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Abstract. Lower bounds on the smallest eigenvalue of a symmetric positive definite matrix
A ∈ R

m×m play an important role in condition number estimation and in iterative methods
for singular value computation. In particular, the bounds based on Tr(A−1) and Tr(A−2)
have attracted attention recently, because they can be computed in O(m) operations when
A is tridiagonal. In this paper, we focus on these bounds and investigate their properties in
detail. First, we consider the problem of finding the optimal bound that can be computed
solely from Tr(A−1) and Tr(A−2) and show that the so called Laguerre’s lower bound is
the optimal one in terms of sharpness. Next, we study the gap between the Laguerre bound
and the smallest eigenvalue. We characterize the situation in which the gap becomes largest
in terms of the eigenvalue distribution of A and show that the gap becomes smallest when
{Tr(A−1)}2/Tr(A−2) approaches 1 or m. These results will be useful, for example, in
designing efficient shift strategies for singular value computation algorithms.
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1. Introduction

Let A ∈ R
m×m be a symmetric positive definite matrix and denote its smallest

eigenvalue by λm(A). In this paper, we are interested in a lower bound on λm(A).

For the Cholesky factorization A = BBT, where B ∈ R
m×m is a nonsingular lower

triangular matrix, the smallest singular value of B can be written as σm(B) =
√

λm(A). Hence, finding a lower bound on λm(A) is equivalent to finding a lower

bound on σm(B).
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A lower bound on λm(A) or σm(B) plays an important role in various scientific

computations. For example, when combined with an upper bound on ‖A‖2, a lower
bound on λm(A) can be used to give an upper bound on the condition number of A.

In singular value computation algorithms such as the dqds algorithm [3], the orthog-

onal qd algorithm [10], and the mdLVs algorithm [6], a lower bound on σm(B) is used

as a shift to accelerate the convergence. In the latter case, the matrix B is usually a

lower bidiagonal matrix as a result of preprocessing by the Householder method [4].

Several types of lower bounds on λm(A) or σm(B) have been proposed so far.

There are bounds based on eigenvalue inclusion theorems such as Gershgorin’s circle

theorem [7] or Brauer’s oval of Cassini [8]. The norm of the inverse, ‖A−1‖∞, can
also be used to bound the maximum eigenvalue of A−1 from above, and therefore

to bound λm(A) from below. There are also bounds based on the traces of the

inverses, namely, Tr(A−1) and Tr(A−2). Among these, the latter class of bounds

is attractive in the context of singular value computation, because they always give

a valid (positive) lower bound, as opposed to the bounds based on the eigenvalue

inclusion theorems, and they can be computed in O(m) operations using efficient

algorithms [9], [11], [13]. Examples of lower bounds of this type include the Newton

bound [10], the generalized Newton bound [9], [1], and the Laguerre bound [10].

In this paper, we focus on the lower bounds of λm(A) derived from Tr(A−1) and

Tr(A−2) and investigate their properties. In particular, we will address the following

two questions. The first is to identify an optimal formula for a lower bound on

λm(A) that is based solely on Tr(A−1) and Tr(A−2). Here, the word “optimal”

means that the formula always gives a sharper (that is, larger) bound than any

other formula using only Tr(A−1) and Tr(A−2). As a result of our analysis, we

show that the Laguerre bound mentioned above is the optimal formula in this sense.

The second question is to evaluate the gap between the Laguerre bound and λm(A).

Unlike the Laguerre bound, λm(A) is not determined uniquely only from Tr(A−1)

and Tr(A−2). Hence, for some of the matrices, there must be a gap between the

bound and λm(A). Our problem is to quantify the maximum possible gap and

identify the conditions under which the maximum gap is attained. These results

will be useful, for example, in designing efficient shift strategies for singular value

computation algorithms, which combine the Laguerre bound with other bounds with

complementary characteristics [12].

The rest of this paper is structured as follows. In Section 2, we investigate the lower

bounds on λm(A) derived from Tr(A−1) and Tr(A−2) and show that the Laguerre

bound is an optimal one in terms of sharpness. Section 3 deals with the gap between

the Laguerre bound and λm(A). In particular, we characterize the situation in which

the gap becomes largest in terms of the eigenvalue distribution of A. Section 4 gives

some concluding remarks.
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2. An optimal lower bound based on Tr(A−1) and Tr(A−2)

2.1. Lower bounds based on Tr(A−1) and Tr(A−2). Let A be an m×m real

symmetric positive definite matrix. We denote the kth largest eigenvalue of A by

λk(A), or λk for short. Let f(λ) = det(λI−A) be the characteristic polynomial of A.

