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Abstract. We consider the inverse scattering problem of determining the shape and
location of a crack surrounded by a known inhomogeneous media. Both the Dirichlet
boundary condition and a mixed type boundary conditions are considered. In order to avoid
using the background Green function in the inversion process, a reciprocity relationship
between the Green function and the solution of an auxiliary scattering problem is proved.
Then we focus on extending the factorization method to our inverse shape reconstruction
problems by using far field measurements at fixed wave number. We remark that this is
done in a non intuitive space for the mixed type boundary condition as we indicate in the
sequel.
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1. Introduction

This study is concerned with the inverse problem of reconstruction of the shape

and position of cracks embedded in a known inhomogeneous background medium

from the knowledge of the far field due to incident plane waves at a fixed frequency.

The particular application we have in mind is the nondestructive testing of flaws in

materials in specific (typically thin) areas or the detection of thin air pockets inside

structures. Earlier studies on the inverse obstacle scattering associated with outside
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inhomogeneity can be found in [14] and [18], where the uniqueness of the inverse

problem of recovering the obstacle in an inhomogeneous background from the far

field data is proved and the factorization method is developed for determining it,

respectively. Very recently, the authors in [7] established the factorization method for

a non-absorbing anisotropic background media containing penetrable defects. Some

other qualitative methods such as the linear sampling method and reciprocity gap

functional have been adopted to recover objects buried in inhomogeneous background

media (possibly piecewise constant or anisotropic) [8], [6]. Inspired by the work [7],

we develop in this paper a factorization method to reconstruct the crack inside an

inhomogeneous media.

Precisely speaking, let Γ be an open arc as the cross section of an infinite cylinder

in R2 and assume that Γ can be extended to an arbitrary smooth, simply connected,

closed curve ∂Ω enclosing a bounded domain Ω such that the normal vector ν on Γ

coincides with the outward normal vector on ∂Ω, which we again denote by ν. We

denote by n(x) the refraction index of an inhomogeneous media which is represented

by a domain D, the support of (n(x) − 1) such that Ω ⊂ D. We note that the

real valued function n(x) > 0 belongs to C(D) and satisfies n(x) = 1 outside the

region D. Assume that the incident electromagnetic field is a time harmonic plane

wave polarized in the TM mode, hence we arrive at the following boundary value

problem for the Helmholtz equation with positive wave number k:

(1.1) ∆u + k2nu = 0 in R
2 \ Γ̄,

where the total field u = us + ui is decomposed into the given incident plane wave

ui = eikx·d with unitary d ∈ S1 (the unit circle in R
2) and the unknown scattered

field us which is required to satisfy the Sommerfeld radiation condition

(1.2) lim
r→∞

√
r
(∂us
∂r

− ikus
)
= 0

uniformly in x̂ = x/|x| with r = |x|. It is known that us(x) has the asymptotic
representation

(1.3) us(x) =
eik|x|√
|x|

{
u∞(x̂) +O

( 1

|x|
)}

as |x| → ∞

uniformly for all directions x̂, where u∞ is the far field pattern of the scattered

field us. We impose the Dirichlet boundary condition for a thin perfect conductor

(1.4) u± = 0 on Γ,
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and the mixed type boundary conditions with impedance function λ is also consid-

ered:

(1.5)






∂u−
∂ν

= 0 on Γ,

[∂u
∂ν

]
+ λu+ = 0 on Γ.

We assume that λ is a constant and satisfies Reλ > 0 and Imλ > 0. Notice that

u±(x) = lim
h→0+

u(x ± hν), ∂u±/∂ν = lim
h→0+

ν · ∇u(x± hν) and [∂u/∂ν] = ∂u+/∂ν −
∂u−/∂ν for x ∈ Γ.

When the background media is homogeneous or a multilayer with piecewise con-

stant index of refraction, one can use the integral equation method or the variational

approach to solve the direct scattering problem, see for example [21], [4], [3], [11].

Although it seems that the well posedness of the forward problem is an intuitive

conclusion, for convenience of the reader we will employ the variational method to

investigate the direct scattering problems (1.1), (1.2), (1.4) and (1.1), (1.2), (1.5) in

the subsequent section.

The crack inverse scattering problem was initiated in 1995 by Kress who used

Newton’s method to reconstruct the shape of the crack. Since then, some others

categorized the qualitative methods such as the linear sampling method [4], [11],

the factorization method [3], [15], the reciprocity gap functional method [21] and

have developed them to recover the crack in homogeneous or piecewise homogeneous

background media. In this paper, we propose to use the factorization method to

reconstruct a crack surrounded by inhomogeneous media as we mentioned above.

There are two challenges we will encounter during the process of analysis of the in-

verse problem. The main difficulty is due to the inhomogeneous background medium.

Since the far field data arise simultaneously by the crack and the backgroundmedium,

thus the inversion formula for the crack should exclude the influence of the back-

ground and a modified factorization method should be built. On the other hand, in

order to avoid using the background Green’s function as the test function, as we will

see later, a new reciprocity relationship between Green’s function and the solution

to an auxiliary scattering problem corresponding to the background medium should

be established. Those solving ideas are reflected in the works [7], [2], where the

factorization method is used to recover the obstacle in inhomogeneous and piecewise

homogeneous media, respectively. Here we investigate our inverse problems with

help of their method and generalize the factorization method to our cases. Another

block is generated by the mixed boundary conditions attached to the crack. As we

know, the key ingredient in the factorization method is to connect the detection

object to the far field measurements. This can be accomplished by an appropriate
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decomposition of the far field operator involving a data-to-pattern operator and an-

other auxiliary operator such that the range identity theorem [13] can be applied.

We will see that the factorization method can be directly extended to the case of

the Dirichlet boundary condition but not so straightforward to the mixed boundary

conditions. Generally, we can use a linear sampling method to reconstruct cracks

with mixed boundary conditions [4], [1], while the factorization method requires more

restrictions [3], [10]. We note that the same hypothesis on the function space has

been made in [3], but our proof is different from theirs.

The paper is organized as follows. Using a variational method, we show the well

posedness of the direct scattering problems in Section 2. Section 3 is dedicated to

some preparatory work for the reconstruction of the crack and mainly focuses on the

reciprocity relationship between the background Green’s function and the solution

to a scattering problem of the background medium. In Section 4, we give a rigorous

proof of a modified version of the factorization method for our inverse scattering

problems in a nonintuitive function space. This goal is achieved by verifying the

properties of some associated operators.

