2.11.

Theorem 3.1. Let δ be a nonnegative number. Consider the following two opti-

mal stopping problems:

(3.1) J(x) := sup
τ1,τ2∈T ,
τ16τ2

E
x

[∫ τ2+δ

τ1+δ

f(X(t)) dt+ g1(X(τ1 + δ)) + g2(X(τ2 + δ))

]
,
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where f, g1, g2 : Rn → R are three functions such that the expectations are finite;

(3.2) J̃(x) := sup
τ1,τ2∈T ,
τ16τ2

E
x

[∫ τ2

τ1

f(X(t)) dt+ gδ1(X(τ1)) + gδ2(X(τ2))

]
,

where

gδ1(x) := E
x

[
−

∫ δ

0

f(X(t)) dt+ g1(X(δ))

]

and

gδ2(x) := E
x

[∫ δ

0

f(X(t)) dt+ g2(X(δ))

]
.

Then J(x) = J̃(x). In addition, if (τ∗1 , τ
∗
2 ) is a maximizer of (3.2), it is also a maxi-

mizer of (3.1).

P r o o f. Note that

E
x

[∫ τ2+δ

τ1+δ

f(X(t)) dt+ g1(X(τ1 + δ)) + g2(X(τ2 + δ))

]

= E
x

[(∫ τ2

τ1

−

∫ τ1+δ

τ1

+

∫ τ2+δ

τ2

)
f(X(t)) dt+ g1(X(τ1 + δ)) + g2(X(τ2 + δ))

]

= E
x

[∫ τ2

τ1

f(X(t)) dt−

∫ τ1+δ

τ1

f(X(t)) dt+ g1(X(τ1 + δ))

+

∫ τ2+δ

τ2

f(X(t)) dt+ g2(X(τ2 + δ))

]
.

Then, by the strong Markov property of the process X , we get

E
x

[ ∫ τ2+δ

τ1+δ

f(X(t)) dt+ g1(X(τ1 + δ)) + g2(X(τ2 + δ))

]

= E
x

[∫ τ2

τ1

f(X(t)) dt+ E
X(τ1)

[
−

∫ δ

0

f(X(t)) dt+ g1(X(δ))

]

+ E
X(τ2)

[∫ δ

0

f(X(t)) dt+ g2(X(δ))

]]

= E
x

[∫ τ2

τ1

f(X(t)) dt+ gδ1(X(τ1)) + gδ2(X(τ2))

]
,

which completes the proof. �
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4. The model

We return to the entry-exit decision problem introduced in Section 1, and assume

that the price process P follows

(4.1) dP (t) = µP (t) dt+ σP (t) dB(t) and P (0) = p,

where µ ∈ R, σ, p > 0, and B is a one-dimensional standard Brownian motion, which

models uncertainty, defined on a probability space (Ω,F ,P). Let {FB
t }t>0 be the

augmentation of the natural filtration generated by the Brownian motion B.

Applying Itô’s formula, we deduce that the solution to equation (4.1) is

(4.2) P (t) = P (0) exp[(µ− 1
2σ

2)t+ σB(t)].

To answer the two questions—what time is optimal to make an entry decision and

what time is optimal to make an exit decision—we will solve the following optimal

problem:

(4.3) J(p) := sup
τin6τout

E
p

[∫ τout+δ

τin+δ

exp(−rt)(P (t) − C) dt− exp(−r(τin + δ))Kin

− exp(−r(τout + δ))Kout

]
,

where τin and τout are {FB
t }t>0-stopping times, r is the discount rate such that

r > 0, C is the running cost, Kin is the entry cost, Kout is the exit cost, and the

nonnegative number δ is a time lag between the decision time and the corresponding

implementation time. We call stopping times τin and τout an entry decision time and

an exit decision time, respectively, and the function J the maximal expected present

value of the project.

R em a r k 4.1. (1) We do not propose any restriction on the running cost, entry

cost and exit cost, except that they are constant.

(2) Note that for any stopping time τ and nonnegative number δ, τ + δ is also

a stopping time. The maximal expected present value J of the delayed implementa-

tion case is no more than that of the corresponding immediate implementation case.

We may interpret their difference as the loss due to delayed implementation.

(3) Furthermore, let 0 6 δ(1) < δ(2) < ∞ and T be the collection of all stopping

times. Then {τ + δ(2) : τ ∈ T } ⊂ {τ + δ(1) : τ ∈ T }, and thus the value of J

corresponding to δ(2) is no more than that corresponding to δ(1). This implies the

following principle: Once one has made a right decision, he/she should activate it as

soon as possible.
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5. An optimal entry-exit decision

In this section, we provide an optimal entry-exit decision and an explicit expression

for the function J .

Let us first consider a simple case r 6 µ. In this case, noting the expression (4.2)

of P , we have

E
p

[∫ ∞

δ

exp(−rt)(P (t) − C) dt

]
=

∫ ∞

δ

exp(−rt)(p exp(µt)− C) dt

=





lim
t→∞

(
p(t− δ) +

C

r
(exp(−rt) − exp(−rδ))

)
if r = µ,

lim
t→∞

( p

µ− r
(exp((µ− r)t) − exp((µ− r)δ))

+
C

r
(exp(−rt)− exp(−rδ))

)
if r < µ

= ∞,

where we have used the fact that the process

(
exp(− 1

2σ
2t+ σB(t)), t > 0

)

is a martingale (see [1], p. 288, Corollary 5.2.2) for the first step.

