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Abstract. The meshless element-free Galerkin method is developed for numerical analysis
of hyperbolic initial-boundary value problems. In this method, only scattered nodes are
required in the domain. Computational formulae of the method are analyzed in detail.
Error estimates and convergence are also derived theoretically and verified numerically.
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1. Introduction

This paper concerns numerical analysis of the (n+ 1)-dimensional time-dependent

hyperbolic partial differential equation

(1.1)
∂2u(x, t)

∂t2
+a0(x)u(x, t)−

n∑

i,j=1

∂

∂xi

[
aij(x)

∂u(x, t)

∂xj

]
= f(x, t), x ∈ Ω, t > 0,

with initial conditions

u(x, 0) = ϕ1(x), x ∈ Ω,(1.2)

∂u(x, t)

∂t

∣∣∣
t=0

= ϕ2(x), x ∈ Ω,(1.3)
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and a boundary condition

(1.4) λ(x)u(x, t) +

n∑

i,j=1

aij(x)ni(x)
∂u(x, t)

∂xj

= g(x, t), x ∈ Γ, t > 0,

where Ω is a bounded domain in R
n (n = 1, 2, . . .) with boundary Γ, u(x, t) is an

unknown function at position x = (x1, x2, . . . , xn)
T and time t, aij(x), a0(x), ϕ1(x),

ϕ2(x), λ(x) > 0, f(x, t) and g(x, t) are given functions, and n = (n1, n2, . . . , nn)
T is

the unit normal exterior to Γ. In addition, the matrix [aij(x)]
n
i,j=1 satisfies aij(x) =

aji(x) and

(1.5) Ca1

n∑

i=1

|ξi|
2 6

n∑

i,j=1

aij(x)ξiξj

6 Ca2

n∑

i=1

|ξi|
2 ∀x ∈ Ω, ∀ (ξ1, ξ2, . . . , ξn)

T ∈ R
n,

where Ca1 and Ca2 are two positive constants.

The hyperbolic initial-boundary value problem given by (1.1)–(1.4) can be used to

model many physical phenomena in mechanics, acoustics, optics, electromagnetism,

and so on [10]. A number of analytical methods have been adopted to derive an-

alytical solutions of this type of problem. However, due to the complexity of the

hyperbolic problems and the domain, the research of analytical solutions is ardu-

ous in general. Thus, it is necessary to develop numerical methods for approximate

solutions of hyperbolic problems.

The finite difference method (FDM) [3], [20], [22], the finite element method

(FEM) [11] and the boundary element method (BEM) [7], [23] can be employed to

obtain approximate solutions of hyperbolic problems. In these methods, the preci-

sion of approximate solutions relies acutely on the quality of meshes or elements. To

overcome the meshing-related shortcomings, meshless (or meshfree) methods have

been developed by using scattered nodes to discretize the solved domain [4], [19].

A variety of meshless methods have been proposed and many scientific and engi-

neering problems have been solved successfully by these methods. Recently, some

meshless methods, such as the meshless local weak-strong method [6], the boundary

knot method [8] and radial basis functions methods [1], [9], [12] have been applied

to hyperbolic problems.

The element-free Galerkin (EFG) method is an often used meshless method [2],

[16], [18], [21]. In this method, the domain is discretized by scattered nodes, and

the approximate solution is constructed by the moving least squares (MLS) ap-

proximation. Up to now, the EFG method has been applied to many problems in
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mathematical physics. In [5], the EFG method was used to solve a kind of two space

dimensional linear hyperbolic equation. Detailed computational formulas have been

given for a special two-dimensional domain. However, theoretical and numerical

error analysis has not been established.

In this paper, the EFG method is developed for the numerical analysis of the

generic n space dimensional hyperbolic problem given by (1.1)–(1.4). In this

method, a time-stepping scheme is presented to approximate the time derivatives

and then a full discretization scheme is deduced using the EFG method. Compared

with [5], detailed computational formulas are given in a different way for arbitrary

n-dimensional domain. Besides, using error results of the MLS approximation [13],

[14], error and efficiency of the present EFG method is proved theoretically and

verified numerically.

The rest of this paper is organized as follows. Section 2 develops a time-stepping

scheme to approximate the time derivative. In Section 3, meshless numerical im-

plementation of the EFG method for the hyperbolic problem is provided in detail.

Then error analysis is given theoretically in Section 4. Finally, numerical results and

conclusions are presented in Sections 5 and 6, respectively.