2. The direct scattering problems

In this section, we consider the direct scattering problems (1.1), (1.2), (1.4) and

(1.1), (1.2), (1.5). In order to formulate our scattering problems more precisely we

need to properly define the trace space on Γ. If L2(Γ), H1/2(∂Ω), and H−1/2(∂Ω)

denote the usual Sobolev spaces on the closed regular curve ∂Ω, we define the spaces

H1/2(Γ) = {u|Γ : u ∈ H1/2(∂Ω)},
H̃1/2(Γ) = {u ∈ H1/2(∂Ω): suppu ⊆ Γ̄},
H−1/2(Γ) = (H̃1/2(Γ))′, the dual space of H̃1/2(Γ),

H̃−1/2(Γ) = (H1/2(Γ))′, the dual space of H1/2(Γ),

and we have the inclusions [17]

H̃1/2(Γ) ⊂ H1/2(Γ) ⊂ L2(Γ) ⊂ H̃−1/2(Γ) ⊂ H−1/2(Γ).

We consider the more general problems for the scattered field us.

Dirichlet Crack Problem (DP): given f ∈ H1/2(Γ) and p ∈ L2(D \ Γ̄) find V d ∈
H1

loc(R
2 \ Γ̄) such that

(2.1)





∆V d + k2nV d = p in R
2 \ Γ̄,

V d
± = f on Γ,

lim
r→∞

√
r
(∂V d

∂r
− ikV d

)
= 0, r = |x|.
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Mixed Crack Problem (MP): given g ∈ H−1/2(Γ), h ∈ H̃−1/2(Γ) and p ∈ L2(D \ Γ̄)
find V m ∈ H1

loc(R
2 \ Γ̄) such that

(2.2)





∆V m + k2nV m = p in R
2 \ Γ̄,

∂V m
−

∂ν
= g on Γ,

[∂V m

∂ν

]
+ λV m

+ = h on Γ,

lim
r→∞

√
r
(∂Vm

∂r
− ikVm

)
= 0, r = |x|.

Note that we extend p by zero to the whole space R2 and still denote it by p. We

choose to adopt a variational approach in the study of the direct scattering problems.

Such a method has been introduced in [3] to solve the direct scattering problem

for cracks with impedance boundary conditions; after some modifications it can be

applied to our problems.

Denote by BR a sufficiently large ball with radius R containing D and by SR its

boundary. We introduce TR : H1/2(SR) → H−1/2(SR), the Dirichlet to Neumann

operator, defined by

(2.3) TR(ϕ) =
∂ω

∂ν
on SR,

with ω ∈ H1
loc(R

2\BR) being the unique solution satisfying the Sommerfeld radiation

condition and verifying

{
∆ω + k2ω = 0 in R

2 \BR,

ω = ϕ on SR.

Let 〈, 〉SR denote the duality product between H
1/2(SR) and H

−1/2(SR) that co-

incides with L2(SR) scalar product for regular functions. We have the following

important properties of the Dirichlet to Neumann map [5].

Lemma 1. The Dirichlet to Neumann map TR is a bounded linear operator

from H1/2(SR) to H
−1/2(SR). Furthermore, there exists a bounded operator T0 :

H1/2(SR) → H−1/2(SR) satisfying

(2.4) −〈T0ϕ, ϕ〉SR > C‖ϕ‖2
H

1
2 (SR)

for some constant C > 0 such that TR − T0 : H
1/2(SR) → H−1/2(SR) is compact.
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Let V0 be the solution to the boundary value problem




∆V0 + k2V0 = 0 in R
2 \ Γ̄,

V0± = f on Γ,

lim
r→∞

√
r
(∂V0
∂r

− ikV0

)
= 0, r = |x|.

It has been proved in [4] that this problem is well posedness and the following in-

equality relation holds:

‖V0‖H1
loc

(R2\Γ̄) 6 C‖f‖H1/2(Γ).

Let U0 be the solution to the boundary value problem





∆U0 + k2U0 = 0 in R
2 \ Γ̄,

∂U0±

∂ν = g on Γ,

lim
r→∞

√
r
(∂U0

∂r
− ikU0

)
= 0, r = |x|.

It is easy to prove that there exists a unique solution (ref. [20]) satisfying

‖U0‖H1
loc

(R2\Γ̄) 6 C‖g‖H−1/2(Γ).

We now formulate the problems (2.1) and (2.2) as two variational problems. To

this end we define the Sobolev spaces

X := {ϕ ∈ H1(BR \ Γ̄) : ϕ± = 0 on Γ},

Y :=
{
ϕ ∈ H1(BR \ Γ̄) : ∂ϕ−

∂ν
= 0 on Γ

}
.

Then Ud := V d −V0 ∈ X and Um := V m −U0 ∈ Y , where V d and Vm are solutions

to problems (2.1) and (2.2), respectively. Furthermore Ud satisfies

(2.5)





∆Ud + k2nUd = p− k2(n− 1)V0 in BR \ Γ̄,
Ud
± = 0 on Γ,

∂Ud

∂ν
= TRV

d − ∂V0
∂ν

on SR

and Um satisfies

(2.6)





∆Um + k2nUm = p− k2(n− 1)U0 in BR \ Γ̄,
∂Um

−

∂ν
= 0 on Γ,

[∂Um

∂ν

]
+ λUm

+ = h− λU0+ on Γ,

∂Um

∂ν
= TRV

m − ∂U0

∂ν
on SR.
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Therefore, Ud is a solution of problem (2.5) if and only if Ud ∈ X and satisfies for

all ϕ ∈ X
∫

BR\Γ̄

(∇Ud · ∇ϕ̄− k2nUdϕ̄) dx−
∫

SR

TRU
dϕ̄ ds(2.7)

=

∫

D\Γ̄

{k2(n− 1)V0 − p}ϕ̄dx+

∫

SR

(
TRV0 −

∂V0
∂ν

)
ϕ̄ds,

and Um is a solution of problem (2.6) if and only if Um ∈ Y and satisfies for all

ϕ ∈ Y
∫

BR\Γ̄

(∇Um · ∇ϕ̄− k2nUmϕ̄) dx−
∫

SR

TRU
mϕ̄ds− λ

∫

Γ

Um
+ ϕ̄+ ds(2.8)

=

∫

D\Γ̄

{k2(n− 1)U0 − p}ϕ̄dx+

∫

SR

(
TRU0 −

∂U0

∂ν

)
ϕ̄ ds

−
∫

Γ

hϕ̄ds+ λ

∫

Γ

U0+ϕ̄+ ds,

where the third integral of the above identity over Γ is interpreted as the duality

pairing between H̃−1/2(Γ) andH1/2(Γ), while the fourth is an inner product of L2(Γ).

Theorem 2. Assume that f ∈ H1/2(Γ), g ∈ H−1/2(Γ), h ∈ H̃−1/2(Γ) and

p ∈ L2(D \ Γ̄). Then the variational formulas (2.7) and (2.8) have a unique solution
Ud ∈ X and Um ∈ Y , respectively, which depend on the boundary data and the

source.

P r o o f. Since this is a classical exercise, we will give here only the proof for

variational formula (2.8), and the assertion for (2.7) can be obtained similarly. To

this end, we denote by A(Um, ϕ) an operator associated with the right-hand side

of (2.8) and by l(ϕ) the one associated with the left-hand side.