Thus, we obtain the following result.

Theorem 5.1. Assume that r 6 µ. Then τ∗in := 0 a.s. is an optimal entry decision

time and τ∗out := ∞ is an optimal exit decision time, i.e., the firm should never exit

the project. In addition, the function J in (4.3) is given by J ≡ ∞.

Now we determine an optimal entry-exit decision for the case r > µ. To this end,

we first employ Theorem 3.1 to transform the delayed optimal stopping problem (4.3)

to an immediate stopping one.

Theorem 5.2. The delayed optimal stopping problem (4.3) is equivalent to the

optimal stopping problem

(5.1) J̃(p) := sup
τin6τout

E
p

[∫ τout

τin

exp(−rt)(P (t) − C) dt

− exp(−rτin)(k1P (τin) + k0)− exp(−rτout)(l1P (τout) + l0)

]
,

where

k1 :=
exp((µ− r)δ) − 1

µ− r
, k0 :=

C

r
(exp(−rδ) − 1) + exp(−rδ)Kin,

l1 := −
exp((µ− r)δ) − 1

µ− r
, l0 := −

C

r
(exp(−rδ) − 1) + exp(−rδ)Kout.
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P r o o f. 1. Define the process X by X(t) := [s+ t, P (t)]T, where s ∈ R. Then

dX(t) =

[
1

µP (t)

]
dt+

[
0

σP (t)

]
dB(t), X(0) =

[
s

p

]
.

2. According to Theorem 3.1, we need to calculate

(5.2) E
p

[
−

∫ δ

0

exp(−r(s+ t))(P (t) − C) dt− exp(−r(s+ δ))Kin

]

and

(5.3) E
p

[∫ δ

0

exp(−r(s+ t))(P (t) − C) dt− exp(−r(s+ δ))Kout

]
.

For (5.2) we have

E
p

[
−

∫ δ

0

exp(−r(s + t))(P (t)− C) dt− exp(−r(s+ δ))Kin

]

= −

∫ δ

0

exp(−r(s + t))(p exp(µt)− C) dt− exp(−r(s+ δ))Kin

= − exp(−rs)
( p

µ− r
(exp((µ− r)δ) − 1)

+
C

r
(exp(−rδ) − 1) + exp(−rδ)Kin

)
,

where we have used the fact that the process

(
exp(− 1

2σ
2t+ σB(t)), t > 0

)

is a martingale (see [1], p. 288, Corollary 5.2.2) for the first step.

Similarly, we can calculate (5.3). Therefore, in light of Theorem 3.1, the delayed

optimal stopping problem (4.3) is equivalent to the optimal stopping problem (5.1).

�

In order to solve the optimal stopping problem (5.1), we will solve the following

two optimal stopping problems:

(5.4) G(p) := sup
τout

E
p

[∫ τout

0

exp(−rt)(P (t) − C) dt− exp(−rτout)(l1P (τout) + l0)

]

and

(5.5) H(p) := sup
τin

E
p[exp(−rτin)(G(P (τin))− k1P (τin)− k0)].
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Assume that r > µ. Let λ1 and λ2 be the solutions of the quadratic equation

r − µλ− 1
2σ

2λ(λ− 1) = 0

with λ1 < λ2. Then we have λ1 < 0 and λ2 > 1.

Theorem 5.3. For the optimal stopping problem (5.4), the following are true.

(i) If r > µ and C 6 rKout, then τ
∗
out := ∞ a.s. is a maximizer of (5.4). In addition,

G(p) = p/(r − µ)− C/r.

(ii) If r > µ and C > rKout, then τ∗out := inf{t : t > 0, P (t) 6 pout} a.s. is

a maximizer of (5.4), where

pout = exp(−µδ)
λ1

λ1 − 1
(r − µ)

(C
r
−Kout

)
.

In addition,

G(p) =





Apλ1 +
p

r − µ
−

C

r
if p > pout,

p

µ− r
(exp((µ− r)δ)− 1)

+
C

r
(exp(−rδ)− 1)− exp(−rδ)Kout if p 6 pout,

where A = exp((µ− r)δ)p1−λ1

out /(λ1(µ− r)).

P r o o f. 1. Assume that r > µ and C 6 rKout.

Noting that

E
p

[∫ ∞

0

exp(−rt)(P (t) − C) dt

]
=

p

r − µ
−

C

r
,

we have

E
p

[∫ ∞

0

exp(−rt)(P (t) − C) dt

]
> −l1p− l0.

Therefore, by (v) of Theorem 2.1, we obtain (i).

2. Assume that r > µ and C > rKout.

In this case, we have D = (0, exp(−µδ)(C−rKout)]. Thus, by (vii) of Theorem 2.1,

the exercise region is of the form (0, pout] for some pout ∈ (0,∞). On the continuation

region (pout,∞), G satisfies the equation

rG − µpG′ − 1
2σ

2p2G′′ − p+ C = 0
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by (iii) of Theorem 2.1. Furthermore, by the Lipschitz property of G, we have

G(p) = Apλ1 +
p

r − µ
−

C

r

for some constant A.