2. Approximation of time derivatives

Let τ > 0 denote the time step size and let u(k)(x) = u(x, kτ ) for k = 0, 1, 2, . . .

Then from Taylor’s Theorem we have

u(k+1)(x) = u(k)(x) + τ
∂u

∂t
(x, kτ ) +

τ2

2

∂2u

∂t2
(x, kτ ) +

τ3

6

∂3u

∂t3
(x, kτ ) +

τ4

24

∂4u

∂t4
(x, ξ1),

u(k−1)(x) = u(k)(x)− τ
∂u

∂t
(x, kτ ) +

τ2

2

∂2u

∂t2
(x, kτ )−

τ3

6

∂3u

∂t3
(x, kτ ) +

τ4

24

∂4u

∂t4
(x, ξ2),

where ξ1 ∈ (kτ, (k + 1)τ) and ξ2 ∈ ((k − 1)τ, kτ). Thus,

u(k)(x) =
u(k+1)(x) + u(k−1)(x)

2
+O(τ2),(2.1)

∂u(x, t)

∂t

∣∣∣
t=kτ

=
u(k+1)(x) − u(k−1)(x)

2τ
+O(τ2),(2.2)

∂2u(x, t)

∂t2

∣∣∣
t=kτ

=
u(k+1)(x) − 2u(k)(x) + u(k−1)(x)

τ2
+O(τ2).(2.3)

Using (2.1) yields

(2.4) u(x, kτ) =
1

3
(u(k+1)(x) + u(k)(x) + u(k−1)(x)) +O(τ2).
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In (1.1), by setting t = kτ and invoking (2.2)–(2.4), we obtain

u(k+1)(x)− 2u(k)(x) + u(k−1)(x)

τ2
+ a0(x)u

(k)(x)

−
1

3

n∑

i,j=1

∂

∂xi

[
aij(x)

∂

∂xj

(u(k+1)(x) + u(k)(x) + u(k−1)(x))
]
= f (k)(x) +

1

3
R(k+1),

i.e.,

(2.5) βu(k+1)(x)−
n∑

i,j=1

∂

∂xi

[
aij(x)

∂

∂xj

u(k+1)(x)
]

= [2β − 3a0(x)]u
(k)(x) − βu(k−1)(x)

+

n∑

i,j=1

∂

∂xi

[
aij(x)

∂

∂xj

(u(k)(x) + u(k−1)(x))
]
+ 3f (k)(x) +R(k+1),

where f (k)(x) = f(x, kτ),

(2.6) β =
3

τ2
,

and

(2.7) |R(k+1)| 6 Cτ2

for a positive constant C.

In (2.5), letting k = 0 yields

(2.8) βu(1)(x) −
n∑

i,j=1

∂

∂xi

[
aij(x)

∂

∂xj

u(1)(x)
]

= [2β − 3a0(x)]u
(0)(x)− βu(−1)(x)

+

n∑

i,j=1

∂

∂xi

[
aij(x)

∂

∂xj

(u(0)(x) + u(−1)(x))
]
+ 3f (0)(x) +R(1).

According to (1.2), we have

(2.9) u(0)(x) = ϕ1(x), x ∈ Ω.

From (1.3) and (2.2) it follows that

ϕ2(x) =
∂u(x, t)

∂t

∣∣∣
t=0

=
u(1)(x)− u(−1)(x)

2τ
+O(τ2),
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thus

(2.10) u(−1)(x) = u(1)(x) − 2τϕ2(x) +O(τ3), x ∈ Ω.

Substituting (2.9) and (2.10) into (2.8) provides

(2.11) 2βu(1)(x) − 2

n∑

i,j=1

∂

∂xi

[
aij(x)

∂

∂xj

u(1)(x)
]

= [2β − 3a0(x)]ϕ1(x) + 2βτϕ2(x)

+

n∑

i,j=1

∂

∂xi

[
aij(x)

∂

∂xj

(ϕ1(x)− 2τϕ2(x))
]
+ 3f (0)(x) + R(1).