Noting that
[
∂U0/∂ν

]
= 0 on Γ, Green’s first identity for U0 and ϕ in the domain

BR \ Γ̄ implies that

−
∫

SR

∂U0

∂ν
ϕ̄ds = −

∫

Γ

∂U0

∂ν
[ϕ̄] ds−

∫

BR\Γ̄

∇U0 · ∇ϕ̄ dx+

∫

BR\Γ̄

k2U0 · ϕ̄dx.

Hence, by the Cauchy-Schwarz inequality, the trace theorem, the properties of the

Dirichlet to Neumann map TR, and the assumptions on n and λ, we have that

|l(ϕ)| 6 C1(‖U0‖H1(BR\Γ̄) + ‖p‖L2(D\Γ̄))‖ϕ‖H1(BR\Γ̄) + C2‖U0‖H1/2(SR)‖ϕ‖H1/2(SR)

+ C3‖g‖H−1/2(Γ)‖[ϕ]‖H̃1/2(Γ) + C4‖h‖H̃−1/2(Γ)‖ϕ‖H1/2(Γ)

+ C5‖U0‖H1/2(Γ)‖ϕ‖H1/2(Γ)

6 C(‖p‖L2(D\Γ̄) + ‖g‖H−1/2(Γ) + ‖h‖H̃−1/2(Γ))‖ϕ‖H1(BR\Γ̄),

which shows that l is a bounded conjugate linear functional.
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The remaining part is to prove that A(Um, ϕ) is invertible by the Fredholm theo-

rem. We decompose A into a coercive part

A0(U
m, ϕ) =

∫

BR\Γ̄

(∇Um · ∇ϕ̄+ Umϕ̄) dx−
∫

SR

T0U
sϕ̄ds,

and a compact one

A1(U
m, ϕ) = −

∫

BR\Γ̄

(k2n+ 1)Umϕ̄dx−
∫

SR

(TR − T0)U
mϕ̄ds− λ

∫

Γ

Um
+ ϕ̄+ ds.

The coercivity of A0(·, ·) directly follows from the property of T0, while the com-
pactness of A1(·, ·) follows from the properties of TR − T0, the trace theorem, the

Rellich compact imbedding theorem and the assumption on λ. Thus the operator A

is a Fredholm operator of index 0 and then we just need to show its injectivity. That

is the uniqueness of a weak solution to the problem (2.2) with homogeneous equation

and boundary conditions.

Indeed, letting the data p, g, and h in the problem (2.2) equal zero and using

Green’s first identity for V m, we get
∫

BR\Γ̄

(∇V m · ∇V m − k2n|V m|2) dx

=

∫

SR

V m ∂V
m

∂ν
ds−

∫

Γ

V m
+

∂V m
+

∂ν
ds+

∫

Γ

V m
−

∂V m
−

∂ν
ds.

By using the boundary conditions in problem (2.2), we have

∫

SR

Vm ∂V
m

∂ν
ds =

∫

BR\Γ̄

(|∇V m|2 − k2n|V m|2) dx− λ̄

∫

Γ

|V m
+ |2 ds.

Hence, we obtain that by the assumption Imλ > 0

Im

∫

∂BR

V m ∂V
m

∂ν
ds = −λ̄

∫

Γ

|V m
+ |2 ds > 0.

So, from Rellich’s lemma and the unique continuation principle we obtain that

V m = 0 in R
2 \ Γ̄. The proof is then completed. �

R em a r k 1. Theorem 2 implies that the Dirichlet Crack Problem and Mixed

Crack Problem both have a unique solution, moreover, there exists a positive con-

stant C depending on BR, n and λ such that

‖Ud‖H1(BR\Γ̄) 6 C(‖f‖H1/2(Γ) + ‖p‖L2(D\Γ̄)),(2.9)

‖Um‖H1(BR\Γ̄) 6 C(‖g‖H−1/2(Γ) + ‖h‖H̃−1/2(Γ) + ‖p‖L2(D\Γ̄)).(2.10)

516



3. The preliminaries for inverse problems

In this part, we will give two theorems which will play an important role in our

inverse problems. First, we establish a mixed reciprocity relation for the scattering

by an inhomogeneous media. Despite the reciprocity principle being a common

conclusion in the scattering theory, there is no relevant one about inhomogeneous

media which is required in this paper. Some related results can be found in [18],

[7], [19]. Secondly, a connection between an outgoing wave and incoming wave,

associated with the background inhomogeneous media, will also be proved. Although

this relation has been obtained in [9], we follow closely the ideas in [2] and provide

a simpler and direct version.

Let K(·, ·) be the Green function of the background media, i.e., K(·, z) ∈
H1

loc(R
2 \ {z}) solves

{
∆K(·, z) + k2nK(·, z) = δ(· − z) in R

2 \ {z},

lim
r→∞

√
r
(∂K(·, z)

∂r
− ikK(·, z)

)
= 0, r = |x|.

We denote by K∞(x̂, z) the far field pattern of the Green function K(x, z) and

consider the scattering problem by the background media due to the incident plane

wave ui = e−ikz·x̂

(3.1)

{
∆u0 + k2nu0 = 0 in R

2,

lim
r→∞

√
r
(∂us0
∂r

− ikus0

)
= 0, r = |x|,

where u0(z,−x̂) at z ∈ R
2 is the total field which is the sum of the scattered field

us0(z,−x̂) and the incident wave ui(z,−x̂) with incident direction −x̂ ∈ S1 (the unit

disc in R
2). Then we have the following mixed reciprocity relation.

Theorem 3 (Mixed reciprocity relation). For −x̂ ∈ S1 and γ = eiπ/4/
√
8kπ we

have

(3.2) K∞(x̂, z) = γu0(z,−x̂), z ∈ R
2 \ ∂D.

P r o o f. We first consider z ∈ R
2 \ D. Assume that Φ(·, ·) is the fundamental

solution to the Helmholtz equation ∆u+ k2u = 0, which is defined by

Φ(x, z) =
i

4
H

(1)
0 (k|x− z|)
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with H
(1)
0 being the Hankel function of the first kind of order zero. Since the dif-

ference K(·, z)− Φ(·, z) is a smooth radiation solution to the Helmholtz equation in
R

2 \D, Green’s representation formula shows us that

K(x, z)− Φ(x, z)

=

∫

∂D

(
[K(y, z)− Φ(y, z)]

∂Φ(x, y)

∂ν(y)
− ∂[K(y, z)− Φ(y, z)]

∂ν(y)
Φ(x, y)

)
ds(y)

for x ∈ R
2 \D. Applying Green’s second theorem to Φ in the domain D, we have

0 =

∫

∂D

(
Φ(y, z)

∂Φ(x, y)

∂ν(y)
− ∂Φ(y, z)

∂ν(y)
Φ(x, y)

)
ds(y)

for x ∈ R
2 \D. The sum of these two equations yields

(3.3) K(x, z)− Φ(x, z)

=

∫

∂D

(
K(y, z)

∂Φ(x, y)

∂ν(y)
− ∂K(y, z)

∂ν(y)
Φ(x, y)

)
ds(y), x ∈ R

2 \D.