To find a lower bound on the smallest eigenvalue λm, we consider applying a root

finding method for the algebraic equation to f(λ) = 0 starting from the initial value

λ(0) = 0. There are several root finding methods, such as the Bailey’s (Halley’s)

method [2], Householder’s method [5], and Laguerre’s method [14], [10], for which

the iteration formulas can be written as follows:

λ
(n+1)
B = λ(n) − f(λ(n))

f ′(λ(n))

(

1− f(λ(n))f ′′(λ(n))

2f ′(λ(n))2

)−1

,(2.1)

λ
(n+1)
H = λ(n) − f(λ(n))

f ′(λ(n))

(

1 +
f(λ(n))f ′′(λ(n))

2f ′(λ(n))2

)

,(2.2)

λ
(n+1)
L = λ(n) − f(λ(n))

f ′(λ(n))
(2.3)

×m

(

1 +

√

(m− 1)
{

m · f
′(λ(n))2 − f(λ(n))f ′′(λ(n))

f ′(λ(n))2
− 1
}

)−1

.

Equations (2.1), (2.2), and (2.3) represent the iteration formulas of Bailey’s method,

Householder’s method and Laguerre’s method, respectively. When applied to f(λ) =

det(λI−A) starting from λ(0) = 0, these formulas produce a sequence that increases

monotonically and converges to λm. Hence, all of λ
(1)
B , λ

(1)
H , and λ

(1)
L can be used as

a lower bound on λm.

Noting that f(λ) =
m
∏

k=1

(λ− λk), we have

f ′(λ) = −
m
∑

k=1

∏

j 6=k

(λj − λ)(2.4)

= −
m
∏

j=1

(λj − λ)
m
∑

k=1

1

λk − λ
= −f(λ)Tr((A− λI)−1),

f ′′(λ) = −f ′(λ)Tr((A− λI)−1)− f(λ)

m
∑

k=1

1

(λk − λ)2
(2.5)

= −f ′(λ)Tr((A− λI)−1)− f(λ)Tr((A− λI)−2).
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Hence,

f(λ)

f ′(λ)
= − 1

Tr((A− λI)−1)
,(2.6)

f(λ)f ′′(λ)

f ′(λ)2
= 1− Tr((A− λI)−2)

{Tr((A− λI)−1)}2 .(2.7)

Inserting these into equations (2.1), (2.2), and (2.3) with λ(0) = 0, we obtain the

following lower bounds on λm(A):

LB(A) =
2Tr(A−1)

{Tr(A−1)}2 +Tr(A−2)
,(2.8)

LH(A) =
1

Tr(A−1)

[3

2
− 1

2

Tr(A−2)

{Tr(A−1)}2
]

,(2.9)

LL(A) =
1

Tr(A−1)
·m
(

1 +

√

(m− 1)
[

m · Tr(A−2)

{Tr(A−1)}2 − 1
]

)−1

(2.10)

We call LB(A), LH(A), and LL(A) the Bailey bound, the Householder bound, and

the Laguerre bound, respectively. In addition to these, we also have a simple bound:

(2.11) LN(A) = {Tr(A−2)}−1/2 6

( m
∑

k=1

1

λ2
k

)−1/2

< λm,

which is called the Newton bound of order 2 (see [10], [9], [1]). In the case, where A

is a tridiagonal matrix, both Tr(A−1) and Tr(A−2) can be computed in O(m) op-

erations from its Cholesky factor B (see [9], [11], [13]). Accordingly, any of these

bounds can be employed in a practical shift strategy for singular value computation

algorithms. The problem then is which of the four lower bounds, or possibly another

bound derived from Tr(A−1) and Tr(A−2), is optimal in terms of sharpness.

2.2. The optimal lower bound. To answer the question, we reformulate the

problem as follows. Assume that Tr(A−1) and Tr(A−2) are specified for a symmetric

positive definite matrix A. Then, how small can the smallest eigenvalue λm(A) be?

If this bound can be obtained explicitly as a function of Tr(A−1) and Tr(A−2), then

it will be the optimal formula for the lower bound of λm(A).