In view of (2.5) and (2.11), we recast the hyperbolic problem (1.1)–(1.4) in elliptic

problems

(2.12)





2βu(1)(x)− 2

n∑

i,j=1

∂

∂xi

[
aij(x)

∂

∂xj

u(1)(x)
]
= b(0)(x) + R(1), x ∈ Ω,

λ(x)u(1)(x) +

n∑

i,j=1

aij(x)ni(x)
∂u(1)(x)

∂xj

= g(1)(x)
△
= g(x, τ), x ∈ Γ,

and

(2.13)





βu(k+1)(x)−
n∑

i,j=1

∂

∂xi

[
aij(x)

∂

∂xj

u(k+1)(x)
]

= b(k)(x) +R(k+1), x ∈ Ω,

λ(x)u(k+1)(x) +
n∑

i,j=1

aij(x)ni(x)
∂u(k+1)(x)

∂xj

= g(k+1)(x)
△
= g(x, (k + 1)τ), x ∈ Γ,

where k = 1, 2, . . .,

b(0)(x) = [2β − 3a0(x)]ϕ1(x) + 2βτϕ2(x)

+
n∑

i,j=1

∂

∂xi

[
aij(x)

∂

∂xj

(ϕ1(x)− 2τϕ2(x))
]
+ 3f (0)(x),

b(k)(x) = [2β − 3a0(x)]u
(k)(x) − βu(k−1)(x) + 3f (k)(x)

+

n∑

i,j=1

∂

∂xi

[
aij(x)

∂

∂xj

(u(k)(x) + u(k−1)(x))
]
.
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3. Numerical implementation

Elliptic problems (2.12) and (2.13) can be solved directly using the EFG method.

In problem (2.13), from the governing equation we have

β

∫

Ω

u(k+1)v dΩ−
n∑

i,j=1

∫

Ω

v
∂

∂xi

[
aij

∂

∂xj

u(k+1)
]
dΩ

=

n∑

i,j=1

∫

Ω

v
∂

∂xi

[
aij

∂

∂xj

(u(k) + u(k−1))
]
dΩ

+

∫

Ω

[(2β − 3a0)u
(k) − βu(k−1) + 3f (k) +R(k+1)]v dΩ,

where v ∈ H1(Ω). By applying the Gauss formula, we then obtain

β

∫

Ω

u(k+1)v dΩ +
n∑

i,j=1

∫

Ω

aij
∂v

∂xi

∂u(k+1)

∂xj

dΩ−
n∑

i,j=1

∫

Γ

vaijni

∂u(k+1)

∂xj

dΓ

= −
n∑

i,j=1

∫

Ω

aij
∂v

∂xi

∂

∂xj

(u(k) + u(k−1)) dΩ +

n∑

i,j=1

∫

Γ

vaijni

∂

∂xj

(u(k) + u(k−1)) dΓ

+

∫

Ω

{[2β − 3a0]u
(k) − βu(k−1) + 3f (k) +R(k+1)}v dΩ.

In light of the boundary conditions in problem (2.13), we finally conclude

β

∫

Ω

u(k+1)v dΩ +

n∑

i,j=1

∫

Ω

aij
∂v

∂xi

∂u(k+1)

∂xj

dΩ +

∫

Γ

vλu(k+1) dΓ

=

∫

Γ

v(g(k+1) + g(k) + g(k−1)) dΓ−

∫

Γ

vλ(u(k) + u(k−1)) dΓ

−
n∑

i,j=1

∫

Ω

aij
∂v

∂xi

∂

∂xj

(u(k) + u(k−1)) dΩ

+

∫

Ω

{[2β − 3a0]u
(k) − βu(k−1) + 3f (k) +R(k+1)}v dΩ.

Thus, problem (2.13) is recast in the variational form: find u(k+1) ∈ H1(Ω) such

that

(3.1) a(u(k+1), v) = (b, v) +

∫

Ω

R(k+1)v dΩ ∀ v ∈ H1(Ω),
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where

(b, v) =

∫

Γ

v(g(k+1) + g(k) + g(k−1)) dΓ−

∫

Γ

vλ(u(k) + u(k−1)) dΓ

−
n∑

i,j=1

∫

Ω

aij
∂v

∂xi

∂

∂xj

(u(k) + u(k−1)) dΩ

+

∫

Ω

{[2β − 3a0]u
(k) − βu(k−1) + 3f (k)}v dΩ,

and the continuous and coercive bilinear form a(·, ·) is defined as

(3.2) a(u(k+1), v) = β

∫

Ω

u(k+1)v dΩ+

n∑

i,j=1

∫

Ω

aij
∂v

∂xi

∂u(k+1)

∂xj

dΩ +

∫

Γ

vλu(k+1) dΓ.