Note that G is C1 continuous at pout by (iv) of Theorem 2.1. We get the system





Apλ1

out +
pout
r − µ

−
C

r
=

pout
µ− r

(exp((µ− r)δ) − 1)

+
C

r
(exp(−rδ)− 1)− exp(−rδ)Kout,

λ1Ap
λ1−1
out +

1

r − µ
=

exp((µ− r)δ) − 1

µ− r
,

from which we obtain

(5.6) pout = exp(−µδ)
λ1

λ1 − 1
(r − µ)

(C
r
−Kout

)

and

A = exp((µ − r)δ)
p1−λ1

out

λ1(µ− r)
.

The proof is complete. �

R em a r k 5.4. We will prove in Theorem 5.10 that pout is the trigger price of

exit decision.

Corollary 5.5. The optimal exit trigger price pout in Theorem 5.3 satisfies pout <

exp(−µδ)(C − rKout).

P r o o f. Note that 1/λ1 < µ/r. Then thanks to (5.6), the conclusion follows. �

Theorem 5.6. For the optimal stopping problem (5.5), the following are true.

(i) If r > µ, C − rKout 6 0 and C + rKin 6 0, then τ∗in := 0 a.s. is a maximizer

of (5.5). In addition,

H(p) =
exp((µ− r)δ)

r − µ
p− exp(−rδ)

(C
r
+Kin

)
.

(ii) If r > µ, C− rKout 6 0 and C+ rKin > 0, then τ∗in := inf{t : t > 0, P (t) > pin}

a.s. is a maximizer of (5.5), where

pin = exp(−µδ)
λ2

λ2 − 1
(r − µ)

(C
r
+Kin

)
.
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In addition,

H(p) =





Bpλ2 if p < pin,

exp((µ− r)δ)

r − µ
p− exp(−rδ)

(C
r
+Kin

)
if p > pin,

where B = exp((µ− r)δ)p1−λ2

in /(λ2(r − µ)).

(iii) If r > µ, C − rKout > 0, and C + rKin 6 0, then τ∗in := 0 a.s. is a maximizer

of (5.5). In addition,

H(p) =





Apλ1 +
exp((µ− r)δ)

r − µ
p− exp(−rδ)

(C
r
+Kin

)
if p > pout,

− exp(−rδ)(Kin +Kout) if p 6 pout.

(iv) If r > µ, C − rKout > 0, C + rKin > 0, and Kin + Kout > 0, then τ∗in :=

inf{t : t > 0, P (t) > pin} a.s. is a maximizer of (5.5), where pin is the largest

solution of the algebraic equation

A(λ2 − λ1)p
λ1

in +
exp((µ− r)δ)

r − µ
(λ2 − 1)pin − λ2 exp(−rδ)

(C
r
+Kin

)
= 0.

In addition,

H(p) =





Bpλ2 if p < pin,

Apλ1 +
exp((µ− r)δ)

r − µ
p− exp(−rδ)

(C
r
+Kin

)
if p > pin,

where

B = λ1λ
−1
2 Apλ1−λ2

in + exp((µ− r)δ)
p1−λ2

in

λ2(r − µ)
.

(v) If r > µ, C−rKout > 0, C+rKin > 0,Kin+Kout < 0, and pout > exp(−µδ)(C+

rKin), then τ∗in := 0 a.s. is a maximizer of (5.5). In addition,

H(p) =





Apλ1 +
exp((µ− r)δ)

r − µ
p− exp(−rδ)

(C
r
+Kin

)
if p > pout,

− exp(−rδ)(Kin +Kout) if p 6 pout.

(vi) If r > µ, C − rKout > 0, C + rKin > 0, Kin +Kout < 0, and pout < exp(−µδ)×

(C + rKin), then τ∗in := inf{t : t > 0, P (t) 6 p
(1)
in or P (t) > p

(2)
in } a.s. is
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a maximizer of (5.5), where (p
(1)
in , p

(2)
in ) is the solution of the equation

(5.7)

[
λ2p

(1)
in

−λ1

−p
(1)
in

−λ1

−λ1p
(1)
in

−λ2

p
(1)
in

−λ2

][
− exp(−rδ)(Kin +Kout)

0

]

=

[
λ2p

(2)
in

−λ1

−p
(2)
in

−λ1

−λ1p
(2)
in

−λ2

p
(2)
in

−λ2

]


Ap
(2)
in

λ1

+ exp((µ−r)δ)
r−µ

p
(2)
in

− exp(−rδ)
(
C
r
+Kin

)

λ1Ap
(2)
in

λ1

+ exp((µ−r)δ)
r−µ

p
(2)
in




with p
(1)
in < p

(2)
in .