On the other hand, from the Green theorem and the Sommerfeld radiation condi-

tion we obtain that

0 =

∫

∂D

(
[K(y, z)− Φ(y, z)]

∂us0(y,−x̂)
∂ν(y)

− ∂[K(y, z)− Φ(y, z)]

∂ν(y)
us0(y,−x̂)

)
ds(y)

in the domain R
2 \D. Green’s representation formula for us0 outside D implies that

us0(z,−x̂) =
∫

∂D

(
us0(y,−x̂)

∂Φ(y, z)

∂ν(y)
− ∂us0(y,−x̂)

∂ν(y)
Φ(y, z)

)
ds(y).

Adding the above two equations yields

us0(z,−x̂) =
∫

∂D

(
us0(y,−x̂)

∂K(y, z)

∂ν(y)
− ∂us0(y,−x̂)

∂ν(y)
K(y, z)

)
ds(y).

Using Green’s second theorem for u0 and K in D, we see that

∫

∂D

(
u0(y,−x̂)

∂K(y, z)

∂ν(y)
− ∂u0(y,−x̂)

∂ν(y)
K(y, z)

)
ds(y)

=

∫

D

(∆u0(y,−x̂)K(y, z)− u0(y,−x̂)∆K(y, z)) dy = 0.
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Subtracting these two equations we arrive at

(3.4) us0(z,−x̂) =
∫

∂D

(∂ui(y,−x̂)
∂ν(y)

K(y, z)− ui(y,−x̂)∂K(y, z)

∂ν(y)

)
ds(y),

z ∈ R
2 \D.

Then we obtain the mixed reciprocity relation from the equations (3.3) and (3.4).

Next, we consider the case for z ∈ D. Since K(y, z) is a smooth radiation solution

to the Helmholtz equation in R
2 \D, we have

K∞(x̂, z) = γ

∫

∂D

(
K(y, z)

∂e−ikx̂·y

∂ν(y)
− ∂K(y, z)

∂ν(y)
e−ikx̂·y

)
ds(y).

Applying Green’s second theorem for u0(y,−x̂) and K(y, z) in D, we observe that
∫

∂D

(
u0(y,−x̂)

∂K(y, z)

∂ν(y)
− ∂u0(y,−x̂)

∂ν(y)
K(y, z)

)
ds(y)

=

∫

D

(∆u0(y,−x̂)K(y, z)− u0(y,−x̂)∆K(y, z)) dy

= −
∫

D

δ(y − z)u0(y,−x̂) dy = −u0(z,−x̂).

Noting that us0(y,−x̂) and K(y, z) are the radiating solution to the Helmholtz equa-

tion in R
2 \D, Green’s theorem shows that

0 =

∫

∂D

(
us0(y,−x̂)

∂K(y, z)

∂ν(y)
− ∂us0(y,−x̂)

∂ν(y)
K(y, z)

)
ds(y).

The subtraction of these two equations yields that

(3.5) γu0(z,−x̂) = γ

∫

∂D

(∂ui(y,−x̂)
∂ν(y)

K(y, z)− ui(y,−x̂)∂K(y, z)

∂ν(y)

)
ds(y),

which is just K∞(x̂, z). So, we complete the proof of Theorem 3. �

The far field patterns u∞0 (x̂, d), x̂, d ∈ S1, corresponding to the incident plane

waves ui(x, d) define the far field operator F0 : L
2(S1) → L2(S1) by

(3.6) (F0g)(x̂) =

∫

S1

u∞0 (x̂, d)g(d) ds(d).

Let us define the scattering operator S0 : L
2(S1) → L2(S1) by

S0 = I + 2ik|γ|2F0,

where I denotes the identity operator and γ = eiπ/4/
√
8kπ. Then by Theorem 4.4 in

[13], we see that S0 is unitary, that is S∗
0S0 = S0S∗

0 = I. Furthermore, we have the

following statement.
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Theorem 4. For all z ∈ D, x̂ ∈ S1, we have

(3.7) u0(z,−x̂) = (S0u0(z, ·))(x̂).

P r o o f. Let BR be a sufficiently large ball with radius R containing D and y for

some point y ∈ R
2 \D, and denote by SR the boundary of BR. In such a case, noting

that K(y, z)−K(y, z) is smooth solutions of the Helmholtz equation for y ∈ R
2 \D,

by Green’s representation formula, we have

K(y, z)−K(y, z)

=

∫

SR

(∂[K(x, z)−K(x, z)]

∂ν(x)
K(x, y)− [K(x, z)−K(x, z)]

∂K(x, y)

∂ν(x)

)
ds(x)

−
∫

∂D

(∂[K(x, z)−K(x, z)]

∂ν(x)
K(x, y)− [K(x, z)−K(x, z)]

∂K(x, y)

∂ν(x)

)
ds(x).

Applying Green’s second theorem to K(·, ·) outside the domain BR and noting the

radiation condition, we have

0 =

∫

SR

(
K(x, z)

∂K(x, y)

∂ν(x)
− ∂K(x, z)

∂ν(x)
K(x, y)

)
ds(x).

Since K(x, z)−K(x, z) and K(x, y) are smooth solutions in D, by Green’s theorem

we see that

∫

∂D

(∂[K(x, z)−K(x, z)]

∂ν(x)
K(x, y)− [K(x, z)−K(x, z)]

∂K(x, y)

∂ν(x)

)
ds(x)

=

∫

D

(∆[K(x, z)−K(x, z)]K(x, y)− [K(x, z)−K(x, z)]∆K(x, y)) dx = 0.

The sum of this three equations yields

(3.8) K(y, z)−K(y, z) = −
∫

SR

(
K(x, y)

∂K(x, z)

∂ν(x)
+
∂K(x, y)

∂ν(x)
K(x, z)

)
ds(y)

= 2ik|γ|2
∫

S1

K∞(x̂, y)K∞(x̂, z) ds(x̂), y ∈ R
2 \D,

where the second identity is obtained from the Sommerfeld radiation condition.

