Applications of Mathematics, Vol. 62, No. 3, pp. 269-296, 2017

A new weighted Gompertz distribution with applications to reliability data

Hassan S. Bakouch, Ahmed M. T. Abd El-Bar

Received October 4, 2016.   First published April 28, 2017.

Hassan S. Bakouch, Ahmed M. T. Abd El-Bar, Department of Mathematics, Faculty of Science, Tanta University, Tanta, Egypt, e-mail: hnbakouch@yahoo.com, ahmed_stat2006@yahoo.com

Abstract: A new weighted version of the Gompertz distribution is introduced. It is noted that the model represents a mixture of classical Gompertz and second upper record value of Gompertz densities, and using a certain transformation it gives a new version of the two-parameter Lindley distribution. The model can be also regarded as a dual member of the log-Lindley-$X$ family. Various properties of the model are obtained, including hazard rate function, moments, moment generating function, quantile function, skewness, kurtosis, conditional moments, mean deviations, some types of entropy, mean residual lifetime and stochastic orderings. Estimation of the model parameters is justified by the method of maximum likelihood. Two real data sets are used to assess the performance of the model among some classical and recent distributions based on some evaluation goodness-of-fit statistics. As a result, the variance-covariance matrix and the confidence interval of the parameters, and some theoretical measures have been calculated for such data for the proposed model with discussions.

Keywords: continuous distribution; distributional properties; weight function; estimation; estimated survival function

Classification (MSC 2010): 60E05, 60E99, 62E15

DOI: 10.21136/AM.2017.0277-16

Full text available as PDF.


