
62 (2017) APPLICATIONS OF MATHEMATICS No. 6, 679–698

LOW-RANK TENSOR REPRESENTATION OF SLATER-TYPE AND

HYDROGEN-LIKE ORBITALS

Martin Mrovec, Ostrava

Received June 30, 2017. First published December 5, 2017.

Abstract. The paper focuses on a low-rank tensor structured representation of Slater-
type and Hydrogen-like orbital basis functions that can be used in electronic structure
calculations. Standard packages use the Gaussian-type basis functions which allow us to
analytically evaluate the necessary integrals. Slater-type and Hydrogen-like orbital func-
tions are physically more appropriate, but they are not analytically integrable. A numerical
integration is too expensive when using the standard discretization techniques due the di-
mensionality of the problem. However, it can be effectively performed using the tensor
representation of basis functions. Furthermore, this approach can take advantage of paral-
lel computing.
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1. Introduction

In electronic structure computations (Hartree-Fock or Density Functional Theory-

based [13]) we encounter calculation of the so-called two electron integrals (TEI) [6]

(1.1) bijkl =

∫

R3

∫

R3

ϕi(x)ϕj(x)ϕk(y)ϕl(y)

‖x− y‖ d3y d3x,

where ϕ∗ : R
3 → R are basis functions, i, j, k, l ∈ {1, 2, . . . , NB} (NB is the number of

basis functions). This calculation is the main ingredient of the so-called precomputing
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phase. In the case of the electronic structure of molecules most of the standard

software packages use the Gaussian-type basis (GTO) functions in the form

(1.2) ϕnlm(x1, x2, x3) = N · xn
1 · xl

2 · xm
3 · e−α(x2

1+x2
2+x2

3)

with integer exponents n, l, m, a coefficient α > 0 and a normalization constant N .

A reason of using such basis is the separability and thus analytical integrability of the

TEI. However, GTO basis functions poorly behave in the area of the atomic core, so

for the required accuracy of the result of the electronic structure calculation we have

to enlarge the number of basis functions. An alternative to GTO functions can be

the physically more appropriate Slater-type orbital (STO) functions. Unfortunately

in the case of STO functions TEI are not analytically integrable. To overcome this

problem the STOs are usually substituted by a linear combination of Gaussians with

fixed coefficients. This representation is known as a contracted basis. Coefficients

of the linear combination can be obtained in various ways. Several papers present

searching of the required coefficients as a solution of the optimization problem [4],

[16]. Although this approach leads to finding the best possible approximation (with

respect to the chosen norm), the optimization problem is quite complicated and

becomes difficult to solve for a higher number of Gaussians. We use a different

approach based on the sinc approximation [7]. By using the sinc approximation

we can get results which are less accurate (the number of Gaussians required for

obtaining an approximation with the given accuracy is higher than in the case of the

optimization approach). However, to obtain the linear combination coefficients we

only have to evaluate a single-variable function at given points, which is the main

advantage of this approach. Furthermore, we know how to make error estimates

which describe the dependence of the error on the number of Gaussians.

In the recent paper [5] a concept of numerical integration of TEI (which should be

intractable when using direct discretization techniques) based on Tensor numerical

methods (TNM) has been described and demonstrated on GTO basis functions.

Although by using the Gausian approximation of STO functions the TEI can be

evaluated analytically we have chosen the TNM numerical integration. The reason

is that we do not want to be limited to work only with Gaussian-based functions.

We will follow the TNM scheme here as well so the Gaussian approximation of STO

functions will be represented numerically.

This paper follows [12] where the STO basis functions were approximated using

the sinc approximation but with a necessity of using algorithms to optimize the

so-called canonical rank [5]. Here we present a much more effective approach that

utilizes several properties of the Laplace transform and leads to an efficient low-

rank approximation directly. Furthermore, the whole concept is simply extended to
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Hydrogen-like orbital (HLO) basis functions at similar storage costs. In addition to

the physical accuracy, the HLO functions have the partial orthogonality property.

It means that HLO functions centered at the same nucleus are orthogonal. This

attribute can positively influence the iterative process of the solution of the non-

linear eigenvalue problem [13].