On the other hand, we have from (3.5) for z ∈ D

u0(z, x̂) =

∫

∂D

(∂ui(y,−x̂)
∂ν(y)

K(y, z)− ui(y,−x̂)∂K(y, z)

∂ν(y)

)
ds(y).
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By using Theorem 3 and the equation (3.8), the above identity and (3.5) show that

u0(z,−x̂)− u0(z, x̂)

=

∫

∂D

(∂ui(y,−x̂)
∂ν(y)

[K(y, z)−K(y, z)]− ui(y,−x̂)∂[K(y, z)−K(y, z)]

∂ν(y)

)
ds(y)

= 2ik|γ|2
∫

S1

u0(z,−α)
∫

∂D

(∂ui(y,−x̂)
∂ν(y)

K∞(α, y)− ui(y,−x̂)∂K
∞(α, y)

∂ν(y)
ds(y)

)
ds(α)

= 2ik|γ|2
∫

S1

u0(z,−α)u∞0 (α,−x̂) ds(α),

where the third identity is obtained by the far field pattern of us0(·,−x̂) in accor-
dance with (3.4). Furthermore, due to the relation u∞0 (α,−x̂) = u∞0 (x̂,−α) (see for
example [13]) and the definition of F0, we see that

(3.9) u0(z,−x̂)− u0(z, x̂) = 2ik|γ|2
∫

S1

u0(z,−α)u∞0 (x̂,−α) ds(α)

= 2ik|γ|2
∫

S1

u0(z, α)u
∞
0 (x̂, α) ds(α) = 2ik|γ|2(F0u0(z, ·))(x̂).

The proof is thus completed by the definition of S0. �

R em a r k 2. We note that Theorem 4 is not true for z ∈ R
2 \ D, but this

conclusion is sufficient for us, since we just need to consider testing points z ∈ D

(known a priori) for our inverse crack problems.

4. The factorization method

The inverse problems we are considering are, in the situation of knowing the

background medium in advance, to determine the ‘Dirichlet crack’ and ‘Mixed crack’,

named the Inverse Dirichlet Crack Problem (IDP) and Inverse Mixed Crack Problem

(IMP), respectively, from the knowledge of the far field pattern u∞(x̂, d) of the

corresponding scattered field us(x, d) for all x̂, d ∈ S1. We recall that us is the

scattered solution of problem (1.1), (1.2), (1.4) or problem (1.1), (1.2), (1.5) from

the incident plane waves ui = eikx·d, d ∈ S1. This section aims at establishing the

theoretical foundation of the factorization method for the above two inverse problems.

For the sake of reader’s convenience, here we state the well-known range identity

theorem [16], which is the theoretical basis of the factorization method. For a generic

bounded linear operator A between two Banach spaces, we define its real and imag-

inary parts by Re(A) = 1
2 (A+A∗) and Im(A) = 1

2i (A−A∗), respectively, where A∗

is the adjoint of A.
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Lemma 5. Let X ⊂ U ⊂ X∗ be a Gelfand triple with a Hilbert space U and

a reflexive Banach space X such that the embeddings are dense. Moreover, let Y be

another Hilbert space and F : Y → Y , H : Y → X , and T : X → X∗ linear bounded

operators such that

(4.1) F = H∗TH.

We make the following assumptions:

(a) H∗ is compact with dense range.

(b) Re(T ) = T0 + T1 with some compact operator T1 and some self-adjoint and

coercive operator T0 : X → X∗, i.e., there exists c > 0 such that

〈ϕ, T0ϕ〉 > c‖ϕ‖2 ∀ϕ ∈ X,

where 〈·, ·〉 is the duality pair between X and X∗.

(c) Im(T ) is non-negative on X or Im(T ) is non-positive on X , i.e.,

〈Im(T )ϕ, ϕ〉 > 0 or 〈Im(T )ϕ, ϕ〉 6 0 ∀ ϕ ∈ X.

(d) T is injective.

Then the operator F♯ := |Re(F )|+|Im(F )| is positive and the ranges ofH∗ : X∗ → Y

and F
1/2
♯ : Y → Y coincide.

4.1. Inverse Dirichlet Crack Problem. Recall that u is the solution to problem

(1.1), (1.2), (1.4) and u0 is the solution of problem (3.1). It is easy to verify that the

field usΓ := u− u0 solves the following boundary value problem with η = −u0:

(4.2)






∆usΓ + k2nusΓ = 0 in R
2 \ Γ̄,

usΓ± = η on Γ,

lim
r→∞

√
r
(∂usΓ
∂r

− ikusΓ

)
= 0, r = |x|.

Define the data-to-pattern operator G : H1/2(Γ) → L2(S1) by

(4.3) (Gη)(x̂) = u∞Γ (x̂),

where u∞Γ (x̂) is the far field pattern of the scattered field usΓ of problem (4.2). The

auxiliary operator H : L2(S1) → H1/2(Γ) is given as

(4.4) (Hg)(x) =

∫

S1

u0(x, d)g(d) ds(d), x ∈ Γ,
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where u0 is the solution of (3.1) corresponding to the incident wave u
i(·, d). The far

field operator F : L2(S1) → L2(S1) is defined as

(4.5) (Fg)(x̂) =

∫

S1

u∞(x̂, d)g(d) ds(d), g ∈ L2(S1),

where u∞ is the far field pattern of the scattered wave us of problem (1.1), (1.2),

(1.4).

Noticing the definition of F0 (see (3.6)), we deduce that

[(F − F0)g](x̂) =

∫

S1

[u∞(x̂, d)− u∞0 (x̂, d)]g(d) ds(d)

is just the far field pattern of the radiating function

∫

S1

{[u(x, d)− ui(x, d)] − [u0(x, d)− ui(x, d)]}g(d) ds(d)

=

∫

S1

[u(x, d)− u0(x, d)]g(d) ds(d) =

∫

S1

usΓ(x, d)g(d) ds(d).

Due to the boundary condition (4.2), i.e., usΓ = −u0, the operator F − F0 can be

factorized as follows by the definition of G and H :

(4.6) F − F0 = −GH.

Next, we continue to transform the relation (4.7) so that it possesses the essential

form of (4.1) on which the factorization method is based.

Note that the adjoint operator H∗ of H is H∗ : H̃−1/2(Γ) → L2(S1) with

(4.7) (H∗µ)(x̂) =

∫

Γ

u0(z, x̂)µ(z) ds(z), µ ∈ H̃−1/2(Γ).

Due to the property of the scattered operator S0 (Theorem 4) and the mixed reci-

procity relation (3.2) in Theorem 3, we have

(S0H
∗µ)(x̂) =

(
S0

∫

Γ

u0(z, ·)µ(z) ds(z)
)
(x̂)

=

∫

Γ

u0(z,−x̂)µ(z) ds(z)

=

∫

Γ

K∞(x̂, z)µ(z) ds(z).

Define the single-layer potential function

(4.8) v(x) =

∫

Γ

K(x, z)µ(z) ds(z), x ∈ R
2 \ Γ̄.
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Let SΓ : H̃
−1/2(Γ) → H1/2(Γ) be the single-layer operator given by

(4.9) (SΓµ)(x) =

∫

Γ

K(x, z)µ(z) ds(z), x ∈ Γ.