Now, let a ≡ Tr(A−1), b ≡ Tr(A−2), and xk ≡ 1/λk (k = 1, 2, . . . ,m). Then the

upper bound on xm (the reciprocal of the lower bound on λm) can be obtained by
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solving the following constrained optimization problem:

maximize xm(2.12)

s.t.

m
∑

k=1

xk = a,(2.13)

m
∑

k=1

x2
k = b,(2.14)

xk > 0 (k = 1, 2, . . . ,m),(2.15)

x1 6 x2 6 . . . 6 xm.(2.16)

Actually, the constraint (2.16) is redundant, because if (x∗
1, x

∗
2, . . . , x

∗
m) is a solu-

tion of the optimization problem without constraint (2.16), then from symmetry,

(x∗
σ(1), x

∗
σ(2), . . . , x

∗
σ(m)) is also a solution for any permutation σ of {1, 2, . . . ,m}, and

therefore we can choose a solution that satisfies (2.16). Hence, we omit (2.16) in the

sequel.

To solve the optimization problem (2.12)–(2.15), we remove the constraint (2.15)

and consider a relaxed problem described by (2.12)–(2.14). By introducing the La-

grange multipliers µ and ν, we can write the Lagrangian as

(2.17) L = xm − µ

( m
∑

k=1

xk − a

)

− ν

( m
∑

k=1

x2
k − b

)

.

Then the solution to (2.12)–(2.14) must satisfy

∂L

∂xm
= 1− µ− 2νxm = 0,(2.18)

∂L

∂xk
= −µ− 2νxk = 0 (k = 1, 2, . . . ,m− 1),(2.19)

∂L

∂µ
=

m
∑

k=1

xk − a = 0,(2.20)

∂L

∂ν
=

m
∑

k=1

x2
k − b = 0.(2.21)

From (2.19) we have either ν = 0 or x1 = x2 = . . . = xm−1. However, when ν = 0,

we have µ = 0 from (2.19) and µ = 1 from (2.18), which is a contradiction. Thus

x1 = x2 = . . . = xm−1 must hold. Inserting this into (2.20) and (2.21) leads to

xm + (m− 1)x1 − a = 0,(2.22)

x2
m + (m− 1)x2

1 − b = 0.(2.23)

323



Solving these simultaneous equations with respect to xm gives

(2.24) x±
m =

a±
√

m(m− 1)b− (m− 1)a2

m
.

Note that the xm given by (2.24) is real, since

m(m− 1)b− (m− 1)a2 = (m− 1)

{

m

m
∑

k=1

x2
k −

( m
∑

k=1

xk

)2}

(2.25)

= (m− 1)

m
∑

k=1

k−1
∑

l=1

(xk − xl)
2 > 0.

Now we return to the relaxed optimization problem (2.12)–(2.14). Since the feasi-

ble set of this problem is compact and both the objective function and the constraints

are differentiable, it must have a minimum and a maximum at points, where the gra-

dient of the Lagrangian is zero. Furthermore, since the objective function is xm

itself, the maximum is attained when xm = x+
m. Then from (2.22) we have

(2.26) x1 = x2 = . . . = xm−1 =
(m− 1)a−

√

m(m− 1)b− (m− 1)a2

m(m− 1)
.

Hence, (2.26) and xm = x+
m are the solution of the relaxed optimization problem.

Finally, we consider the positivity constraint (2.15). It is clear from (2.24) that

x+
m > 0. To investigate the positivity of the other variables, note that

(2.27) a2 − b =

( m
∑

k=1

1

λk

)2

−
m
∑

k=1

1

λ2
k

= 2
m
∑

k=1

k−1
∑

l=1

1

λk
· 1

λl
> 0,

where we have used the fact that a and b are the traces of the inverse of a matrix

with positive eigenvalues. Then (2.26) can be rewritten as

x1 = x2 = . . . = xm−1(2.28)

=
(m− 1)2a2 − {m(m− 1)b− (m− 1)a2}

m(m− 1){(m− 1)a+
√

m(m− 1)b− (m− 1)a2}

=
m(m− 1)(a2 − b)

m(m− 1){(m− 1)a+
√

m(m− 1)b− (m− 1)a2}
> 0.

This shows that the solution to the relaxed problem (2.12)–(2.14) automatically

satisfies the constraint (2.15). Hence, it is also a solution to the original problem
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(2.12)–(2.15). Returning to the original variables λk = 1/xk, we know that the

smallest value that λm can take is

(2.29)
1

Tr(A−1)
·m
(

1 +

√

(m− 1)
[

m · Tr(A−2)

{Tr(A−1)}2 − 1
]

)−1

.

This gives the optimal lower bound on λm(A) in terms of Tr(A−1) and Tr(A−2).