The paper is organized as follows. In Section 2 we recapitulate ways how the

TNM effectively represent multidimensional data. Next, in Section 3 we recall the

sinc approximation method and a way how to use it to find a low rank representation

(described in Section 2) of discretized multivariate functions [7]. The main contri-

butions of this paper are introduced in Section 4. We introduce formulas (4.9) and

(4.29) that are suitable for using the sinc approximation and which lead to approxi-

mation of STO and HLO functions. These formulas are derived using Theorem 4.2,

which is also proved here. Furthermore, we derive error estimates of the approxima-

tion. In Section 5 results of numerical tests, which validate the correctness of derived

formulas, are presented. Finally, concluding remarks are given in Section 6.

2. Low-rank tensor representation of multidimensional data

Recently, several papers aimed at the tensor representation of multidimensional

data have been published (e.g. [6], [7], [5]). Nevertheless, for better readability we

will mention again the main concepts of the Tensor Numerical Methods. First, let

us start with the definition of a tensor.

Definition 2.1. Let n1, n2, . . . , nd ∈ N, d ∈ N. A tensor of order d (N -d tensor)

is defined as a multidimensional array over a d-tuple index set, i.e.,

(2.1) A ∈ R
n1×n2×...×nd , [A]i1i2...id = ai1i2...id ∈ R.

Assuming n1 = n2 = . . . = nd = n, we need nd numbers for storing such tensor in

a memory. It is obvious that even for small values of d we quickly lose the ability to

store the data in a memory. This phenomenon is known as “Curse of dimensionality”.

TNM come with special data representations that overcome this problem.

Definition 2.2. Given a tensor A ∈ R
n1×...×nd ; a canonical rank of A is defined

as the lowest number R for which there exists a representation

(2.2) A =

R∑

k=1

cku
(1)
k ⊗ . . .⊗ u

(d)
k ,

where ck is an expansion coefficient, u
(l)
k ∈ R

nl is lth mode vector, ⊗ denotes the
tensor product. A representation given by formula (2.2) is called the canonical

representation.

681



R em a r k 2.1. We can observe that for R the following inequality holds:

(2.3) 1 6 R 6 min
l∈{1,...,d}

n−1
l

d∏

i=1

ni.

An idea of the canonical representation is illustrated on Figure 1.

A

c1 cR

n1

n2

n3

u
(1)
1 u

(1)
R

u
(2)
1 u

(2)
R

u
(3)
1 u

(3)
R

+ . . .+

Figure 1. Canonical representation of a given tensor A.

From now on, we will assume n1 = n2 = . . . = nd = n for the sake of simplicity.

Memory demands of the canonical representation are equivalent to d ·R ·n numbers.
We can see that in the case of a sufficiently low R the memory requirements are much

lower than for a full sized tensor. Owing to the inequality given by formula (2.3),

this condition may not always be fulfilled. However, we often encounter canonical

representations (with normalized mode vectors) where several expansion coefficients

are significantly lower than the others, so they can be omitted and consequently the

canonical rank is reduced. Of course, in this way, we make an error corresponding

to the order of the omitted coefficients.

Besides the low storage costs of the canonical representation we can efficiently

perform multilinear algebra operations, such as Hadamard product, dot product and

a discrete convolution. Given two tensors with canonical ranks R1, R2, the Euclidean

dot product, or the Hadamard (entrywise) product takes d ·R1 ·R2 ·n operations, the
discrete convolution takes d ·R1 ·R2 ·n · logn operations (instead of nd and n3 · log3 n
respectively) [6]. The efficiency of these operations is, among other, important for

numerical evaluation of TEI [5]. For purposes of this paper we mention a way how

to evaluate the Hadamard product.
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Theorem 2.1 (Hadamard product for canonically represented tensors [6]). Given

two canonically represented tensors A,B of the same size,

A =

RA∑

k=1

cku
(1)
k ⊗ . . .⊗ u

(d)
k ,(2.4)

B =

RB∑

j=1

djv
(1)
j ⊗ . . .⊗ v

(d)
j ,(2.5)

the Hadamard (entrywise) product can be calculated as

(2.6) A⊙B =

RA∑

k=1

RB∑

j=1

ckdj

d⊗

l=1

(u
(l)
k ⊙ v

(l)
j ).

R em a r k 2.2. Equation 2.6 follows simply from the distributivity of the multi-

plication operation.

One of the problems related to the canonical representation is that there are no

algorithms known to determine the canonical rank of a given full sized tensor. The

same holds for searching the best rank R canonical approximation of a given full

sized tensor (e.g. with respect to the Frobenius norm). However, in special cases,

which include function-related tensors, algorithms for finding satisfactory low-rank

approximations are known [7]. One of such methods will be described in the following

section.