In addition,

H(p) =





Apλ1 +
exp((µ− r)δ)

r − µ
p− exp(−rδ)

(C
r
+Kin

)
if p > p

(2)
in ,

B1p
λ1 +B2p

λ2 if p
(1)
in < p < p

(2)
in ,

− exp(−rδ)(Kin +Kout) if p 6 p
(1)
in ,

where

B1 = −
λ2(p

(1)
in )−λ1 exp(−rδ)

λ2 − λ1
(Kin +Kout)

and

B2 =
λ1(p

(1)
in )−λ2 exp(−rδ)

λ2 − λ1
(Kin +Kout).

P r o o f. 1. Assume that r > µ, C − rKout 6 0, and C + rKin 6 0.

Define a function w by

w(p) :=
exp((µ− r)δ)

r − µ
p− exp(−rδ)

(C
r
+Kin

)
for p ∈ (0,∞).

Then we have

rw(p) − µpw′(p)− 1
2σ

2p2w′′(p) > 0,

which implies w is a viscosity solution of

min{rV − µpV ′ − 1
2σ

2p2V ′′, V − w} = 0 on (0,∞).

Note that H(0+) = w(0+). Thus, by the uniqueness of viscosity solutions (see (i)

of Theorem 2.1), we have H(p) = w(p). Consequently, the exercise region is (0,∞),

i.e., τ∗in := 0 a.s. is a maximizer of (5.5) by (ii) of Theorem 2.1.

2. Assume that r > µ, C − rKout 6 0 and C + rKin > 0.
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In this case, we have D = [exp(−µδ)(C+rKin),∞). Thus, by (vii) of Theorem 2.1,

the exercise region is of the form [pin,∞) for some pin ∈ (0,∞). On the continuation

region (0, pin), H satisfies the equation

rH − µpH ′ − 1
2σ

2p2H ′′ = 0

by (iii) of Theorem 2.1. Furthermore, by the Lipschitz property of H , we have

H(p) = Bpλ2 for some constant B.

Note that H is C1 continuous at pin by (iv) of Theorem 2.1. We get the system





Bpλ2

in =
exp((µ− r)δ)

r − µ
pin − exp(−rδ)

(C
r
+Kin

)
,

λ2Bpλ2−1
in =

exp((µ− r)δ)

r − µ
,

from which we obtain

pin = exp(−µδ)
λ2

λ2 − 1
(r − µ)

(C
r
+Kin

)

and

B = exp((µ− r)δ)
p1−λ2

in

λ2(r − µ)
.

3. Assume that r > µ, C − rKout > 0 and C + rKin 6 0.

Define a function w by

w(p) :=





Apλ1 +
exp((µ− r)δ)

r − µ
p− exp(−rδ)

(C
r
+Kin

)
if p > pout,

− exp(−rδ)(Kin +Kout) if p 6 pout.

Then w is a viscosity subsolution of

(5.8) min{rV − µpV ′ − 1
2σ

2p2V ′′, V − w} = 0 on (0,∞).

We prove that w is a viscosity supersolution of (5.8). To this end, we only need

to prove

(5.9) rw(pout)− µpϕ′(pout)−
1
2σ

2p2ϕ′′(pout) > 0

for any function ϕ ∈ C2(N (pout)) such that w(pout) = ϕ(pout) and w(p) > ϕ(p) on

some neighbourhood N (pout) of pout, since rw−µpw′ − σ2p2w′′/2 > 0 on (0, pout)∪

(pout,∞).
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Noting that pout is a minimizer of w−ϕ onN (pout), we have w
′(pout)−ϕ′(pout) = 0

and w′′
−(pout)−ϕ′′(pout) > 0, i.e. ϕ′(pout) = 0 and ϕ′′(pout) 6 0. In addition, thanks

to C − rKout > 0 and C + rKin 6 0, Kin +Kout < 0. So (5.9) holds.

In summary, w is a viscosity solution of

min{rV − µpV ′ − 1
2σ

2p2V ′′, V − w} = 0 on (0,∞).

Note that H(0+) = w(0+). Then, by the uniqueness of viscosity solutions (see (i)

of Theorem 2.1), we get H(p) = w(p) for p ∈ (0,∞). Consequently, the exercise

region is (0,∞), i.e., τ∗in := 0 a.s. is a maximizer of (5.5) by (ii) of Theorem 2.1.

4. Assume that r > µ, C − rKout > 0, C + rKin > 0, and Kin +Kout > 0.

First assume Kin +Kout > 0. Then, in light of (vi) of Theorem 2.1, we have

S ⊂ [exp(−µδ)(C + rKin),∞) ∪ {pout}.

Note that pout < exp(−µδ)(C − rKout) by Corollary 5.5, and Kin+Kout > 0. These

imply pout < exp(−µδ)(C + rKin). Consequently, following the proof of (vii) of

Theorem 2.1 (see [16], p. 104) and using (iv) of Theorem 2.1, we can see that there

is a point pin ∈ [exp(−µδ)(C + rKin),∞) such that

H(p) = G(p)− k1p− k0 for p ∈ [pin,∞)

and

(5.10) rH − µpH ′ − 1
2σ

2p2H ′′ = 0 on (0, pin).

Thus, by the Lipschitz property of H , we have H(p) = Bpλ2 for some constant B

from (5.10).