Then v satisfies the problem (4.2) with boundary data SΓµ, its far field pattern being

exactly S0H
∗µ. By the definition of the operator G, we have GSΓ = S0H

∗ and thus

H = S∗
ΓG

∗S0. So the equation (4.6) can be changed into

(4.10) (F0 − F )S∗
0 = GS∗

ΓG
∗.

The properties of the operator SΓ are stated as follows.

Theorem 6. (a) Let Si be the single-layer operator corresponding to the wave

number k = i. Then Si is self-adjoint and coercive, i.e.,

〈µ, Siµ〉 > c‖µ‖2
H̃−1/2(Γ)

∀µ ∈ H̃−1/2(Γ),

where 〈·, ·〉 is the duality pair between H̃−1/2(Γ) and H1/2(Γ).

(b) The difference SΓ − Si is compact from H̃−1/2(Γ) into H1/2(Γ).

(c) SΓ is an isomorphism from H̃−1/2(Γ) onto H1/2(Γ).

(d) Im 〈SΓµ, µ〉 > 0 for all µ ∈ H̃−1/2(Γ) with µ 6= 0.

P r o o f. (a) Set k = i in the definition of Green’s function and denote by Ki(·, ·)
the Green function in such a case and by Si the associated single-layer operator. Let

the single-layer potential v be defined by (4.8) with K(·, ·) replaced by Ki(·, ·). Note
that the crack Γ can be extended to an arbitrary smooth, simply connected, closed

curve ∂Ω enclosing a bounded domain Ω which is completely contained in D.

Applying Green’s first identity to v and v in Ω and BR \ Ω̄ (a disk of radius R

containing D with boundary SR) and using the jump relation of the single-layer

potential, we have that

〈µ, Siµ〉 =
〈∂v−
∂ν

− ∂v+
∂ν

, v
〉

∂Ω
=

∫

Ω∪{BR\Ω̄}

(|∇v|2 + n|v|2) dx−
∫

SR

v
∂v

∂ν
ds

=

∫

Ω∪{BR\Ω̄}

(|∇v|2 + n|v|2) dx+
∫

SR

|v|2 ds+ o(1)

=

∫

R2\∂Ω

(|∇v|2 + n|v|2) dx

> c̃‖v‖2H1(R2\∂Ω) > c
∥∥∥
∂v−
∂ν

− ∂v+
∂ν

∥∥∥
H−1/2(∂Ω)

= c‖µ‖H−1/2(Γ).
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The first identity is true since µ ∈ H̃−1/2(Γ) can be extended to the boundary ∂Ω

by zero and the trace of the potential function v on ∂Ω belongs to H1/2(Γ). The

third identity is deduced by the radiation condition, and the forth is due to the fact

that v decays exponentially.

(b) The potential function ω defined by

ω(x) =

∫

Γ

(K(x, z)−Ki(x, z))µ(z) ds(z), µ ∈ H̃−1/2(Γ), x ∈ R
2 \ Γ̄,

is a smooth function of C∞(R2 \ Γ̄), furthermore, ω and ∂ω
∂ν have no jump across the

crack Γ due to the continuous integral kernel, which results in ω belonging to C(R2).

Therefore, the potential operator

((SΓ − Si)µ)(x) =

∫

Γ

(K(x, z)−Ki(x, z))µ(z) ds(z), µ ∈ H̃−1/2(Γ), x ∈ Γ,

is a bounded operator from H̃−1/2(Γ) into C(Γ) and certainly bounded from

H̃−1/2(Γ) into L2(Γ). By the compact embedding theorem we obtain that SΓ − Si :

H̃−1/2(Γ) → H1/2(Γ) is compact.

(c) We conclude that S−1
i : H1/2(Γ) → H̃−1/2(Γ) exists and is bounded from

the first part. By the Fredholm theorem and using the result in part 2, SΓ is an

isomorphism if and only if SΓ is injective. Now let SΓµ = 0 for µ ∈ H̃−1/2(Γ), then

the potential v defined by (4.8) satisfies problem (4.2) with boundary data η = 0.

By the well posedness of this problem, we deduce that v = 0 in R
2 \ Γ̄. The jump

relation shows that

µ =
∂v−
∂ν

− ∂v+
∂ν

= 0,

which proves that SΓ is injective.

(d) The same argument as in part 1 yields

〈SΓµ, µ〉 =
〈
v,
∂v−
∂ν

− ∂v+
∂ν

〉

∂Ω
=

∫

Ω∪{BR\Ω̄}

(|∇v|2 − n|v|2) dx−
∫

SR

v
∂v

∂ν
ds

=

∫

Ω∪{BR\Ω̄}

(|∇v|2 − n|v|2) dx+ ik

∫

SR

|v|2 ds+ o(1).

Taking the imaginary part we see that

Im 〈SΓµ, µ〉 = k lim
R→∞

∫

SR

|v|2 ds > 0.

If Im 〈SΓµ, µ〉 = 0, then Rellich’s lemma implies that v vanishes in R
2 \ Γ̄ and thus

SΓµ = 0 on Γ by the trace theorem. Hence, part 3 shows that µ = 0. �
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We now define a testing function ϕL(x̂) by

(4.11) ϕL(x̂) :=

∫

L

K∞(x̂, z)β(z) ds(z) =

∫

L

u0(z,−x̂)β(z) ds(z)

with density β ∈ H̃−1/2(L), for any smooth non intersecting open arc L. We will

characterize the crack Γ by the behavior of an approximate solution gL ∈ L2(S1) of

the far field equation given by

(4.12) ((F0 − F )S∗
0 )(gL)(x̂) = ϕL(x̂).

To this end, we next turn to the operator G, and present the following conclusions.

Theorem 7. For any smooth non intersecting arc L and function β ∈ H̃−1/2(L)

with suppβ = L, ϕL ∈ L2(S1) is in the range of G if and only if L ⊂ Γ. Moreover,

the data-to-pattern operator G : H1/2(Γ) → L2(S1) is compact and has dense range

in L2(S1).

P r o o f. Note that ϕL(x̂) is just the far field pattern of the potential

ΦL(x) :=

∫

L

K(x, z)β(z) ds(z).

First assume that L ⊂ Γ. Since H̃−1/2(L) ⊂ H̃−1/2(Γ), ΦL solves problem (4.2) with

boundary data η = ΦL|Γ. It follows from the definition of G that ϕL(x̂) ∈ R(G).

Now we assume that L 6⊂ Γ, and on the contrary, ϕL(x̂) ∈ R(G), i.e., there

exists η ∈ H1/2(Γ) such that the far field patterns of ΦL(x) and u
s
Γ (the solution

of problem (4.2)) coincide. Then by Rellich’s lemma and the unique continuation

principle we have that ΦL(x) and u
s
Γ coincide in R

2 \ {Γ̄∪ L̄}. Since L 6= Γ, without

loss of generality, there exists x0 ∈ L and x0 6∈ Γ such that there is a small ball

Bε(x0) ∩ Γ = ∅ with center at x0. Hence usΓ has a continuous derivative in Bε(x0)

while ΦL(x) does not at x0, which leads to a contradiction. This proves the theorem.