3. Sinc approximation

The sinc approximation method is a method for finding a separable canonical

approximation of multidimensional tensors obtained by an equidistant discretization

of multivariate functions on multidimensional intervals [7]. The class of functions,

where the method can be used, consists of multivariate functions that are generated

by some univariate function u, where its single variable r is substituted by a function

of the spatial variables. The principle of the method is based on the fact that some

univariate functions can be represented by an integral transformation. A substitution

of r by a function of the spatial variables can lead to a separable approximation.

Consider a function of one variable u : R → R which is given by the integral

(3.1) u(r) =

∫

Ω

G(t) · eF (t)·rγ dt
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with

(3.2) Ω ∈ {R,R+, I},

where I is a closed real interval, G,F : R → R, and γ ∈ N. This integral can be

approximated using a numerical quadrature

(3.3) u(r) ≈
R∑

j=1

wjG(tj)e
F (tj)r

γ

,

where tj are quadrature points and wj are the corresponding quadrature weights.

Function u can generate some multivariate function as mentioned above. Considering

r as a function of d variables, e.g.,

(3.4) r =

d∑

l=1

xl

or

(3.5) r =

Ã

d∑

l=1

x2
l = ‖x‖, x ∈ R

d,

we can obtain a separable representation. In the following text we will focus only on

the case (3.5) and γ = 2, i.e.,

(3.6) u(‖x‖) =
∫

Ω

G(t) · eF (t)·‖x‖2

dt ≈
R∑

j=1

wjG(tj)e
F (tj)‖x‖2

.

In such a form u can represent radial parts of basis functions which are described in

Section 4 (formulas (4.1) and (4.24)). The last term of (3.6) can be rewritten as

(3.7)

R∑

j=1

wjG(tj)

d∏

l=1

eF (tj)x
2
l ,

where the spatial variables are separated. Now, we can discretize the function u on

a d-dimensional interval. It means that u is represented by a tensor U ∈ R
n1×...×nd

of the order d, where nl is the number of the equidistant grid points in the lth spatial

dimension. Let yl ∈ R
nl denote a vector of grid points in the lth spatial dimension.

Then we can write the canonical representation of U as

(3.8) U =

R∑

j=1

cju
(1)
j ⊗ . . .⊗ u

(d)
j ,
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where

(3.9) cj = wjG(tj)

and

(3.10) u
(l)
j = eF (tj)(y

(l))2

(the second power of yl is understood as element-wise).

The remaining question is which type of quadrature should be used to obtain

both a satisfying approximation with the low-rank parameter R and a possibility of

estimating the approximation error dependence on R. One of such quadratures is

the sinc-quadrature [7] based on the interpolation by the sinc function

(3.11) Sj,h(t) =
sin(π(t− jh)/h)

π(t− jh)/h
, j ∈ Z, h ∈ R

+.

Given a one dimensional function f : R → R a sinc interpolant is defined as

(3.12) Cf,h(t) =

∞∑

j=−∞
f(jh)Sj,h(t).

A sinc interpolant need not necessarily represent the function f exactly (though

in some cases it is true [3]). There exist some classes of functions for which Cf,h

provides a very good approximation [15]. One such space of functions is given by

Definition 3.1.

Definition 3.1. Let δ ∈ (0, 1
2π) and

(3.13) Dδ = {z ∈ C : −δ < Im z < δ}.

The Hardy space H1(Dδ) is defined as the set of complex functions v that are holo-

morphic on Dδ and

(3.14)

∫ ∞

−∞
|v(x + iδ)|+ |v(x− iδ)| dx < ∞.

R em a r k 3.1. If we write that a real function f belongs to the Hardy space

H
1(Dδ), then we understand that it is a restriction of a complex function v ∈ H

1(Dδ)

to R.
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For functions which belong to H
1(Dδ) we can approximate their integral over R

using a sinc interpolant:

(3.15)

∫

R

f(t) dt ≈
∫

R

Cf,h(t) dt = h ·
∞∑

j=−∞
f(jh).

R em a r k 3.2. The proof of the last equality in (3.15) can be found for example

in [15], Theorem 1.10.1.

In practice we are not able to handle an infinite number of quadrature points so

the sum has to be truncated, i.e.