References:
  [1] D. K. Al-Mutairi, M. E. Ghitany, D. Kundu: Inferences on stress-strength reliability from Lindley distributions. Commun. Stat., Theory Methods 42 (2013), 1443-1463. DOI 10.1080/03610926.2011.563011 | MR 3038588 | Zbl 1294.62036
  [2] A. Alzaghal, F. Famoye, C. Lee: Exponentiated $T$-$X$ family of distributions with some applications. Int. J. Stat. Probab. 2 (2013), 31-49. DOI 10.5539/ijsp.v2n3p31
  [3] A. Asgharzadeh, H. S. Bakouch, S. Nadarajah, F. Sharafi: A new weighted Lindley distribution with application. Braz. J. Probab. Stat. 30 (2016), 1-27. DOI 10.1214/14-BJPS253 | MR 3453512 | Zbl 06583974
  [4] H. S. Bakouch, M. A. Jazi, S. Nadarajah, A. Dolati, R. Roozegar: A lifetime model with increasing failure rate. Appl. Math. Model. 38 (2014), 5392-5406. DOI 10.1016/j.apm.2014.04.028 | MR 3275147
  [5] A. C. Bemmaor: Modeling the diffusion of new durable goods: word-of-mouth effect versus consumer heterogeneity. Research Traditions in Marketing (G. Laurent, G. L. Lilien, B. Pras eds.) Int. Ser. in Quantitative Marketing 5, Kluwer, Boston (1994), 201-223. DOI 10.1007/978-94-011-1402-8_6
  [6] A. El-Gohary, A. Alshamrani, A. N. Al-Otaibi: The generalized Gompertz distribution. Appl. Math. Modelling 37 (2013), 13-24. DOI 10.1016/j.apm.2011.05.017 | MR 2994162 | Zbl 1349.62035
  [7] F. Galton: Inquiries into Human Faculty and Its Development. MacMillan & Company, London (1883). DOI 10.1037/14178-000
  [8] M. E. Ghitany, F. Alqallaf, D. K. Al-Mutairi, H. A. Husain: A two-parameter weighted Lindley distribution and its applications to survival data. Math. Comput. Simul. 81 (2011), 1190-1201. DOI 10.1016/j.matcom.2010.11.005 | MR 2769828 | Zbl 1208.62021
  [9] E. Gómez-Déniz, M. A. Sordo, E. Calderín-Ojeda: The Log-Lindley distribution as an alternative to the beta regression model with applications in insurance. Insur. Math. Econ. 54 (2014), 49-57. DOI 10.1016/j.insmatheco.2013.10.017 | MR 3145850 | Zbl 1294.60016
  [10] J. L. Guisado, F. Jiménez-Morales, J. M. Guerra: Application of Shannon's entropy to classify emergent behaviors in a simulation of laser dynamics. Math. Comput. Modelling 42 (2005), 847-854. DOI 10.1016/j.mcm.2005.09.012 | Zbl 1088.94518
  [11] R. C. Gupta, S. N. U. A. Kirmani: Residual coefficient of variation and some characterization results. J. Stat. Plann. Inference 91 (2000), 23-31. DOI 10.1016/S0378-3758(00)00134-8 | MR 1792361 | Zbl 0958.62096
  [12] R. D. Gupta, D. Kundu: A new class of weighted exponential distributions. Statistics 43 (2009), 621-634. DOI 10.1080/02331880802605346 | MR 2588273 | Zbl 1291.60029
  [13] K. Jain, H. Singh, I. Bagai: Relations for reliability measures of weighted distributions. Commun. Stat., Theory Methods 18 (1989), 4393-4412. DOI 10.1080/03610928908830162 | MR 1046715 | Zbl 0707.62197
  [14] K. Jain, N. Singla, R. D. Gupta: A weighted version of gamma distribution. Discuss. Math., Probab. Stat. 34 (2014), 89-111. DOI 10.7151/dmps.1166 | MR 3286175 | Zbl 1326.60019
  [15] H. F. Jelinek, M. P. Tarvainen, D. J. Cornforth: Rényi entropy in identification of cardiac autonomic neuropathy in diabetes. Proceedings of the 39th Conference on Computing in Cardiology Institute of Electrical and Electronics Engineers (2012), 909-911.
  [16] F. Jiménez: Estimation of parameters of the shifted Gompertz distribution using least squares, maximum likelihood and moments methods. J. Comput. Appl. Math. 255 (2014), 867-877. DOI 10.1016/j.cam.2013.07.004 | MR 3093467 | Zbl 1291.62057
  [17] F. Jiménez, P. Jodrá: A note on the moments and computer generation of the shifted Gompertz distribution. Commun. Stat., Theory Methods 38 (2009), 75-89. DOI 10.1080/03610920802155502 | MR 2489673 | Zbl 1292.60021
  [18] P. Jodrá: Computer generation of random variables with Lindley or Poisson-Lindley distribution via the Lambert $W$ function. Math. Comput. Simul. 81 (2010), 851-859. DOI 10.1016/j.matcom.2010.09.006 | MR 2769536 | Zbl 1207.65012
  [19] J. Lappi, R. L. Bailey: Estimation of the diameter increment function or other tree relations using angle-count samples. Forest Science 33 (1987), 725-739.