Since equation (2.29) is exactly the Laguerre bound (2.10), we arrive at the following

theorem.

Theorem 2.1. Among the lower bounds on λm(A) computed from Tr(A−1) and

Tr(A−2), the Laguerre bound (2.10) is optimal in terms of sharpness.

3. The gap between the Laguerre bound and the smallest eigenvalue

Now that we have established that the Laguerre bound is the optimal lower bound,

we next study the gap between the bound and the minimum eigenvalue. We begin

with a lemma that holds for a 3 × 3 matrix and then proceed to the general case.

In the course of discussion, we also allow infinite eigenvalues to make the arguments

simpler.

Assume that A ∈ R
3×3 is a symmetric positive definite matrix with Tr(A−1) = a

and Tr(A−2) = b. Let the eigenvalues of A be λ1 > λ2 > λ3 > 0. To evaluate the

gap, we consider how large λ3 can be under the fixed values of a and b. First, we

show the following lemma.

Lemma 3.1. For fixed a = Tr(A−1) and b = Tr(A−2), if λ3 attains maximum

value, then necessarily either λ2 = λ3 or λ1 = ∞ holds.
P r o o f. Let x = 1/λ3, y = 1/λ2, and z = 1/λ1. Since we allow infinite eigenval-

ues, the point (x, y, z) lies in a region D of the xyz space specified by x+ y+ z = a,

x2 + y2 + z2 = b, and x > y > z > 0. Since D is a compact set, the continuous

function x attains a minimum somewhere in D. Hence, if we can show that x does

not attain a minimum when x > y and z > 0, it means that x attains a minimum

when x = y or z = 0.

Assume that the point (x, y, z) is in D and both x > y and z > 0 hold. Then, let

ε > 0 be some small quantity and t ∈ R and consider changing (x, y, z) to (x′, y′, z′)

as follows:

x′ = x− ε,(3.1)

y′ = y + tε,(3.2)

z′ = z + (1− t)ε.(3.3)

325



Clearly, the new point (x′, y′, z′) lies on the plane x+ y + z = a. We determine t so

that it is also on the sphere x2 + y2 + z2 = b. The condition can be written as

(3.4) (x− ε)2 + (y + tε)2 + {z + (1 − t)ε}2 = x2 + y2 + z2,

or

(3.5) εt2 + (y − z − ε)t+ (−x+ z + ε) = 0.

Solving this with respect to t gives

(3.6) t± =
−(y − z − ε)±

√

(y − z − ε)2 + 4ε(x− z − ε)

2ε
.

In the following, we adopt the solution t = t+. Now we consider two cases. First,

for the case of y = z, we have from (3.6)

(3.7) t+ε =
ε+

√

ε2 + 4ε(x− z − ε)

2
= O(

√
ε).

Inserting this into (3.1) through (3.3), we know that the changes in x, y, and z are

at most O(
√
ε) when ε is small.

Next, consider the case of y > z. In this case, we can rewrite (3.6) as

(3.8) t+ =
2(x− z − ε)

(y − z − ε) +
√

(y − z − ε)2 + 4ε(x− z − ε)
.

Since x− z − ε > 0 and y − z − ε > 0 for sufficiently small ε, we have

(3.9) 0 < t+ <
x− z − ε

y − z − ε
= 1 +

x− y

y − z − ε
.

The right-hand side is smaller than 1 + 2(x − y)/(y − z), which is a constant that

does not depend on ε, when ε < 1
2 (y − z). Hence, t+ε = O(ε) when ε is small and

therefore, the changes in x, y, and z are at most O(ε) in this case.

In summary, in both cases, the changes of x, y, and z can be made arbitrarily

small. Thus, by choosing ε sufficiently small, we can make x′ smaller than x while

keeping the relation x′ > y′ > 0 and x′ > z′ > 0 (Fig. 1). The relation y′ > z′ may

not hold, but in that case, we can interchange y′ and z′. In this way, we can obtain

another point (x′, y′, z′) ∈ D which attains a smaller value of x. Hence, x cannot

attain a minimum when both x > y and z > 0 hold and the lemma is proved. �
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x

y

z

0

x
′

y
′

z
′

0

Figure 1. The values of x, y and z before and after the perturbation.

Using this lemma, we can prove the following theorem for anym×m real symmetric

positive definite matrix A, where m > 3.