(3.16)

∞∑

j=−∞
f(jh) ≈

M∑

j=−M

f(jh), M ∈ N.

For functions which belong to H
1(Dδ) and which converge to 0 fast enough as x

tends to infinity the error dependence on the canonical rank can be estimated using

Theorem 3.1 [15].

Theorem 3.1 (Error of the sinc quadrature). Let f ∈ H
1(Dδ). If f satisfies

(3.17) |f(x)| 6 Ce−b|x| ∀x ∈ R with C > 0, b > 0,

then there exists a constant C1 depending on f , δ and α such that

(3.18)

∣∣∣∣
∫

R

f(x) dx− h

M∑

j=−M

f(jh)

∣∣∣∣ 6 C1e
−
√
2πδbM

with

(3.19) h =

√
2πδ

bM
.

Assuming we know the right integral representation (3.6) for the desired multivari-

ate function, we have got all the necessary tools to find its canonical approximation.

In the next section we will discuss such representations that lead to a canonical

approximation of STO or HLO functions.

686



4. Approximation of basis functions

In this section we will have a look at integral formulas that will be used to make

a canonical approximation of the STO and HLO functions. We will focus on verifying

that the formulas are suitable for using the sinc-quadrature and also on estimating

the error of the approximation.

4.1. Canonical approximation of the Slater type functions. The STO func-

tions can be written as

(4.1) ϕnlm(x) = N · ‖x‖n−l−1 · Ỹlm(x) · e−α‖x‖,

where N is a normalization constant, n ∈ N, l ∈ {0, . . . , n}, m ∈ {−l, . . . , l}, and
Ỹlm denotes a real spherical harmonic [2] multiplied by ‖x‖l, i.e.,

(4.2) Ỹlm(x) = Clm ·Qlm(x)

with a normalization constant Clm and a multivariate polynomial Qlm. Formula

(4.1) can be divided into two parts. The angular part consists of the function Ỹlm(x)

and the rest is called the radial part. A canonical representation of each part has

to be found separately. Let us denote by Ra and Rr the canonical rank of the dis-

cretized angular and of the discretized radial part, respectively. Then the canonical

approximation of the whole STO function can be obtained by using formula (2.6).

(A contains a canonical representation of the discretized radial part and B contains

a canonical representation of the discretized angular part.) The resulting canonical

rank is equal to Ra · Rr.

4.1.1. Angular part. The separable canonical representation of the angular part

Ỹlm is straightforward. If we look at the table of spherical harmonics [2], we can

observe that their canonical rank does not exceed 6 for l 6 4. For example for l = 3,

m = −1:

(4.3) Ỹ3,−1(x1, x2, x3) =
1

4

√
21

2π

· (4x2 · x2
3 − x2

1 · x2 − x3
2).

Similarly to the discretization of (3.7) we can represent an interval in each spatial

dimension by a vector. Then each term of the polynomial on the r.h.s. of (4.3)

represents a rank-1 update of the canonical representation (2.2) with rank R = 3.

4.1.2. Radial part. Finding a canonical representation of the radial part is not

as straightforward as in the case of the angular part. We have to use the sinc approx-

imation method mentioned in Section 3. Using the inverse Laplace transform [14]
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(viewing ‖x‖ as a one-dimensional variable) we can find that

(4.4) e−α‖x‖ =
α

2
√

π

∫ ∞

0

t−3/2 · e−α2/4t · e−t‖x‖2

dt,

which corresponds to the first equality of equation (3.6). The approach presented

in [12] separately uses an approximative canonical representation of (4.4) and an

approximative canonical representation of ‖x‖β , β ∈ N ∪ {0}. Canonical rank of
such representation depends on canonical ranks of individual parts. For example, if

the canonical rank of each part is equal to 20, the resulting canonical representation

of the radial part has rank equal to 400 which is quite high for numerical treatment

and has to be reduced using special algorithms [10]. However, this complication can

be bypassed with one of the Laplace transform properties, which is described by

Theorem 4.1 [14].

Theorem 4.1 (Derivative of the Laplace transform with respect to the second

variable). Let f : (0,∞)2 → R be the real function of two variables. Let f(t, x) sat-

isfy conditions for the existence of the Laplace transform (with respect to variable t).

Let F : C× (0,∞) → C be the Laplace transform of f , i.e.