Let {xi}Ni=1 be N scattered nodes in Ω ∪ Γ and let

h = max
16i6N

min
16j6N,j 6=i

|xi − xj |

represent the nodal spacing. Then, according to the MLS approximation, we can

express the approximate solution of u(k+1)(x) as

(3.3) u
(k+1)
h (x) = Mu(k+1)(x) =

N∑

i=1

Φi(x)u
(k+1)
i = Φ(x)u(k+1), k = 0, 1, 2, . . .

whereM is an approximation operator, u
(k+1)
i is the nodal value of u(k+1)(x) at xi,

u(k+1) = [u
(k+1)
1 , u

(k+1)
2 , . . . , u

(k+1)
N ]T,

and

Φ(x) = [Φ1(x),Φ2(x), . . . ,ΦN (x)],

with the MLS shape function [14]

(3.4) Φi(x) =





m∑

j=1

pj(x)[A
−1(x)B(x)]jk , i = Ik ∈ Λ(x),

0, i /∈ Λ(x),

1 6 i 6 N.

In (3.4),

A(x) =
∑

i∈Λ(x)

wi(x)p(xi)p
T(xi),

B(x) = [wI1(x)p(xI1 ), wI2 (x)p(xI2 ), . . . , wIν (x)p(xIν )],
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where wi(x) > 0 is a weight function with compact support and p(x) = [p1(x),

p2(x), . . . , pm(x)]T is the basis vector. Besides, the set Λ(x) = {I1, I2, . . . , Iν} is

defined in such a way that i ∈ Λ(x) if and only if wi(x) > 0. As proved in [15],

[17], the basis function pj(x) should be chosen as the shifted and scaled polynomial

function to enhance the stability and performance of the MLS approximation.

The shifted and scaled basis vector can be written as p(x) = {(x−xe)λ/h|λ|}|λ|>0,

where λ = (λ1, λ2, . . . , λn)
T is a multi-index notation with |λ| =

n∑
i=1

λi, and xe =

(xe
1, x

e
2, . . . , x

e
n)

T is fixed and relies on the evaluation point considered. In actual

application, we can choose xe as the evaluation point [17]. Then the n-dimensional

linear basis is given by

p(x) =
[
1,

x1 − xe
1

h
,
x2 − xe

2

h
, . . . ,

xn − xe
n

h

]T
, x = (x1, x2, . . . , xn)

T ∈ R
n,

and the two-dimensional quadratic basis is given by

p(x) =
[
1,

x1 − xe
1

h
,
x2 − xe

2

h
,
(x1 − xe

1)
2

h2
,
(x1 − xe

1)(x2 − xe
2)

h2
,
(x2 − xe

2)
2

h2

]T
,

x = (x1, x2)
T ∈ R

2.

Let

(3.5) Vh(Ω) = span{Φi, 1 6 i 6 N}.

Then, the EFG approximation of the variational problem (3.1) is to calculate u
(k+1)
h ∈

Vh(Ω) such that

(3.6) a(u
(k+1)
h , v) = (b, v) ∀ v ∈ Vh(Ω).

Consequently, the elliptic problem (2.13) is discretized into the linear system

(3.7) (G+K+H)u(k+1) = g(k) + (Ḡ−K−H)u(k) − (G+K+H)u(k−1) + f (k),

where k = 1, 2, . . .,

[K]ij =
n∑

l,k=1

∫

Ω

alk
∂Φi

∂xl

∂Φj

∂xk

dΩ,(3.8)

[H]ij =

∫

Γ

λΦiΦj dΓ,(3.9)

[G]ij = β

∫

Ω

ΦiΦj dΩ,(3.10)

[Ḡ]ij =

∫

Ω

(2β − 3a0)ΦiΦj dΩ,
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[g(k)]i =

∫

Γ

Φi(g
(k+1) + g(k) + g(k−1)) dΓ,

[f (k)]i =

∫

Ω

3f (k)Φi dΩ.

Similarly, the elliptic problem (2.12) is discretized into the linear system

(3.11) (G+K+H)u(1) = g(0) + f (0),

where

[g(0)]i =

∫

Γ

Φig
(1) dΓ,

[f (0)]i =
1

2

∫

Ω

{
(2β − 3a0)ϕ1(x) + 2βτϕ2

+

n∑

l,k=1

∂

∂xl

[
alk

∂

∂xk

(ϕ1 − 2τϕ2)
]
+ 3f (0)

}
Φi dΩ.

According to (3.4), the MLS shape function Φi has compact support suppΦi [14].

Then we can deduce from (3.8)–(3.10) that the entries [K]ij , [H]ij and [G]ij need

to be computed only when suppΦi ∩ suppΦj 6= ∅. Otherwise, these entries are zero.