�

This theorem plays a key role in the connection between the testing function ϕL

and the location of the crack. Observe the far field equation (4.12): once the range

identity theorem is valid for the decomposition of (4.10), this far field equation is

solvable if and only if the testing arc L ⊂ Γ. In addition, this solution gL can be

seen as an indicator function of the crack.
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Theorem 8. Assume that K : L2(S1) → H1/2(Γ) defined by

(4.13) (Kg)(x) :=
∫

S1

K∞(−d, x)g(d) ds(d), x ∈ Γ,

has a trivial kernel, i.e., N(K) = {0}. Then the data-to-pattern operator G :

H1/2(Γ) → L2(S1) is compact and has a dense range in L2(S1).

P r o o f. The compactness can be obtained by an argument analogous to Lem-

ma 1.13 in [13]. Note that GSΓ = S0H
∗; since SΓ is an isomorphism and S0 is

unitary, the injectivity of H indicates the denseness of G. Let Hg = 0. It is enough

to prove g = 0.

By the mixed reciprocity relation (3.2), we have

(Hg)(x) =

∫

S1

u0(x, d)g(d) ds(d) =

∫

S1

K∞(−d, x)g(d) ds(d), x ∈ Γ.

The assumption implies that g = 0, which completes the proof of the theorem. �

R em a r k 3. The condition on K is essentially decided by the background inho-
mogeneous media. The injectivity can be ensured if the Dirichlet problem

{
∆u+ k2nu = 0 in D,

u = 0 on ∂D

possesses only zero solution.

Combining the previous results leads to the following main result for the solution

of IDP.

Theorem 9. Assume that the operator K defined by (4.13) satisfies the condition
in Theorem 8. Let the far field equation be given by (4.12). Then

L ⊂ Γ ⇐⇒ ϕL ∈ Range((F♯)
1/2)

and consequently

(4.14) L ⊂ Γ ⇐⇒
∞∑

j=1

|〈ϕL, ψj〉L2(S1)|2
|λj |

<∞,

where (λj , ψj) is an eigensystem of the operator F♯ = |Re((F0 − F )S∗
0 )|+ |Im((F0 −

F )S∗
0 )|. In other words, the sign of the function

W (L) =

[ ∞∑

j=1

|〈ϕL, ψj〉L2(S1)|2
|λj |

]−1

is just the characteristic function of Γ.
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4.2. Inverse Mixed Crack Problem. In this part, we proceed with the IMP

again by the factorization method. For the sake of simplicity, we continue to use

some of the previous notation but with different meanings. Moreover, we omit the

proof in some unnecessary places to avoid duplication. As one will see later, the

factorization method we use here bases on a constraint on the solution space and

a different decomposition strategy.

Let u be the solution to problem (1.1), (1.2), (1.5), and u0 the solution of prob-

lem (3.1). It is easy to verify that the field w := u−u0 solves the following boundary
value problem with η = −∂u0/∂ν, θ = −λu0:

(4.15)





∆w + k2nw = 0 in R
2 \ Γ̄,

∂w−

∂ν
= η on Γ,

[∂w
∂ν

]
+ λw+ = θ on Γ,

lim
r→∞

√
r
(∂w
∂r

− ikw
)
= 0, r = |x|.

Same as in the previous issue, we need to define the following operators. The operator

G : H−1/2(Γ)× L2(Γ) → L2(S1) is given by

(4.16) (G(η, θ))(x̂) = w∞(x̂),

where w∞ is the far field pattern of the wave field w. The operator H : L2(S1) →
H−1/2(Γ)× L2(Γ) is defined by

(4.17) (Hg)(x) =

(
∂

∂ν

∫

S1

u0(x, d)g(d) ds(d), λ

∫

S1

u0(x, d)g(d) ds(d)

)
, x ∈ Γ.

The far field operator F : L2(S1) → L2(S1) is defined as

(4.18) (Fg)(x̂) =

∫

S1

u∞(x̂, d)g(d) ds(d), g ∈ L2(S1),

where u∞ is the far field pattern of the scattered wave us of problem (1.1), (1.2),

(1.5). Notice the definition of F0 (see (3.6)); we deduce that by superposition

(4.19) F − F0 = −GH.

R em a r k 4. We set the boundary data in the Sobolev space H−1/2(Γ) × L2(Γ)

for the purpose of being able to apply the factorization method to solve IMP. Fur-

thermore, the direct problem (4.15) is solvable in this case, since the variational

formula (2.8) is still solvable under this condition.
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The adjoint operator of H is H∗ : H̃1/2(Γ)× L2(Γ) → L2(S1) with

(4.20) (H∗(µ, τ)⊤)(x̂) =

∫

Γ

∂u0(z, x̂)

∂ν(z)
µ(z) ds(z) + λ̄

∫

Γ

u0(z, x̂)τ(z) ds(z),

for µ ∈ H̃1/2(Γ), τ ∈ L2(Γ). The property of the scattered operator S0 (Theorem 4)

and the mixed reciprocity relation (3.2) show that

(S0H
∗(µ, τ)⊤)(x̂) =

∫

Γ

K∞(x̂, z)

∂ν(z)
µ(z) ds(z) + λ̄

∫

Γ

K∞(x̂, z)τ(z)) ds(z).

It is just the far field pattern of the combined potential function

(4.21) v(x) =

∫

Γ

K(x, z)

∂ν(z)
µ(z) ds(z) + λ̄

∫

Γ

K(x, z)τ(z) ds(z), x ∈ R
2 \ Γ̄.

Let us recall the single-layer operator SΓ,

(SΓϕ)(x) :=

∫

Γ

K(x, z)ϕ(z) ds(z), x ∈ Γ,

and define the double-layer operator NΓ,

(NΓϕ)(x) :=

∫

Γ

∂K(x, z)

∂ν(z)
ϕ(z) ds(z), x ∈ Γ.

Their normal derivative operators N ′
Γ and TΓ are given by

(N ′
Γϕ)(x) :=

∫

Γ

∂K(x, z)

∂ν(x)
ϕ(z) ds(z), x ∈ Γ,

(TΓϕ)(x) :=
∂

∂ν(x)

∫

Γ

∂K(x, z)

∂ν(z)
ϕ(z) ds(z), x ∈ Γ.

They have the following mapping properties [17] for − 1
2 6 s 6 1

2 :

SΓ : H̃
s−1/2(Γ) → Hs+1/2(Γ), NΓ : H̃

s+1/2(Γ) → Hs+1/2(Γ),

N ′
Γ : H̃

s−1/2(Γ) → Hs−1/2(Γ), TΓ : H̃
s+1/2(Γ) → Hs−1/2(Γ).