Note that H is C1 continuous at pin by (iv) of Theorem 2.1. We get the system

(5.11)





Bpλ2

in = Apλ1

in +
exp((µ− r)δ)

r − µ
pin − exp(−rδ)

(C
r
+Kin

)
,

λ2Bpλ2−1
in = λ1Ap

λ1−1
in +

exp((µ− r)δ)

r − µ
,

from which we obtain

A(λ2 − λ1)p
λ1

in +
exp((µ− r)δ)

r − µ
(λ2 − 1)pin − λ2 exp(−rδ)

(C
r
+Kin

)
= 0.

We will show ahead in Lemma 5.9 that the above algebraic equation has only

two roots. One is less than pout and the other is greater than pout. Since pin >
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exp(−µδ)(C + rKin), pout < exp(−µδ)(C − rKout) by Corollary 5.5, and Kin +

Kout > 0, we must choose the greater one. Furthermore, we have

B = λ1λ
−1
2 Apλ1−λ2

in + exp((µ− r)δ)
p1−λ2

in

λ2(r − µ)
.

For proving that the exercise region is [pin,∞), we only need to show

(5.12) H(pout) > G(pout)− k1pout − k0.

To see this, consider the function f(p) := H(p) − G(p) + k1p + k0 for p ∈ [0, pout].

Then we have f(0) = exp(−rδ)(Kin +Kout) > 0. In addition, f ′(p) = λ2Bpλ2−1 > 0

for p ∈ (0, pout), since B > 0 by (5.11) and Lemma 5.9. The inequality (5.12) follows.

Now consider the case Kin +Kout = 0. We refer to the following Step 6. To solve

systems (5.13) and (5.14), we put B1 = p
(1)
in = 0, then systems (5.13) and (5.14) are

reduced to (5.11). By repeating the proof of the case Kin+Kout > 0, we achieve our

aim.

5. Assume that r > µ, C − rKout > 0, C + rKin > 0, Kin + Kout < 0, and

pout > exp(−µδ)(C + rKin). The proof of this case is the same as that of the

case (iii).

6. Assume that r > µ, C − rKout > 0, C + rKin > 0, Kin + Kout < 0, and

pout < exp(−µδ)(C + rKin).

In this case, we have

S ⊂ (0, pout] ∪ [exp(−µδ)(C + rKin),∞).

Thus, following the proof of (vii) of Theorem 2.1 (see [16], p. 104), we can see that

the exercise region is of the form (0, p
(1)
in ] ∪ [p

(2)
in ,∞) for some p

(1)
in ∈ (0, pout] and

p
(2)
in ∈ [exp(−µδ)(C + rKin),∞). On the continuation region (p

(1)
in , p

(2)
in ), H satisfies

the equation

rH − µpH ′ − 1
2σ

2p2H ′′ = 0

by (iii) of Theorem 2.1.

Thus, we have H(p) = B1p
λ1 +B2p

λ2 on (p
(1)
in , p

(2)
in ) for some constants B1 and B2.

Note that H is C1 continuous at p
(1)
in and p

(2)
in by (iv) of Theorem 2.1. We get the

following systems:

(5.13)

{
B1p

(1)
in

λ1

+B2p
(1)
in

λ2

= − exp(−rδ)(Kin +Kout),

λ1B1p
(1)
in

λ1−1
+ λ2B2p

(1)
in

λ2−1
= 0
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and

(5.14)





B1p
(2)
in

λ1

+B2p
(2)
in

λ2

= Ap
(2)
in

λ1

+
exp((µ− r)δ)

r−µ
p
(2)
in − exp(−rδ)

(C
r
+Kin

)
,

λ1B1p
(2)
in

λ1−1
+ λ2B2p

(2)
in

λ2−1
= λ1Ap

(2)
in

λ1−1
+

exp((µ− r)δ)

r − µ
,

from which, by solving B1 and B2, respectively, we obtain (5.7). �

R em a r k 5.7. We will prove in Theorem 5.10 that pin, p
(1)
in , and p

(2)
in are the

trigger prices of entry decision.

Corollary 5.8. The optimal entry trigger prices pin in (ii) and (iv) of Theorem 5.6

satisfy pin > exp(−µδ)(C+rKin); the optimal entry trigger prices p
(1)
in and p

(2)
in in (vi)

of Theorem 5.6 satisfy p
(1)
in < exp(−µδ)(C − rKout) and p

(2)
in > exp(−µδ)(C + rKin).

P r o o f. 1. For the case (ii) of Theorem 5.6, we have

pin = exp(−µδ)
λ2

λ2 − 1
(r − µ)

(C
r
+Kin

)
.

In addition, note that 1/λ2 > µ/r. The inequality pin > exp(−µδ)(C+rKin) follows.

2. Consider the case (iv) of Theorem 5.6.

Define a function U by

U(p) := Bpλ2 −G(p) + k1p+ k0 for p ∈ [pout,∞).

Then we have U(pout) > 0 and U(pin) = 0.

We prove that the equation U ′′(p) = 0 has a solution in (pout, pin). To this

end, suppose that the equation U ′′(p) = 0 has no solution in (pout, pin). Then the

function U ′(·) is strictly monotonous on [pout, pin]. In addition, note that U ′(pout) =

λ2Bpλ2−1
out > 0 and U ′(pin) = 0. We get U ′(p) > 0 for pout < p < pin. Consequently,

0 6 U(pout) < U(pin) = 0, which is a contradiction.