Theorem 3.2. Let a = Tr(A−1) and b = Tr(A−2) be fixed. Since 1 < a2/b 6 m

by virtue of (2.25) and (2.27), a positive integer q satisfying q < a2/b 6 q + 1 is

determined uniquely. Then, λm(A) takes a maximum when

λ1(A) = . . . = λm−q−1(A) = ∞ and λm−q+1 = . . . = λm(A).

The maximum is given as

(3.10) λ∗
m(A) =

1

Tr(A−1)
· q(q + 1)

(

q +

√

q
[

(q + 1) · Tr(A−2)

{Tr(A−1)}2 − 1
]

)−1

.

P r o o f. Let xk = 1/λk. First, assume that there are two or more eigenvalues

which are neither infinite nor equal to λm(A). In this case, as we will show in the

sequel, we can make λm smaller by adding appropriate perturbations. We divide the

proof into two cases depending on the multiplicity q of the smallest eigenvalue.

When q = 1, from the assumption, both λm−2 and λm−1 are neither infinite nor

equal to λm(A). Thus, we have 0 < xm−2 6 xm−1 < xm. Then, by picking up these

three variables and adding the same perturbations as in Lemma 3.1, we can make

xm smaller while keeping the condition 0 < xm−2 6 xm−1 < xm (Fig. 2). Clearly,

the values of Tr(A−1) and Tr(A−2) are unchanged by this perturbation. Hence, xm

cannot take a minimum in this case.

xm

xm−1

xm−2

0

x
′

m

x
′

m−1

x
′

m−2

0

Figure 2. The values of xm, xm−1, and xm−2 before and after the perturbation.
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When q > 1, 0 < xm−q−1 6 xm−q < xm−q+1 = . . . = xm holds from the as-

sumption. Then, by picking up the three variables xm−q−1, xm−q and xm−q+1 and

adding the perturbations as in Lemma 3.1, we can make xm−q+1 smaller while keep-

ing 0 < xm−q−1 6 xm−q < xm−q+1. This does not change the smallest eigenvalue,

but reduces its multiplicity from q to q − 1 (Fig. 3). Moreover, the condition that

there are two or more eigenvalues which are neither infinite nor equal to λm(A) still

holds. Hence, we can repeat this procedure and reduce q to 1, while keeping the

value of the smallest eigenvalue unchanged. But in this last situation, xm cannot

take a minimum, as concluded in the analysis of the q = 1 case.

xm−q+1 = . . . = xm

xm−q

xm−q−1

x
′

m−q

x
′

m−q−1

x
′

m−q+1

x
′

m−q+2 = . . . = x
′

m

q-fold degeneracy (q − 1)-fold degeneracy

Figure 3. The values of xm−q−1, xm−q, . . . , xm before and after the perturbation.

From the above analysis, we can conclude that xm cannot attain a minimum when

there are two or more eigenvalues which are neither infinite nor equal to λm(A). Thus,

the only possible case is when x1 = . . . = xm−q−1 = 0 and xm−q+1 = . . . = xm holds

for some q. In this case, we have

xm−q + qxm = a,(3.11)

x2
m−q + qx2

m = b,(3.12)

or

x±
m =

aq ±
√

q{(q + 1)b− a2}
q(q + 1)

,(3.13)

x±
m−q =

a∓
√

q{(q + 1)b− a2}
q + 1

.(3.14)

For xm and xm−q to be real, q must satisfy q + 1 > a2/b. Then, for xm−q 6 xm to

hold, we have to choose x+
m and x+

m−q. In addition, for x
+
m−q > 0 to hold, we must

have q < a2/b. From the condition q < a2/b 6 q+1, q is determined uniquely. Hence,

there is only one set of q, xm, and xm−q that satisfy the condition for minimum xm.

Since the feasible region of (x1, x2, . . . , xm), specified by
m
∑

k=1

xk = a,
m
∑

k=1

x2
k = b and

0 6 x1 6 x2 6 . . . 6 xm, is compact, xm must attain a minimum somewhere in
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this region. Accordingly, we conclude that xm takes a minimum when q < a2/b 6

q + 1, x1 = . . . = xm−q−1 = 0, xm−q = x+
m−q and xm−q+1 = . . . = xm = x+

m.

Equation (3.10) is obtained from λm = 1/xm. �

To measure the gap between the Laguerre bound and the smallest eigenvalue, we

use the quantity LL(A)/λ
∗
m(A), which becomes one when there is no gap and zero

when the gap is maximal. Let α ≡ {Tr(A−1)}2/Tr(A−2) and let q be an integer

specified in Theorem 3.2. Then from (3.10) and (2.10) we have

(3.15)
LL(A)

λ∗
m(A)

=
m

q(q + 1)
· q +

√

q{(q + 1)α−1 − 1}
1 +

√

(m− 1)(mα−1 − 1)
.