(4.5) F (s, x) = L[f(t, x)](s) =
∫ ∞

0

f(t, x)e−st dt.

Assume that there exists a Laplace transform of the partial derivative of f with

respect to x. Then

(4.6) L
[∂f(t, x)

∂x

]
(s) =

∂F (s, x)

∂x
.

R em a r k 4.1. To prove this theorem we can use the Leibniz integral rule sup-

plemented by conditions for infinite domains (see [11], p. 338).

Consider α as the variable x of Theorem 4.1. Then, by repeated application of

(4.6) on r.h.s. of (4.4) we obtain

(4.7) ‖x‖β · e−α‖x‖ = (−1)β · ∂β

∂αβ
e−α‖x‖

= (−1)β
∫ ∞

0

∂β

∂αβ

[ α

2
√

π

· t−3/2 · e−α2/4t
]
· e−t‖x‖2

dt.

The derivative inside the integral can be evaluated analytically for an arbitrary n.

This formula is quite simple but in this form it is not suitable for applying the
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sinc-quadrature. As discussed in [12], the problem can be solved by introducing an

appropriate substitution,

(4.8) t =
α2

2
eu,

which leads to the formula

(4.9) ‖x‖β · e−α‖x‖ =

∫ ∞

−∞

1

αβ
√
2π

Pβ(e
u) · e− 1

2 ((2β+1)u+e−u) · e− 1
2 e

uα2‖x‖2

du,

where Pβ is a polynomial. The resulting equation corresponds to the first equality

of equation (3.6) and, in addition, enables us to apply the sinc quadrature. Theo-

retically we can derive Pβ for an arbitrary β. However, practically only first few

polynomials are needed for generating STO functions used as a basis in electronic

structure calculations. First seven polynomials are listed in Table 1.

β Pβ(t)

0 1

1 −t+ 1

2 −3t+ 1

3 3t2 − 6t+ 1

4 15t2 − 10t+ 1

5 −15t3 + 45t2 − 15t+ 1

6 −105t3 + 105t2 − 21t+ 1

Table 1. First 7 polynomials occurring in the integral formula for approximating the radial
part of a STO function.

To show that this form is suitable for using the sinc quadrature we will prove the

following theorem.

Theorem 4.2. Let α > 0, r > 0 and let the function v : C → C be defined as

(4.10) v(z) = e−
1
2 (kz+e−z) · e− 1

2α
2ezr.

Then v belongs to Hardy space H1(Dδ), δ = 1
3π, for each k ∈ N.

P r o o f. Obviously, v is holomorphic on C (for an arbitrary k ∈ N). Hence, it is

holomorphic on Dδ for an arbitrary δ ∈ (0, 1
2π). We have to show that v satisfies

condition (3.14). Let us write down v(x + iδ) and its absolute value:

v(x+ iδ) = e−
1
2 (kx+kiδ+e−(x+iδ)+α2ex+iδr),(4.11)

|v(x+ iδ)| = e−
1
2 (kx+e−x cos δ+α2rex cos δ).(4.12)
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We can notice that for an arbitrary x ∈ R the maximum of v as a function of r is

realized at r = 0 so we can estimate an upper bound

(4.13) |v(x + iδ)| 6 e−
1
2 (kx+e−x cos δ).

Analogously, we can write

(4.14) |v(x − iδ)| 6 e−
1
2 (kx+e−x cos δ).

Let us choose δ = 1
3π. Then we can write

∫ ∞

−∞

∣∣∣v
(
x+ i

π

3

)∣∣∣+
∣∣∣v
(
x− i

π

3

)∣∣∣ dx 6

∫ ∞

−∞
2e−

1
2 (kx+

1
2 e

−x) dx

=

∣∣∣∣∣∣

subst.

e−x = a

−e−x dx = da

∣∣∣∣∣∣
= 2

∫ ∞

0

a
1
2 k−1 · e− 1

4a da = 2Y
(1
4

)
,

where Y (s) = L
[
a

1
2 k−1

]
(s) with respect to variable a. Using the Laplace transform

table [14], we can find that

(4.15) Y (s) = s2/kΓ
(k
2

)
.