On the other hand, by noting U ′′(p) = λ2(λ2 − 1)Bpλ2−2 −λ1(λ1 − 1)Apλ1−2, the

equation U ′′(p) = 0 has at most one solution in (pout,∞).

Therefore, U ′′(pin) > 0 and then

r(G(pin)− k1pin − k0)− µpin(G
′(pin)− k1)−

1
2σ

2p2inG
′′(pin)

> rH(pin)− µpinH
′(pin)−

1
2σ

2p2inH
′′
−(pin) = 0,

i.e.

pin > exp(−µδ)(C + rKin),

where we have used rG(pin)− µpinG
′(pin)− σ2p2inG

′′(pin)/2 = pin − C.

3. The inequality p
(1)
in < exp(−µδ)(C − rKout) follows from p

(1)
in 6 pout and

Corollary 5.5. The proof of the inequality p
(2)
in > exp(−µδ)(C + rKin) is similar to

Step 2. �
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Lemma 5.9. Assume that r > µ, C − rKout > 0, C + rKin > 0, and

Kin +Kout > 0. Then the equation

A(λ2 − λ1)p
λ1 +

exp((µ− r)δ)

r − µ
(λ2 − 1)p− λ2 exp(−rδ)

(C
r
+Kin

)
= 0

has only two solutions p1 and p2 in (0,∞) satisfying p1 6 pout and p2 > pout.

Furthermore, λ1Ap
λ1

2 + exp((µ− r)δ)/(r − µ) > 0.

P r o o f. The proof is similar to that of [22], Lemma 5.5.

1. Define a function E by

E(p) := A(λ2 − λ1)p
λ1 +

exp((µ− r)δ)

r − µ
(λ2 − 1)p− λ2 exp(−rδ)

(C
r
+Kin

)
.

Suppose that the equation E(p) = 0 has three solutions in (0,∞). Then by Rolle’s

mean value theorem, there is a positive number ξ such that E′′(ξ) = 0, i.e.

A(λ2 − λ1)λ1(λ1 − 1)ξλ1−2 = 0,

which is impossible. Thus, the equation E(p) = 0 has at most two solutions in

(0,∞).

2. In this step, we will estimate E(pout) and E′(pout).

We first estimate E(pout) as

E(pout) = (λ2 − λ1)
(exp((µ− r)δ)

µ− r
pout + exp(−rδ)

(C
r
−Kout

))

+
exp((µ− r)δ)

r − µ
(λ2 − 1)pout − λ2 exp(−rδ)

(C
r
+Kin

)

= − λ2 exp(−rδ)(Kin +Kout) 6 0,

where we have used the continuity of the function G at pout for the first equality.

Now we estimate E′(pout):

E′(pout) = (λ1 − λ2)
exp((µ− r)δ)

r − µ
+ (λ2 − 1)

exp((µ− r)δ)

r − µ

= (λ1 − 1)
exp((µ− r)δ)

r − µ
< 0,

where we have used the C1 continuity of the function G at pout for the first equality.

3. Note that lim
p→0+

E(p) = ∞, lim
p→∞

E(p) = ∞, E(pout) 6 0, and E′(pout) < 0. We

find that the equation E(p) = 0 has only two solutions p1 and p2 in (0,∞) satisfying

p1 6 pout and p2 > pout.
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Furthermore, E′(p2) > 0. It follows that

λ1Ap
λ1

2 +
exp((µ− r)δ)

r − µ
> λ1Ap

λ1

2 +
λ2 − 1

λ2 − λ1

exp((µ− r)δ)

r − µ
=

1

λ2 − λ1
E′(p2) > 0.

The proof is complete. �

Recall problem (4.3). The following Theorem 5.10 provides a solution of entry

and exit decisions and an explicit expression of the maximal expected present value

of the project.

Theorem 5.10. In each case of Theorem 5.6, τ∗in is an optimal entry decision

time, and τ∗out is an optimal exit decision time, where τ
∗
out := ∞ if C 6 rKout and

τ∗out := inf{t : t > τ∗in and P (t) 6 pout} if C > rKout, respectively. In addition,

we have J(p) = H(p), where the functions J and H are given by (4.3) and (5.5),

respectively.

P r o o f. 1. For an entry decision time τin, define a process Q := (Q(t), t > 0) by

Q(t) := P (τin + t) and a filtration {Gt}t>0 by Gt := FB
τin+t. Then Q is a geometric

Brownian motion on the filtered probability space (Ω,F , {Gt}t>0,P) with the same

drift and volatility as P .

2. For any random time τ > τin we have:

τ − τin is a {Gt}t>0-stopping time if and only if τ is a {F
B
t }t>0-stopping time.