Thus, we have obtained an expression for the maximum possible gap as a function

of m and α (note that q is determined from α uniquely).

So far, we have allowed infinite eigenvalues. However, of course, actual matrices

have only finite eigenvalues. Accordingly, except for the case of q = m− 1, for which

no infinite eigenvalues are required for λm(A) to take a maximum, the right-hand

side of (3.15) is a lower bound that can be approached arbitrarily closely.

Finally, we investigate the behavior of the right-hand side of (3.15) as a function

of α. Note that 1 < α 6 m from (2.25) and (2.27). We consider three extreme cases,

namely, 1 < α 6 2, 1 ≪ α ≪ m, and m− 1 < α 6 m.

⊲ When 1 < α 6 2, we have q = 1 and therefore,

(3.16)
LL(A)

λ∗
m(A)

=
m

2
· 1 +

√
2α−1 − 1

1 +
√

(m− 1)(mα−1 − 1)
.

For 1 < α 6 2, this is a decreasing function in α that attains the minimum value

(3.17)
1√
2
· 1√

2m−1 +
√

(1−m−1)(1− 2m−1)

at α = 2 and approaches 1 as α → 1. Since the minimum value (3.17) is larger

than 1/
√
2 when m > 3, LL(A)/λ

∗
m(A) is always larger than 1/

√
2 when m > 3.

⊲ When 1 ≪ α ≪ m, we have 1 ≪ q ≪ m and therefore, LL(A)/λ
∗
m(A) ≃ 1/

√
q.

⊲ When m− 1 < α 6 m, we have q = m− 1 and therefore,

(3.18)
LL(A)

λ∗
m(A)

=
1

m− 1
·
{

1 +
m− 2

1 +
√

(m− 1)(mα−1 − 1)

}

.

This is an increasing function in α and takes the maximum value 1 at α = m and

approaches 1
2m/(m− 1) as α → m − 1. Hence, LL(A)/λ

∗
m(A) > 1

2 all over the

region.
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In summary, we can conclude that the Laguerre bound is fairly tight when α is

smaller than 2 or close to m and can be loose when α is in the intermediate region.

In Fig. 4, we plot the smallest eigenvalues of randomly generated 5× 5 symmetric

positive definite matrices. Any such matrix can be written as A = QΛQT, where Q

is an orthogonal matrix and Λ is a diagonal matrix with positive diagonal elements.

However, its traces Tr(A−1) and Tr(A−2) depend only on Λ and not on Q. We

therefore set Q to be the identity matrix and generate the diagonal elements of Λ

randomly. These matrices are normalized so thatTr(A−1) = 1 and the horizontal axis

is α = {Tr(A−1)}2/Tr(A−2). The Laguerre bound (2.10) and the upper bound (3.10)

on the smallest eigenvalue are also shown in the graph. From the graph, we can

confirm the optimality of the Laguerre bound, since it actually constitutes the lower

boundary of the region, where the smallest eigenvalues exist. We can also confirm

the upper bound given by (3.10) numerically. Finally, it is clear that the Laguerre

bound is tight when α 6 2 or α ≃ m and loose in the intermediate region.

0
0

1

1

2

2

3

3

4

4

5

5

6

6
α

q=1

q=2

q=3

q=4

Upper bound on the smallest eigenvalue

Laguerre lower bound

Distribution
of the smallest
eigenvalues

Figure 4. The smallest eigenvalues of randomly generated 5×5 symmetric positive definite
matrices as a function of α.

4. Conclusion

In this paper, we investigated the properties of lower bounds on the smallest

eigenvalue of a symmetric positive definite matrix A computed from Tr(A−1) and

Tr(A−2). We studied two problems, namely, finding the optimal bound and evalu-

ating its sharpness. As for the former question, we found that the Laguerre bound

is the optimal one in terms of sharpness. As for the latter question, we charac-

terized the situation in which the gap becomes largest in terms of the eigenvalue
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distribution of A. Furthermore, we showed that the gap becomes smallest when

{Tr(A−1)}2/Tr(A−2) approaches 1 or m. These results will help designing efficient

shift strategies for singular value computation methods such as the dqds algorithm

and the mdLVs algorithm.
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