Hence, the matrixG+K+H in (3.7) and (3.11) is sparse. In addition, in light of the

bilinear form a(·, ·) defined in (3.2), the matrix is symmetric and positive definite.

As a consequence, the present EFG method produces a symmetric positive definite

and sparse system matrix G+K+H.

4. Error analysis

Lemma 4.1 ([14]). LetMv(x) =
N∑
i=1

Φi(x)vi be the MLS approximation of v(x) ∈

Hr+1(Ω). Then

‖v −Mv‖Hl(Ω) 6 Chp̃−l‖v‖Hp̃(Ω), 0 6 l 6 min{p̃, γ}, p̃ = min{r, m̂}+ 1,

where C is a constant independent of h, γ > 1 is a positive number such that the

weight function satisfies wi(x) ∈ Cγ(Ω), and m̂ denotes the highest degree of the

basis vector p(x).

Theorem 4.1. Let u(k+1) ∈ Hr+1(Ω) and u
(k+1)
h ∈ Vh(Ω) be the solutions of (3.1)

and (3.6), respectively. Then we can estimate the error of the EFG method for the

hyperbolic problem (1.1)–(1.4) as

(4.1) ‖u(k+1) − u
(k+1)
h ‖H1(Ω) 6 C(τ2 + hmin{r,m̂}),

where C is a constant independent of τ and h.
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P r o o f. Subtracting (3.6) from (3.1), we have

a(u(k+1) − u
(k+1)
h , v) =

∫

Ω

R(k+1)v dΩ ∀ v ∈ Vh(Ω).

Then using the fact thatMu(k+1) − u
(k+1)
h ∈ Vh(Ω) yields

(4.2) a(u(k+1) − u
(k+1)
h ,Mu(k+1) − u

(k+1)
h ) =

∫

Ω

R(k+1)(Mu(k+1) − u
(k+1)
h ) dΩ

6 ‖R(k+1)‖L2(Ω)‖Mu(k+1) − u
(k+1)
h ‖L2(Ω)

6 C1‖R
(k+1)‖L2(Ω){‖Mu(k+1) − u(k+1)‖L2(Ω) + ‖u(k+1) − u

(k+1)
h ‖L2(Ω)}.

For the bilinear form a(·, ·) defined in (3.2), let ‖v‖2
Ha(Ω)

△
= a(v, v). Then

(4.3) a(u(k+1) − u
(k+1)
h , u(k+1) − u

(k+1)
h ) = ‖u(k+1) − u

(k+1)
h ‖2Ha(Ω).

Besides, since a(·, ·) is continuous, we also have

(4.4) a(u(k+1) − u
(k+1)
h , u(k+1) −Mu(k+1))

6 C2‖u
(k+1) − u

(k+1)
h ‖Ha(Ω)‖u

(k+1) −Mu(k+1)‖Ha(Ω).

Clearly,

(4.5) a(u(k+1) − u
(k+1)
h , u(k+1) − u

(k+1)
h )

= a(u(k+1) − u
(k+1)
h , u(k+1) −Mu(k+1))

+ a(u(k+1) − u
(k+1)
h ,Mu(k+1) − u

(k+1)
h ).

By substituting (4.2)–(4.4) into (4.5), we get

‖u(k+1) − u
(k+1)
h ‖2Ha(Ω)

6 C1‖R
(k+1)‖L2(Ω){‖Mu(k+1) − u(k+1)‖L2(Ω) + ‖u(k+1) − u

(k+1)
h ‖L2(Ω)}

+ C2‖u
(k+1) − u

(k+1)
h ‖Ha(Ω)‖u

(k+1) −Mu(k+1)‖Ha(Ω).

And due to (2.7) and Lemma 3.1 we conclude

‖u(k+1) − u
(k+1)
h ‖2Ha(Ω) 6 C3τ

2{hmin{r,m̂}+1 + ‖u(k+1) − u
(k+1)
h ‖Ha(Ω)}

+ C4h
min{r,m̂}‖u(k+1) − u

(k+1)
h ‖Ha(Ω).

Therefore,

‖u(k+1) − u
(k+1)
h ‖Ha(Ω) 6 C5(τ

2 + hmin{r,m̂}).

Finally, together with ‖u(k+1) − u
(k+1)
h ‖H1(Ω) 6 C6‖u(k+1) − u

(k+1)
h ‖Ha(Ω), we ob-

tain (4.1). �
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Obviously, Theorem 4.1 implies that the EFG solution u(k+1) converges to the

analytical solution u as τ → 0 and h → 0.