Suppose that τ ′ := τ − τin is a {Gt}t>0-stopping time. Note that {τ < t} =

{τin + τ ′ < t} =
⋃

q∈[0,t)∩Q

{τin 6 q, τ ′ < t − q} =
⋃

q∈[0,t)∩Q

{τin + t − q 6 t, τ ′ <

t − q}. Since τ ′ is a {Gt}t>0-stopping time, thanks to [9], p. 6, Proposition 2.3,

we have {τ ′ < t − q} ∈ Gt−q = FB
τin+t−q. By the definition of FB

τin+t−q (cf. [9],

p. 8, Definition 2.12), it holds that {τin + t − q 6 s, τ ′ < t − q} ∈ FB
s for any

s > 0. In particular, via taking s = t, {τin + t − q 6 t, τ ′ < t − q} ∈ FB
t . Thus

{τ < t} ∈ FB
t , and then from the right continuity of {F

B
t }t>0 it follows that τ

is a {FB
t }t>0-stopping time. Conversely, if τ is a {FB

t }t>0-stopping time, then

{τ − τin 6 t} = {τ 6 τin + t} ∈ FB
τin+t by [9], p. 8, Lemma 2.16, i.e. τ − τin is

a {Gt}t>0-stopping time.

3. Noting
∫ τout

τin

exp(−rt)(P (t) − C) dt

− exp(−rτin)(k1P (τin) + k0)− exp(−rτout)(l1P (τout) + l0)

= exp(−rτin)

∫ τout−τin

0

exp(−rt)(Q(t) − C) dt− exp(−rτin)(k1P (τin) + k0)

− exp(−rτin) exp(−r(τout − τin))(l1Q(τout − τin) + l0),
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we have

sup
τin6τout

E
p

[∫ τout

τin

exp(−rt)(P (t) − C) dt− exp(−rτin)(k1P (τin) + k0)

− exp(−rτout)(l1P (τout) + l0)

]

= sup
τin

sup
τ ′

out

E
p

[
exp(−rτin)

∫ τ ′

out

0

exp(−rt)(Q(t) − C) dt

− exp(−rτin)(k1P (τin) + k0)− exp(−rτin) exp(−r(τ ′out))(l1Q(τ ′out) + l0)

]
,

where the random times τ ′out are {Gt}t>0-stopping times.

Therefore, together with (5.1), (5.4), and (5.5) it follows that J̃(p) = H(p) and

(τ∗in, τ
∗
out) is a solution of problem (5.1). Consequently, these and Theorem 5.2 com-

plete the proof. �

6. Extensions

We here discuss some extensions in the following directions.

(a) Instead of the common lag δ, one may prefer that the entry lag δ1 and exit

lag δ2 are different, but still deterministic.

(b) The common lag δ is random, and independent of the price process P from (4.1).

(c) Combining (a) and (b), the different entry lag δ1 and exit lag δ2 are both

random, and (δ1, δ2) and the price process given by P (4.1) are of mutual

independence.

In all of these extensions, if r 6 µ, we always have the same result as Theorem 5.1.

Thus in the following, we discuss entry-exit decisions for r > µ. We are aware that

transforming delayed optimal stopping problems into stopping problems without

delay is the point, and complete it in Propositions 6.1, 6.3, and 6.4.

For the extension (a), we replace naturally (4.3) with

(6.1) Jδ1,δ2(p) := sup
τin6τout,

τin+δ16τout+δ2

E
p

[∫ τout+δ2

τin+δ1

exp(−rt)(P (t) − C) dt

− exp(−r(τin + δ1))Kin − exp(−r(τout + δ2))Kout

]
.
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Proposition 6.1. (i) Assume that r > µ and δ1 < δ2. Consider the problem

(6.2) J̃δ1<δ2(p) := sup
τin6τout

E
p

[∫ τout

τin

exp(−rt)(P (t) − C) dt

− exp(−rτin)(k1P (τin) + k0)− exp(−rτout)(l1P (τout) + l0)

]
,

where

k1 :=
exp((µ− r)δ1)− 1

µ− r
, k0 :=

C

r
(exp(−rδ1)− 1) + exp(−rδ1)Kin,

l1 := −
exp((µ− r)δ2)− 1

µ− r
, l0 := −

C

r
(exp(−rδ2)− 1) + exp(−rδ2)Kout.

Then Jδ1,δ2(p) = J̃δ1<δ2(p). In addition, if (τ∗in, τ
∗
out) is a maximizer of (6.2), it is

also a maximizer of (6.1).

(ii) Assume that r > µ and δ1 > δ2. Consider the problem

(6.3) J̃δ1>δ2(p) := sup
τin+δ16τout+δ2

E
p

[∫ τout

τin

exp(−rt)(P (t) − C) dt

− exp(−rτin)(k1P (τin) + k0)− exp(−rτout)(l1P (τout) + l0)

]
,

where

k1 :=
exp((µ− r)δ1)− 1

µ− r
, k0 :=

C

r
(exp(−rδ1)− 1) + exp(−rδ1)Kin,

l1 := −
exp((µ− r)δ2)− 1

µ− r
, l0 := −

C

r
(exp(−rδ2)− 1) + exp(−rδ2)Kout.

Then Jδ1,δ2(p) = J̃δ1>δ2(p). In addition, if (τ∗in, τ
∗
out) is a maximizer of (6.3), it is

also a maximizer of (6.1).