  [20] S. Magnussen, P. Eggermont, V. N. LaRiccia: Recovering tree heights from airborne laser scanner data. Forest Science 45 (1999), 407-422.
  [21] W. M. Makeham: On the law of mortality and construction of annuity tables. J. Inst. Actuar. Assur. Mag. 8 (1860), 301-310. DOI 10.1017/s204616580000126x
  [22] A. Marshall, I. Olkin: Life Distributions. Structure of Nonparametric, Semiparametric, and Parametric Families. Springer Series in Statistics, Springer, New York (2007). DOI 10.1007/978-0-387-68477-2 | MR 2344835 | Zbl 1304.62019
  [23] A. M. Mathai, H. J. Haubold: On generalized distributions and pathways. Phys. Lett., A 372 (2008), 2109-2133. DOI 10.1016/j.physleta.2007.10.084 | Zbl 1220.62167
  [24] T. I. Missov, A. Lenart: Linking period and cohort life-expectancy linear increases in Gompertz proportional hazards models. Demographic Research 24 (2011), 455-468. DOI 10.4054/demres.2011.24.19
  [25] J. J. Moors: A quantile alternative for kurtosis. J. R. Stat. Soc., Ser. D 37 (1988), 25-32. DOI 10.2307/2348376
  [26] J. E. Muth: Reliability models with positive memory derived from the mean residual life function. Theory and Applications of Reliability 2 (1977), 401-436.
  [27] S. Nadarajah, H. S. Bakouch, R. Tahmasbi: A generalized Lindley distribution. Sankhyā, Ser. B. 73 (2011), 331-359. DOI 10.1007/s13571-011-0025-9 | MR 2924199 | Zbl 1268.62018
  [28] M. D. Nichols, W. J. Padgett: A bootstrap control chart for Weibull percentiles. Quality and Reliability Engineering International 22 (2006), 141-151. DOI 10.1002/qre.691
  [29] G. P. Patil, C. R. Rao: Weighted distributions and size-biased sampling with applications to wildlife populations and human families. Biometrics 34 (1978), 179-189. DOI 10.2307/2530008 | MR 0507202 | Zbl 0384.62014
  [30] J. H. Pollard, E. J. Valkovics: The Gompertz distribution and its applications. Genus 48 (1992), 15-28.
  [31] A. Rényi: On measures of entropy and information. Proc. 4th Berkeley Symp. Math. Stat. Probab., Vol. I Univ. California Press, Berkeley (1961), 547-561. MR 0132570 | Zbl 0106.33001
  [32] M. Shaked, J. G. Shanthikumar: Stochastic Orders and Their Applications. Probability and Mathematical Statistics, Academic Press, Boston (1994). MR 1278322 | Zbl 0806.62009
  [33] R. Shanker, S. Sharma, R. Shanker: A two-parameter Lindley distribution for modeling waiting and survival times data. Applied Mathematics 4 (2013), 363-368. DOI 10.4236/am.2013.42056
  [34] C. E. Shannon: A mathematical theory of communication. Bell. Syst. Tech. J. 27 (1948), 379-423, 623-656. DOI 10.1002/j.1538-7305.1948.tb01338.x | MR 0026286 | Zbl 1154.94303
  [35] S. N. Singh, S. B. Tiwari: An application of generalized entropy in queueing theory. Journal of Applied Science and Engineering 16 (2013), 99-103.
  [36] R. L. Smith, J. C. Naylor: A comparison of maximum likelihood and Bayesian estimators for the three-parameter Weibull distribution. J. Roy. Statist. Soc. Ser. C 36 (1987), 358-369. DOI 10.2307/2347795 | MR 0918854
  [37] V. Sucic, N. Saulig, B. Boashash: Estimating the number of components of a multicomponent nonstationary signal using the short-term time-frequency Rényi entropy. EURASIP J. Adv. Signal Process. 125 (2011), 1-11. DOI 10.1186/1687-6180-2011-125
  [38] W. G. Warren: Statistical distributions in forestry and forest products research. Modern Course on Statistical Distributions in Scientific Work, Vol. 2 NATO Advanced Study Institutes Series, Vol. 17, D. Reidel Publishing Company, Dordrecht (1975), 369-384. DOI 10.1007/978-94-010-1845-6_27
  [39] F. Willekens: Gompertz in context: the Gompertz and related distributions. Forecasting Mortality in Developed Countries: Insights from a Statistical, Demographic and Epidemiological Perspective European Studies of Population Vol. 9, Springer (2001), 105-126. DOI 10.1007/0-306-47562-6_5


Access to the full text of journal articles on this site is restricted to the subscribers of Myris Trade. To activate your access, please contact Myris Trade at myris@myris.cz.
Subscribers of Springer need to access the articles on their site, which is https://link.springer.com/journal/10492.

[Previous Article] [Contents of This Number] [Contents of Applications of Mathematics]