5. Numerical results

Two numerical examples are given in this section to verify the efficiency of the

present EFG method. The numerical results confirm the theoretical ones.

5.1. The (1 + 1)-dimensional hyperbolic problem. Consider the following

hyperbolic partial differential equation in (1 + 1) dimensions:

∂2u(x, t)

∂t2
−

∂2u(x, t)

∂x2
= f(x, t), x ∈ Ω = (0, 1), t > 0,

with initial conditions

u(x, 0) = ϕ1(x),
∂u(x, t)

∂t

∣∣∣
t=0

= ϕ2(x), x ∈ Ω,

and a boundary condition

u(x, t) +
∂u(x, t)

∂x
= g(x, t), x ∈ Γ, t > 0,

where f(x, t), ϕ1(x), ϕ2(x), and g(x, t) are taken such that we have the analytical

solution [12]

u(x, t) = cos(πx) sin(πt).

Figure 1 presents the approximate solution uh at t = 4 and the associated error

|u−uh|. The results are obtained by the EFG method using τ = 0.001 and h = 0.01.

(a) (b)

Figure 1. Diagrams of (a) the approximate solution and (b) the associated error up to t = 4
for the (1 + 1)-dimensional hyperbolic problem.

487



Clearly, the EFG method produces very precise results. Besides, the structure of the

system matrix G+K+H in (3.7) and (3.11) is shown in Figure 2. Clearly, a large

number of its entries are zero, and thus the matrix is very sparse.

Figure 2. The sparse structure of the system matrix in (3.7) and (3.11) (the dots represent
the nonzero entries [G+K+H]ij).

Figure 3 presents the L∞-error and the L2-error at times t = 0.5, 1.5, 2.5, and 3.5.

These errors are obtained by the EFG method using τ = 0.001 and h = 0.01. The

errors of the inverse multiquadric radial basis function (IMQ-RBF) method and the

thin plate splines radial basis function (TPS-RBF) method [12] are also given in

this figure. Note that the errors of the two RBF methods are taken from Table 7

of [12]. Undoubtedly, the errors obtained by the present EFG method are much less

than those obtained by the two RBF methods. In addition, the two RBF methods

produce dense and asymmetric system matrices, while the present EFG method

produces sparse and symmetric positive definite system matrices. Therefore, the

EFG method is more efficient than the two RBF methods.

(a) (b)

Figure 3. (a) L∞-error and (b) L2-error of the EFG method and two RBF methods for the
(1 + 1)-dimensional hyperbolic problem.

488



Figure 4(a) and Figure 4(b) give the error of the EFG method in the H1(Ω)

norm against the time step τ and the nodal spacing h, respectively. The errors in

Figure 4(a) are obtained at times t = 2, 3 and 4 by using h = 0.01, while the errors

in Figure 4(b) are obtained by using τ = 0.001. We can find that the errors decrease

monotonously as τ and h decrease, which implies that the approximate solution

produced by the present EFG method converges to the analytical solution. Besides,

we have experimental convergence forms of about O(τ2) and O(h2) for this example.

The numerical results confirm the theoretical ones.

(a) (b)

Figure 4. Error ‖u− uh‖H1(Ω) against (a) the time step τ and (b) the nodal spacing h for
the (1 + 1)-dimensional hyperbolic problem.

5.2. The (2 + 1)-dimensional hyperbolic problem. Consider the following

hyperbolic partial differential equation in (2 + 1) dimensions:

∂2u(x, t)

∂t2
+2u(x, t)−

1

2

∂2u(x, t)

∂x2
1

−
1

2

∂2u(x, t)

∂x2
2

= f(x, t), x = (x1, x2)
T ∈ Ω, t > 0,

with initial conditions

u(x, 0) = ϕ1(x),
∂u(x, t)

∂t

∣∣∣
t=0

= ϕ2(x), x ∈ Ω,

and a boundary condition

u(x, t) +
1

2

2∑

j=1

nj(x)
∂u(x, t)

∂xj

= g(x, t), x ∈ Γ, t > 0,

where Ω = (−5, 5)2, and f(x, t), ϕ1(x), ϕ2(x), and g(x, t) are taken such that we

have the analytical solution

u(x, t) = tan−1 exp
(√

x2
1 + x2

2 − t
)
.
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Figure 5 gives the approximate solution at t = 4, 7, and 10 and the associated

error. The results are obtained by the EFG method using τ = 0.1 and h = 0.25.

Again, the EFG method produces very precise results.