Finally, we can write

(4.16) 2Y
(1
4

)
= 2k+1Γ

(k
2

)
< ∞,

so v ∈ H
1(D

π/3) for an arbitrary k ∈ N. �

Theorem 4.2 implies that the integrand of the right-hand side of (4.9) belongs to

the Hardy space H1(D
π/3). Now we can derive an error estimate using Theorem 3.1,

which means that we have to find C > 0, b > 0 such that

(4.17)
ζκ

αβ
√
2π

e−
1
2 (kx+e−x) 6 Ce−b|x| ∀x ∈ R,

where ζκ is one of the expansion coefficients of the polynomial Pβ , i.e.,

(4.18) Pβ(x) =

degPβ∑

κ=0

ζκx
κ.

The inequality (4.17) can be rewritten to

(4.19)
ζκ

αβ
√
2π

e−
1
2kx− 1

2 e
−x+b|x| 6 C ∀x ∈ R.
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We can notice, that the left-hand side is bounded if 0 < b 6 1
2k. We would like to

have an error estimate with the greatest possible b to get the fastest error decrease,

so we choose b = 1
2k. By analysis of the maxima of the l.h.s. of (4.19) we get

(4.20) C =





ζκ

αβ
√
2π

if k = 1,

ζκ

αβ
√
2π

·
(2k

e

)k
if k > 1.

We have to take the lowest possible k generated by β in the product

Pβ(e
u) · e− 1

2 ((2β+1)u+e−u)

as shown in Example 4.1.

E x am p l e 4.1. Assume β = 2. Then we can write

P2(e
u) · e− 1

2 (5u+e−u) = e−
1
2 (5u+e−u) − 3e−

1
2 (3u+e−u),

which implies k = 3.

All the assumptions of Theorem 3.1 are fulfilled so we can write the error estimate

(4.21)

∣∣∣∣‖x‖
β · e−α‖x‖ − h ·

M∑

j=−M

I(jh, ‖x‖)
∣∣∣∣ 6 C1e

−
√

π
2kM/3,

where C1 > 0,

(4.22) I(u, ‖x‖) = 1

αβ
√
2π

Pβ(e
u) · e− 1

2 ((2β+1)u+e−u) · e− 1
2 e

uα2‖x‖2

and

(4.23) h =

√
4π

2

3kM
.

The error estimate will be validated in the numerical experiments section.

4.2. Canonical approximation of the Hydrogen-like orbital functions.

The HLO functions can be written as

(4.24) ϕnlm(x) = N · L2l+1
n−l−1

(α
n
‖x‖

)
· Ỹlm(x) · e−(α/2n)‖x‖,
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where N is a normalization constant, n ∈ N, l ∈ {0, . . . , n}, m ∈ {−l, . . . , l}, Ỹlm are

the spherical harmonics mentioned in Section 4.1 (equation (4.2)), and L2l+1
n−l−1 are

associated Laguerre polynomials, that can be written as [1]

(4.25) L2l+1
n−l−1(x) =

n−l−1∑

i=0

µix
i,

where

(4.26) µi =
(−1)i

i!
·
(

n+ l

n− l − 1− i

)
.

Similarly to STO functions we have to find canonical representations of the radial

and the angular parts separately. The angular part is the same as in the case of STO

functions, so in this subsection we will concentrate only on the radial part. We have

to find a low-rank canonical approximation of

(4.27) Rnl(‖x‖) := L2l+1
n−l−1

(α
n
‖x‖

)
· e−(α/2n)‖x‖.

Here we can use formula (4.9) derived in Section 4.1. Moreover, we exploit a linearity

property of the Laplace transform, which is summarized in Theorem 4.3 [14].

Theorem 4.3 (Linearity of the Laplace transform). Let f1, f2 be real functions

which satisfy conditions for the existence of the Laplace transform and let F1, F2 be

their Laplace transforms. Then for any a1, a2 ∈ R

(4.28) L[a1f1(t) + a2f2(t)](s) = a1F1(s) + a2F2(s).

By combining equations (4.9), (4.25), (4.26), (4.27), and (4.28), we obtain the final

radial part integral representation formula

(4.29) Rnl(‖x‖) =
∫ ∞

−∞

n−l−1∑

i=0

[µi2
i

√
2π

·Pi(e
u) ·e− 1

2 ((2i+1)u+e−u)
]
·e−(1/8n2)euα2‖x‖2

du,

which is suitable for applying the sinc quadrature (as follows from Theorem 4.2).

Due to the similarity to formula (4.9) we can expect the exponential error decrease

with respect to the canonical rank.