P r o o f. For case (i), noting that τin 6 τout and δ1 < δ2 imply τin+δ1 6 τout+δ2,

we follow the proofs of Theorems 3.1 and 5.2 to get the conclusion of case (i). Case

(ii) is similar. �

R em a r k 6.2. For case (ii), in light of the proof of Theorem 5.10, we should

first solve the problem

(6.4) Gδ1>δ2(p)

:= sup
τout>δ1−δ2

E
p

[∫ τout

0

exp(−rt)(P (t) − C) dt− exp(−rτout)(l1P (τout) + l0)

]
,
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and then solve the problem

(6.5) Hδ1>δ2(p) := sup
τin

E
p[exp(−rτin)(G

δ1>δ2(P (τin))− k1P (τin)− k0)].

Solving problem (6.5) is standard. To solve problem (6.4), we may adopt the

following procedure.

Step 1. Rewrite (6.4) as

Gδ1>δ2(p) = sup
τout>δ1−δ2

E
p

[∫ τout

δ1−δ2

exp(−rt)(P (t) − C) dt− exp(−rτout)(l1P (τout) + l0)

]

+E
p

[∫ δ1−δ2

0

exp(−rt)(P (t) − C) dt

]
.

Step 2. Solve the variational inequality

min{rφ− µpφ′ − 1
2σ

2p2φ′′ − p+ C, φ+ l1p+ l0} = 0 on (0,∞).

It has been done in the proof of Theorem 5.3. Let Sexit be the exercise region of the

above variational inequality. Then by the standard verification argument, we find

that τexit := inf{t : t > δ1 − δ2, P (t) ∈ Sexit} is a maximizer of (6.4) and

Gδ1>δ2(p) = E
p[exp(−r(δ1− δ2))φ(P (δ1− δ2))]+E

p

[∫ δ1−δ2

0

exp(−rt)(P (t)−C) dt

]
.

Step 3. To obtain the explicit expression of Gδ1>δ2 , by the Feynman–Kac formula

we solve the parabolic equation

∂u

∂t
= µp

∂u

∂p
+

1

2
σ2p2

∂2u

∂p
− ru + p− C

subject to the initial condition u(0, p) = φ(p).

Then it follows that Gδ1>δ2(p) = u(δ1 − δ2, p).

Turning to the extension (b), we have the following proposition.

Proposition 6.3. Assume that δ in (4.3) is a random variable with moment

generating function φδ. Consider the problem

(6.6) J̃ rdm(p) := sup
τin6τout

E
p

[∫ τout

τin

exp(−rt)(P (t) − C) dt− exp(−rτin)(k1P (τin) + k0)

− exp(−rτout)(l1P (τout) + l0)

]
,
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where

k1 :=
φδ(µ− r)− 1

µ− r
, k0 :=

C

r
(φδ(−r) − 1) + φδ(−r)Kin,

l1 := −
φδ(µ− r)− 1

µ− r
, l0 := −

C

r
(φδ(−r) − 1) + φδ(−r)Kout.

Then J(p) = J̃ rdm(p). In addition, if (τ∗in, τ
∗
out) is a maximizer of (6.6), it is also

a maximizer of (4.3).

P r o o f. The proof is similar to the proofs of Theorems 3.1 and 5.2, but noting

the independence of δ and P . �

Finally, we consider the extension (c).

Proposition 6.4. Assume that δ1 and δ2 in (6.1) are random variables with

moment generating functions φδ1 and φδ2 , respectively, and ∆ := (δ1 − δ2)
+ being

a {FB
t }t>0-stopping time. Consider the problem

(6.7) J̃ rdm12(p) := sup
τin+∆6τout

E
p

[∫ τout

τin

exp(−rt)(P (t) − C) dt

− exp(−rτin)(k1P (τin) + k0)

− exp(−rτout)(l1P (τout) + l0)

]
,

where

k1 :=
φδ1(µ− r)− 1

µ− r
, k0 :=

C

r
(φδ1 (−r)− 1) + φδ1(−r)Kin,

l1 := −
φδ2(µ− r)− 1

µ− r
, l0 := −

C

r
(φδ2 (−r)− 1) + φδ2(−r)Kout.

Then Jδ1,δ2(p) = J̃ rdm12(p). In addition, if (τ∗in, τ
∗
out) is a maximizer of (6.7), it is

also a maximizer of (6.1).

P r o o f. The proof is similar to the proofs of Theorems 3.1 and 5.2, but noting

the independence of (δ1, δ2) and P . �

R em a r k 6.5. Remark 6.2 also works for Proposition 6.4.
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7. Conclusions

We have to face the fact that activating decisions is usually postponed. In this

paper, we study an entry-exit decision problem with delayed implementation. We

first clarify it from the view of optimal stopping in Section 4, then discuss the trivial

case in Theorem 5.1, and finally obtain an explicit solution in Theorem 5.10 for the

nontrivial case. Some extensions are discussed in Section 6.

The results in literature were obtained under the assumption that the sum of

the entry cost and exit cost is nonnegative, which limits the application of the

model (4.3). We here abandon the assumption. If the sum is negative, two trig-

ger prices of optimal entry decisions may exist, which does not happen if the sum is

nonnegative. Even though it is an arbitrage opportunity to enter a project and then

exit it immediately if the sum is negative, it is still not advisable.
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