(a) (b)

(c) (d)

(e) (f)

Figure 5. Diagrams of the approximate solution (left panel) and the associated error (right
panel) at t = 4, 7, and 10 for the (2 + 1)-dimensional hyperbolic problem.
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Figure 6(a) gives the error ‖u− uh‖H1(Ω) at times t = 4, 7 and 10 against the time

step τ , while Figure 6(b) gives the error against the nodal spacing h. The errors in

Figure 6(a) are obtained using h = 0.25, and the errors in Figure 6(b) are obtained

using τ = 0.1. The two figures indicate that the present EFG method converges to

the analytical solution and has high convergence rate in all cases. The numerical

results also confirm the theoretical ones.

(a) (b)

Figure 6. Error ‖u− uh‖H1(Ω) against (a) the time step τ and (b) the nodal spacing h for
the (2 + 1)-dimensional hyperbolic problem.

6. Conclusions

In this paper, a numerical strategy for hyperbolic partial differential equations has

been developed using the meshless element-free Galerkin (EFG) method. Theoretical

error of this numerical strategy has been analyzed in detail. The theoretical error

bound of the approximate solution depends on both the time step and the nodal

spacing. Numerical results demonstrate the ability of the present EFG method,

confirm the theoretical analysis and show that the present method has lower errors

than other existing numerical methods.

References

[1] S.Abbasbandy, H. Roohani Ghehsareh, I.Hashim, A.Alsaedi: A comparison study of
meshfree techniques for solving the two-dimensional linear hyperbolic telegraph equa-
tion. Eng. Anal. Bound. Elem. 47 (2014), 10–20. zbl MR doi

[2] T.Belytschko, Y.Y. Lu, L.Gu: Element-free Galerkin methods. Int. J. Numer. Methods
Eng. 37 (1994), 229–256. zbl MR doi

[3] M.J. Berger, J. Oliger: Adaptive mesh refinement for hyperbolic partial differential
equations. J. Comput. Phys. 53 (1984), 484–512. zbl MR doi

[4] Y.M.Cheng: Meshless Methods. Science Press, Beijing, 2015. (In Chinese.)

491

https://zbmath.org/?q=an:1297.65125
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR3233886
http://dx.doi.org/10.1016/j.enganabound.2014.04.006
https://zbmath.org/?q=an:0796.73077
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1256818
http://dx.doi.org/10.1002/nme.1620370205
https://zbmath.org/?q=an:0536.65071
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0739112
http://dx.doi.org/10.1016/0021-9991(84)90073-1


[5] R.-J.Cheng, H.-X.Ge: Element-free Galerkin (EFG) method for a kind of two-
dimensional linear hyperbolic equation. Chin. Phys. B. 18 (2009), 4059–4064. doi

[6] M.Dehghan, A.Ghesmati: Combination of meshless local weak and strong (MLWS)
forms to solve the two dimensional hyperbolic telegraph equation. Eng. Anal. Bound.
Elem. 34 (2010), 324–336. zbl MR doi

[7] M.Dehghan, A.Ghesmati: Solution of the second-order one-dimensional hyperbolic tele-
graph equation by using the dual reciprocity boundary integral equation (DRBIE)
method. Eng. Anal. Bound. Elem. 34 (2010), 51–59. zbl MR doi

[8] M.Dehghan, R. Salehi: A method based on meshless approach for the numerical solution
of the two-space dimensional hyperbolic telegraph equation. Math. Methods Appl. Sci.
35 (2012), 1220–1233. zbl MR doi

[9] M.Dehghan, A. Shokri: A meshless method for numerical solution of a linear hyperbolic
equation with variable coefficients in two space dimensions. Numer. Methods Partial
Differ. Equations 25 (2009), 494–506. zbl MR doi

[10] L.C. Evans: Partial Differential Equations. Graduate Studies in Mathematics 19, Amer-
ican Mathematical Society, Providence, 2010. zbl MR doi

[11] X.Hu, P.Huang, X. Feng: A new mixed finite element method based on the Crank-
Nicolson scheme for Burgers’ equation. Appl. Math., Praha 61 (2016), 27–45. zbl MR doi

[12] Z. Jiang, L. Su, T. Jiang: A meshfree method for numerical solution of nonhomogeneous
time-dependent problems. Abstr. Appl. Anal. 2014 (2014), Article ID 978310, 11 pages. MR doi

[13] X.Li: Meshless Galerkin algorithms for boundary integral equations with moving least
square approximations. Appl. Numer. Math. 61 (2011), 1237–1256. zbl MR doi