5. Numerical experiments

The aim of this section is to verify the estimates made in Section 4 for the radial

parts of STO and HLO functions. Further, a possibility of a cheap rank reduction

will be discussed.
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5.1. Approximation of STO functions. Figure 2 contains graphs of the radial

parts of the first four STO functions with α = 1.
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Figure 2. Radial parts of the first four STO functions with n− l− 1 as an exponent of ‖x‖.

For these functions the error estimate (4.21) was tested. The absolute error is

measured as the maximum of the absolute value of the difference between the an-

alytical formula of the STO radial part (equation (4.1) without Ỹlm(x)) and the

approximation given by equation (4.9) with the applied sinc quadrature. For error

measurements both functions are equidistantly discretized on a finite interval. The

sinc-quadrature step h is determined by formula (4.23). For the first two functions

the parameter k was set to 1, and for the other functions k was set to 3. This set-

ting is determined by the degree of the polynomial Pβ . Figures 3 and 4 show the

dependence of the absolute error on the canonical rank.

Both figures confirm that the error estimate is correct.

5.2. Approximation of HLO functions. Figure 5 contains graphs of the radial

parts of the first four HLO functions with α = 1.

We can observe that R10(‖x‖) and R21(‖x‖) are functions that represent radial
parts of STO basis functions so the tests of them had already been performed in the

previous subsection and are thus skipped here. Due to the similarity of the integral

formulas of HLO and STO radial parts we can use the same error estimate as in

the case of the STO function. The sinc-quadrature step h is also determined by
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Figure 3. Error dependence on rank-radial part of STO with n− l − 1 ∈ {0, 1}.
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Figure 4. Error dependence on rank-radial part of STO with n− l − 1 ∈ {2, 3}.
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Figure 5. Radial parts of the first four HLO functions.

formula (4.23). The parameter k was set to 1, because the integral formula always

contains the polynomial P0. Figures 6 and 7 show the dependence of the absolute

error on the canonical rank.

Both figures confirm that the error estimate is correct.

5.3. Rank reduction. In Section 2 we have mentioned a possibility of a reduction

of the canonical rank when the mode vectors of the canonical representation (2.2)

are normalized (e.g. with respect to the Euclidean norm). The reduction can be

performed by omitting rank-1 contributions, where absolute values of coefficients ck

are lower than some ε > 0. Using the rank reduction, the storage costs of the canon-

ical representation can be significantly reduced. In this subsection we discuss a rank

reduction of canonical representations of radial parts of STO and HLO functions

obtained by the sinc approximation method. We can notice that mode vectors of

the generated canonical representation do not contain numbers with modulus greater

than 1. Therefore, by omitting R0 ∈ N rank-1 contributions with |ck| < ε the ab-

solute error of the approximation may at maximum increase by ε · R0. The rank

reduction has been tested for all approximations tested above and results were prac-

tically the same. As an example, Figure 8 illustrates how the canonical rank can be

reduced if we set ε = 10−15 in the case of the radial part of the STO with n−l−1 = 2.
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Figure 6. Error dependence on rank-radial part of HLO with n = 2, l = 0.
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Figure 7. Error dependence on rank-radial part of HLO with n = 3, l = 0.
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Figure 8. Rank reduction by omitting expansion coefficients ck with modulus lower than
10−15—STO with n− l − 1 = 2.

We observe that using the rank reduction the memory costs can be almost halved.

6. Conclusion

In this paper we have discussed formulas which lead to a low-rank approximation

of multivariate functions, which can be used as bases within the electronic structure

calculations. Compared to recent paper [12] a much more efficient way to get a low-

rank approximation of the STO function has been presented. For comparison the

previous approach generated a canonical tensor with rank R = 1200 and with an

error of the order of 10−2, whereas using the approach presented in this paper we

obtain a tensor with the canonical rank equal to 18 at the same error. Moreover, the

rank can be reduced up to 11 by omitting rank-1 contributions with low expansion

coefficients. Further, the method has been used for approximation of HLO functions

that make up an orthogonal set (assuming that they are centered at the same point in

the 3D space). This fact can positively influence the iterative process of the solution

of the non-linear eigenvalue problem. Finally, we should note that in addition to the

canonical representation there exist other rank-structured tensor formats, e.g. the

Tucker format or the TT representation [8]. We should also mention [9], where
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a numerical analysis of the low-rank representation of the Slater-type radial function

in the Tucker format has been reported.
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