Then v satisfies the problem (4.15) with the boundary data

∂v−
∂ν

(x) = TΓµ+ λ̄N ′
Γτ +

λ̄

2
τ, x ∈ Γ,

and ([∂v
∂ν

]
+ λv+

)
(x) = λNΓµ+

λ

2
µ+ |λ|2SΓτ − λ̄τ, x ∈ Γ.
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If we define M : H̃1/2(Γ)× L2(Γ) → H−1/2(Γ)× L2(Γ) by

(4.22) M = −
(

TΓ λ̄N ′
Γ + λ̄

2 I

λNΓ + λ
2 I |λ|2SΓ − λ̄I

)
,

then by the definition of G we get the relation

S0H
∗(µ, τ)⊤ = −GM(µ, τ)⊤.

Combining this with (4.19) leads to the decomposition

(4.23) (F − F0)S∗
0 = GM∗G∗.

Theorem 10. (a) The operator M defined by (4.22) can be written as M =

M0 + M1 with a compact operator M1 and a self-adjoint and coercive operator

ReM0.

(b) The imaginary of M is non-positive.

(c) M is invertible.

P r o o f. (a) The operator −TΓ admits a decomposition −TΓ = T0 + T1 such that

T0 : H̃
1/2(Γ) → H−1/2(Γ) is compact and ReT1 self-adjoint and coercive [17]. We

rewrite M as

(4.24) M =

(
T0 −λ̄N ′

Γ − λ̄
2 I

−λNΓ − λ
2 I −|λ|2SΓ

)
+

(
T1 0

0 λ̄I

)
:=M0 +M1.

Since SΓ, NΓ, N
′
Γ is compact from L2(Γ) into itself [12], these facts and the com-

pact imbedding theorem show that M0 : H̃
1/2(Γ) × L2(Γ) → H−1/2(Γ) × L2(Γ) is

a compact operator. Obviously,

Re〈(µ, τ),M1(µ, τ)
⊤〉 > c(‖µ‖H̃−1/2(Γ) + ‖τ‖L2(Γ))

due to Reλ > 0, which indicates that ReM1 is self-adjoint and coercive.

(b) From the expression of v (4.21), the jump relations of the single-and double-

layer potential yield that

µ = v+ − v− and λ̄τ =
∂v−
∂ν

− ∂v+
∂ν

on Γ.
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Then by the definition of M , we get

−〈M(µ, τ)⊤, (µ, τ)〉 =
∫

Γ

∂v−
∂ν

µ̄ ds+

∫

Γ

(∂v+
∂ν

− ∂v−
∂ν

+ λv+

)
τ ds

=

∫

Γ

∂v−
∂ν

(v+ − v−) ds+
1

λ

∫

Γ

(∂v+
∂ν

− ∂v−
∂ν

+ λv+

)(∂v−
∂ν

− ∂v+
∂ν

)
ds

=

∫

Γ

∂v−
∂ν

v+ ds+

∫

Γ

∂v−
∂ν

v+ ds− 1

λ

∫

Γ

[∂v
∂ν

][∂v
∂ν

]
ds

−
∫

Γ

∂v−
∂ν

v− ds−
∫

Γ

∂v+
∂ν

v+ ds.

Taking the imaginary part, using Green’s theorem and noting the fact that Imλ > 0,

we have

(4.25) Im 〈M(µ, τ)⊤, (µ, τ)〉

= Im

(
1

λ

∫

Γ

[∂v
∂ν

][∂v
∂ν

]
ds+

∫

Γ

∂v−
∂ν

v− ds−
∫

Γ

∂v+
∂ν

v+ ds

)

= Im

∫

BR\∂Ω

(|∇v|2 − k2n|v|2) dx+ Im
λ̄

|λ|2
∫

Γ

∣∣∣
[∂v
∂ν

]∣∣∣
2

ds− Im

∫

SR

∂v

∂ν
v ds

= Im
λ̄

|λ|2
∫

Γ

∣∣∣
[∂v
∂ν

]∣∣∣
2

ds− 1

8π

∫

S1

|v∞|2 ds,

where the last equality is obtained due to the radiation condition and the asymptotic

behavior of the scattered field. From this we observe that Im 〈M(µ, τ)⊤, (µ, τ)〉 6 0.

(c) We only need to prove thatM : H̃1/2(Γ)×L2(Γ) → H−1/2(Γ)×L2(Γ) is injec-

tive in accordance with the Fredholm theorem. To this end, let M(µ, τ)⊤ = 0, then

the potential function v given by (4.21) satisfies problem (4.15) with homogeneous

boundary conditions. The well posedness of this direct problem shows us that v = 0

in R
2 \ Γ̄. The result is obtained by the jump relations of single- and double-layer

potentials. �

R em a r k 5. We observe that SΓ is a compact operator from L2(Γ) into L2(Γ);

this is the key precondition for our factorization method, which has been proposed

in the paper [3]. Indeed, in the standard spaces setting, SΓ : H̃
−1/2(Γ) → H1/2(Γ)

and −TΓ : H̃1/2(Γ) → H−1/2(Γ) are positive and bounded below up to a compact

perturbation. However, their coefficients in the matrix operator M are positive and

therefore do not match. Usually, the linear sampling method is applicable for this

case [4].

By an analogous argument as in Theorem 7 and 8, we have the following conclusion

for the operator G given by (4.16).
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Theorem 11. For any smooth non intersecting arc L and functions ̺ ∈ H̃−1/2(L),

σ ∈ L2(L), the operator ϕL(x̂) ∈ L2(S1) defined by

ϕL(x̂) :=

∫

L

K∞(x̂, z)

∂ν(z)
̺(z) ds(z) + λ

∫

L

K∞(x̂, z)σ(z)) ds(z)

=

∫

L

u0(z,−x̂)
∂ν(z)

̺(z) ds(z) + λ

∫

L

u0(z,−x̂)σ(z)) ds(z)

is in the range of R(G) if and only if L ⊂ Γ. Moreover, G : H−1/2(Γ) × L2(Γ) →
L2(S1) is compact and has dense range in L2(S1).

Finally, we get a result similar to Theorem 8 from Theorems 10, 11, and Lemma 5

along with an application of the Picard theorem [13].

Theorem 12. Consider the far field equation

((F − F0)S∗
0 )(gL)(x̂) = ϕL(x̂).

For any smooth non intersecting arc L

L ⊂ Γ ⇐⇒ ϕL ∈ Range((F♯)
1/2)

and consequently

(4.26) L ⊂ Γ ⇐⇒
∞∑

j=1

|〈ϕL, ψj〉L2(S1)|2
|λj |

<∞,

where (λj , ψj) is an eigensystem of the operator

F♯ = |Re((F − F0)S∗
0 )|+ |Im((F − F0)S∗

0 )|.

In other words, the sign of the function

W (L) =

[ ∞∑

j=1

|〈ϕL, ψj〉L2(S1)|2
|λj |

]−1

is just the characteristic function of Γ.
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