[14] X.Li: Error estimates for the moving least-square approximation and the element-free
Galerkin method in n-dimensional spaces. Appl. Numer. Math. 99 (2016), 77–97. zbl MR doi

[15] X.Li, S. Li: On the stability of the moving least squares approximation and the ele-
ment-free Galerkin method. Comput. Math. Appl. 72 (2016), 1515–1531. zbl MR doi

[16] X.Li, S. Li: Analysis of the complex moving least squares approximation and the asso-
ciated element-free Galerkin method. Appl. Math. Model. 47 (2017), 45–62. MR doi

[17] X.Li, Q.Wang: Analysis of the inherent instability of the interpolating moving least
squares method when using improper polynomial bases. Eng. Anal. Bound. Elem. 73
(2016), 21–34. MR doi

[18] X.Li, S. Zhang, Y.Wang, H. Chen: Analysis and application of the element-free
Galerkin method for nonlinear sine-Gordon and generalized sinh-Gordon equations.
Comput. Math. Appl. 71 (2016), 1655–1678. MR doi

[19] G.R. Liu: Meshfree Methods. Moving Beyond the Finite Element Method. CRC Press,
Boca Raton, 2010. zbl MR doi

[20] B. J. Szekeres, F. Izsák: Convergence of the matrix transformation method for the finite
difference approximation of fractional order diffusion problems. Appl. Math., Praha 62
(2017), 15–36. zbl MR doi

[21] Y.-Z.Tang, X.-L. Li: Meshless analysis of an improved element-free Galerkin method
for linear and nonlinear elliptic problems. Chin. Phys. B. 26 (2017), 030203. doi

[22] J.W.Thomas: Numerical Partial Differential Equations: Finite Difference Methods.
Texts in Applied Mathematics 22, Springer, New York, 1995. zbl MR doi

[23] S. Zhang, X. Li: Boundary augmented Lagrangian method for the Signorini problem.
Appl. Math., Praha 61 (2016), 215–231. zbl MR doi

Authors’ addresses: Yaozong Tang, College of Mathematics and Statistics, Kashgar
University, Kashgar 844000, China, e-mail: 2997618113@qq.com; Xiaolin Li (corresponding
author), School of Mathematical Sciences, Chongqing Normal University,Chongqing 400047,
China, e-mail: 75724527@qq.com, lxlmath@163.com.

492

http://dx.doi.org/10.1088/1674-1056/18/10/001
https://zbmath.org/?q=an:1244.65147
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2585262
http://dx.doi.org/10.1016/j.enganabound.2009.10.010
https://zbmath.org/?q=an:1244.65137
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2559257
http://dx.doi.org/10.1016/j.enganabound.2009.07.002
https://zbmath.org/?q=an:1250.35015
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2945847
http://dx.doi.org/10.1002/mma.2517
https://zbmath.org/?q=an:1159.65084
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2483780
http://dx.doi.org/10.1002/num.20357
https://zbmath.org/?q=an:1194.35001
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2597943
http://dx.doi.org/10.1090/gsm/019
https://zbmath.org/?q=an:06562145
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR3455166
http://dx.doi.org/10.1007/s10492-016-0120-3
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR3246371
http://dx.doi.org/10.1155/2014/978310
https://zbmath.org/?q=an:1232.65160
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2851120
http://dx.doi.org/10.1016/j.apnum.2011.08.003
https://zbmath.org/?q=an:1329.65274
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR3413894
http://dx.doi.org/10.1016/j.apnum.2015.07.006
https://zbmath.org/?q=an:1361.65090
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR3545373
http://dx.doi.org/10.1016/j.camwa.2016.06.047
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR3659439
http://dx.doi.org/10.1016/j.apm.2017.03.019
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR3581428
http://dx.doi.org/10.1016/j.enganabound.2016.08.012
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR3481094
http://dx.doi.org/10.1016/j.camwa.2016.03.007
https://zbmath.org/?q=an:1205.74003
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2574356
http://dx.doi.org/10.1201/9781420082104
https://zbmath.org/?q=an:06738479
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR3615476
http://dx.doi.org/10.21136/AM.2017.0385-15
http://dx.doi.org/10.1088/1674-1056/26/3/030203
https://zbmath.org/?q=an:0831.65087
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1367964
http://dx.doi.org/10.1007/978-1-4899-7278-1
https://zbmath.org/?q=an:06562154
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR3470774
http://dx.doi.org/10.1007/s10492-016-0129-7

